
Enhancing Performance and Energy Efficiency
for Hybrid Workloads in Virtualized

Cloud Environment
Chi Xu , Student Member, IEEE, Xiaoqiang Ma ,Member, IEEE, Ryan Shea ,Member, IEEE,

Haiyang Wang,Member, IEEE, and Jiangchuan Liu , Fellow, IEEE

Abstract—Virtualization has attained mainstream status in enterprise IT industry. Despite its widespread adoption, it is known

that virtualization also introduces non-trivial overhead when tasks are executed on a virtual machine (VM). In particular, a combined

effect from device virtualization overhead and CPU scheduling latency can cause performance degradation when computation

intensive tasks and I/O intensive tasks are co-located on a VM. Such an interference also causes extra energy consumption. In this

paper, we present Hylics, a novel solution that enables efficient data traverse paths for both I/O and computation intensive workloads.

This is achieved with the provision of in-memory file system and network service at the hypervisor level. Several important design

issues are pinpointed and addressed during our prototype implementation, including efficient intermediate data sharing, network

service offloading, and QoS-aware memory usage management. Based on our real-world deployment on KVM, we show that Hylics

can significantly improve computation and I/O performance for hybrid workloads. Moreover, this design also alleviates the existing

virtualization overhead and naturally optimizes the overall energy efficiency.

Index Terms—Platform virtualization, virtual machine monitors, network interfaces, middleware, load management

Ç

1 INTRODUCTION

THE past decade has seen a great paradigm shift to cloud
computing in the IT industry. The active participation of

such major IT companies as Amazon, Google, and Microsoft
significantly stimulates the prosperity of this new generation
of service model. These cloud services leverage virtuali-
zation to achieve high resource utilization as well as perfor-
mance isolation among co-located virtual machines (VMs).
Despite the widespread adoption, it is known that existing
virtualization technologies, such as Xen and KVM, also
introduce non-trivial overhead due to the hypervisor inter-
ception when tasks are executed on a VM [1]. This leads to
longer and unstable task completion time for computation-
intensive applications. Moreover, such an overhead also
causes self interference [2] for hybrid workloads that involve
both computation and I/O intensive tasks. Different from

cross-VM interference,1 self interference happens within
a VMwhen the I/O handling process of the VM is interfered
or even starved by other processes inside the VM. This is
very common when the co-located computation processes
aggressively use the CPU resources.

To bring an efficient virtualization to the cloud, many
studies focused on the I/O performance improvement in
virtualized systems. These studies can be broadly classified
into four categories: 1) reducing device virtualization over-
head [3], [4], [5]; 2) optimizing I/O path [6], [7]; 3) providing
middleware support at the hypervisor level [8], [9]; 4) cus-
tomizing the scheduling policy for I/O intensive VMs [2],
[10]. With the major focus on resolving the I/O bottleneck,
the existing studies do not provide comprehensive evalua-
tions on the performance of hybrid workloads in cloud
environments. Herein, hybrid workloads may experience
performance degradation in multiple aspects, including
I/O throughput, computation speed, and memory usage.
The impact remains largely unexplored, and a solution is
yet to be developed for common cloud services demanding
both data processing and transmission.

In this paper,We for the first time performed a comprehen-
sive measurement study to quantify the impact of self inter-
ference with typical hybrid workloads. In our experiments,
when running a hybrid transcoding and streaming workload

� C. Xu, R. Shea, and J. Liu are with the School of Computing Science,
Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
E-mail: {chix, rws1, jcliu}@sfu.ca.

� X. Ma is with the School of EIC, Huazhong University of Science and
Technology, Wuhan, Hubei 430074, China, and also with the School of
Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6,
Canada. E-mail: mxqhust@gmail.com.

� H. Wang is with the Department of Computer Science, University of
Minnesota Duluth, Duluth,MN55812USA. E-mail: haiyang@d.umn.edu.

Manuscript received 6 Sept. 2017; revised 17 Mar. 2018; accepted 16 Apr.
2018. Date of publication 15 May 2018; date of current version 5 Mar. 2021.
(Corresponding author: Xiaoqiang Ma.)
Recommended for acceptance by V. Piuri.
Digital Object Identifier no. 10.1109/TCC.2018.2837040

1. Cross-VM interference refers to the interference caused by the
impact of co-located VMs due to the imperfect isolation provided by
the hypervisor [11], [12], [13], [14].

168 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

2168-7161 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9473-722X
https://orcid.org/0000-0001-9473-722X
https://orcid.org/0000-0001-9473-722X
https://orcid.org/0000-0001-9473-722X
https://orcid.org/0000-0001-9473-722X
https://orcid.org/0000-0001-9987-0329
https://orcid.org/0000-0001-9987-0329
https://orcid.org/0000-0001-9987-0329
https://orcid.org/0000-0001-9987-0329
https://orcid.org/0000-0001-9987-0329
https://orcid.org/0000-0002-8213-2036
https://orcid.org/0000-0002-8213-2036
https://orcid.org/0000-0002-8213-2036
https://orcid.org/0000-0002-8213-2036
https://orcid.org/0000-0002-8213-2036
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
mailto:
mailto:
mailto:

in the KVM environment, the network throughput falls by up
to 32.1 percent, and the computation time increases by up
to 32.5 percent, all due to the existence of self interference.
Motivated by themeasurement results and an in-depth analy-
sis, we present Hylics, a novel virtualization architecture that
jointly optimizes I/O and computation performance for
hybrid workloads. The insight of the Hylics design is to
shorten the data traverse paths for both data processing and
transmission.Meanwhile, it also decouples I/O and computa-
tion operations for cloud VMs. In particular, Hylics stores
cloud applications’ data in the in-memory file system at the
hypervisor level. By doing this, the data traverse path now
originates, or ends, at the hypervisor-level memory space.
The design also shifts VM’s network operations to the hyper-
visor layer. The self interference is therefore minimized,
enabling nearly bare-metal networking performance and
enhanced computation performance. More importantly, our
solution significantly improves the energy efficiency when
handling hybridworkloads. TheHylics design is not confined
to any specific protocols or applications, and conceptually
raises the level of provisioned interface from physical device
to high-level I/O service. We have addressed several key
design issues in the Hylics architecture, including efficient
intermediate data sharing, network service offloading, and
QoS-aware memory usage management. We also developed
a prototype system in the KVMenvironment. The system con-
sists of loadable kernel modules and programming interfaces
for both VM and hypervisor. Our extensive evaluations show
that Hylics can improve network throughput by up to 27.8
percent via resolving the self interference. Meanwhile, the
experiments also indicate that Hylics can reduce the com-
pletion time for computation tasks by up to 31.2 percent.

To summarize, our contributions are listed as follows:

1) We for the first time performed an in-depth study to
quantify the impact of self interference with typical
hybridworkloads in virtualized cloud environments;

2) We proposed and implemented Hylics, an enhanced
virtualization framework to eliminate the self inter-
ference and addressed several important design
issues therein;

3) We proved that Hylics can jointly boost the network
and computation performance for hybrid workloads.
The energy efficiency of the underlying server is also
improved.

Compared with the preliminary version of this paper [15],
we have made several additional contributions: 1) we intro-
duced a new approach to assign and adjust the utilized
in-memory file system space among different VMs;
2) we proposed two different schemes for offloading
network transmission to the hypervisor layer, either by

offloading network middleware modules, or by offloading
valid socket copies; 3) we presented more comprehensive
evaluations, including hypervisor memory usage analysis
and energy efficiency measurements.

The rest of this paper is organized as follows: In Section 2,
we introduce the background and motivations of this paper.
In Section 3, we present the framework design of the Hylics
architecture. Section 4 describes the implementation details.
Section 5 introduces the analysis and enhancement of Hylics
memory usage. In Section 6, we show the experimental
results, as well as the further analysis. Section 7 surveys the
related work and Section 8 concludes this paper.

2 MOTIVATION

Previous research has confirmed the existence of self inter-
ference in virtualized environments, and quantified the deg-
radation of network performance with benchmark tools [2].
To further understand the impact of self interference with
real-world applications, we have conducted measurements
on two sets of typical hybrid workloads in cloud environ-
ments: 1) video transcoding and streaming, and 2) file com-
pression and delivery.

2.1 Measurement and Observation

The first experiment is conducted on a VM which serves as
a video streaming server and also a transcoder with real-
world applications LIVE555 and FFmpeg.2 The VM is
allocated with 8 vCPUs, 32GB RAM, running in the KVM
environment and fulfilling on-demand transcoding and
streaming requests from 500 clients. We first present our
experiment results on networking performance in Fig. 1
(labelled with “video”). In the beginning, the throughput of
this VM is relatively stable around 892 Mbps when it is ded-
icated to handling the streaming traffic. Unfortunately,
when we started to add concurrent transcoding tasks to the
VM, the throughput becomes as low as 661 Mbps, not to
mention the high variations. Before the transcoding task fin-
ished, the clients experienced a 32.1 percent throughput
degradation. We also plot the CDF of the network through-
put in Fig. 2 to present the performance loss. On the other
hand, for the concurrent transcoding tasks, the processing is
also delayed. Our experiments show that the transcoding
task completion time increased by 8.3-32.5 percent with
different output settings, which is shown in Fig. 3. Our mea-
surement results of the second set of hybrid workloads are
captured while simultaneously running file compression
and delivery tasks. The experiment is performed with pigz

and Lighttpd web server. In this case, the VM serves as a

Fig. 1. Network interference. Fig. 2. CDF of network throughput. Fig. 3. Transcoding performance.

2. The detailed experiment configuration is described in Section 6.

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 169

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

file entrepot for compressing and transferring data blocks.
The network throughput results of the webserver are also
shown in Figs. 1 and 2 (labeled with “file”). The web server
also has a 33.4 percent throughput degradation when co-
located with the compression tasks. To take a step further,
we maintained a hard limit on the CPU usage of the VM.
Such a non-work conserving scheduling policy has often
been adopted in real-world commercial clouds to achieve
better isolation and fairness between VMs. Unfortunately,
the CDF of the VM’s network throughput in Fig. 4 indicates
that, as we set a lower cap on the CPU usage of the VM,
the average network throughput significantly decreases,
together with a perpetual network instability. As for the
compression performance, Fig. 5 shows similar results as in
the previous set. The task completion time increased by up
to 52.11 percent. To summarize, our measurement results
indicate that adopting such a scheduling policy further
deteriorates the performance of the hybrid workloads in
multiple aspects.

As a matter of fact, many cloud applications may involve
even more complex hybrid workflows. It is reasonable to
believe that there is a prevalent existence of the self inter-
ference in the cloud context. The root cause of such self
interference is a combined effect of the I/O subsystem
design and the scheduling policy in virtualized environ-
ments. To take a step further, we use the KVM environment
as an example to introduce the I/O architecture design in
a typical virtulized system. A closer look into KVM’s net-
work architecture is given in Fig. 7, which lists the key steps
involved in delivering network packets to a VM. A state-of-
the-art solution, vhost-net,3 is a high-performance virtio net-
work device emulation that takes advantage of advanced
zero-copy and interrupt handling features. Despite the
reduced data copies, the network packets still have to tra-
verse through multiple protection layers before eventually
reaching the end application. Furthermore, when hybrid
workloads are running on the VM, the computation tasks
may consume the entire CPU quotas required for handling
the network transmission, and vice versa. If a VM expends
the entire CPU time slice, it will probably go to the end of
the scheduler’s queue and have to wait a considerable
amount of time before reaching the front again. If the
system administrator uses a non-work conserving schedul-
ing policy on the VM, the VM will not be scheduled again
until the next scheduler accounting period, even if there are
available CPU resources.

Apart from the network I/O operations, the hybrid
workloads also involve a large number of disk I/O opera-
tions. For example, in the aforementioned transcoding tasks,

it also involves reading the raw files from the virtual disk
space. In Fig. 8, we present the disk I/O workflow in the
KVM environment. In the native KVM design, a disk read
operation involves these following steps: an application
inside the guest VM uses a generic virtual file system (VFS)
interface to issue disk read requests. The guest VM first
fills in the request descriptors, then writes to the virtio-blk
virtqueue and notifies the related registers. Afterward, the
QEMU process issues the I/O requests on behalf of the
guest VM, then the QEMU process fills in the request footer
and injects the completion interrupts. The guest VM then
receives the interrupts and executes the I/O handler. Even-
tually, the application reads data from the kernel buffer.
Similarly as in the network I/O subsystem, the disk I/O
data also need to traverse through multiple protection
boundaries, which also incurs a great amount of virtuali-
zation overhead.

Meanwhile, the ceaseless state changing of a VM (e.g.,
from running state to block state), together with the context
switching between computation and I/O handling inside
the VM, increases the power consumption of the underlying
server. As a concrete example, Fig. 6 shows that, when we
run the stand-alone streaming task or the stand-alone trans-
coding task inside a VM, the CPU power consumption of
the physical server increases by 8.1 and 5.2 W, respectively.
However, when we run the hybrid workload inside the
VM, the CPU power consumption increases by 10.3 W.
Fig. 6 also shows a similar power consumption increase
when running the file compression and delivery workload.
All these results are compared with the bare-metal case.
Such a noticeable increase calls for a revisit on the current
virtualization architecture design.

2.2 Existing Approaches and Opportunities

Recent works on improving I/O performance in virtualized
environments can be broadly classified into four categories:
1) reducing device virtualization overhead [3], [4], [5]; 2)
optimizing network I/O path [6], [7]; 3) providing middle-
ware support at the hypervisor layer [8], [9]; and 4) custom-
izing the scheduling policy for I/O intensive VMs [2], [10].
We will then discuss the existing approaches and some
opportunities in this section.

SR-IOV enabled NICs [16] can handle network traffic
without the involvement of hypervisor. Unfortunately, such
devices do not allow hypervisors to inspect and control
VMs’ I/O activities [17], e.g., performing security and QoS
regulations. Another well-known issue is that a VM with
passthrough devices is not compatible with live migration.
Using exit-less interrupt delivery mechanisms [3], [4] can
effectively reduce the interrupt handling overhead of virtual
devices. In particular, I/O events are passed to a VM

Fig. 4. Scheduling policy. Fig. 5. File compression performance. Fig. 6. Energy comparison.

3. http://www.linux-kvm.org/page/UsingVhost

170 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

http://www.linux-kvm.org/page/UsingVhost

without exiting the hypervisor. However, such methods
cannot eliminate the self interference between the computa-
tion and I/O processing inside the VM. The negative effect
of VM consolidation also dominates the I/O performance in
virtualized systems. For example, as an increasing number
of VMs share a given CPU, the scheduling latencies, which
can be in the order of tens of milliseconds, substantially
increase the typically sub-millisecond round-trip time
for TCP connections in a datacenter, causing significant
throughput degradation. To mitigate such problems, vPro [6]
proposes to offload TCP protocol functionality, including
congestion control and acknowledgement to hypervisor. The
solution only benefits small TCP flows and does not work for
UDP protocol. vPipe [7] discusses the opportunity of enabling
piped I/O at the hypervisor layer for static data transfer.
vRead [8] and VAMOS [9] represent the effort on providing
I/Omiddleware support at the hypervisor level. These works
target on specific workloads in cloud environments, e.g.,
Hadoopworkload andMySQL databaseworkload.

The scheduling latency of network I/O intensive VM is
also critical in virtualized environments, since VM sched-
uling can bring noticeable delays to network I/O process-
ing. A recent study [2] suggests reducing CPU time slice
for I/O intensive VM. This enables an I/O intensive VM
to get scheduled more often so as to improve its I/O
throughput. vTurbo [10] takes a step forward to offload
VMs’ I/O processing to a dedicated core with an
extremely small time slice. In summary, these works
focus on modifying the hypervisor scheduler to reduce
the scheduling delays. However, these approaches bring
increased VM state changes, as well as complicated CPU
resource allocation strategies.

We can see that the previous approaches mainly focus on
I/O stack optimization, without evaluations on the overall
performance of hybrid workloads with concurrent CPU and
I/O operations. In this work, we aim to jointly optimizing
I/O and computation performance via enabling cloud
applications to better cooperate with the virtualization
layer. Our solution rests on the facts that,

1) The network I/O data transfer is essentially expensive
between VM and hypervisor. As mentioned before,
the complex network encapsulation and configuration
in virtualized environments is one key bottleneck to be
revisited.What has been largelymissed inmainstream
virtualization technologies is the opportunity for rais-
ing the level of provisioned interface from physical
device to high-level I/O service. In this paper, we

discuss the opportunity of providing guest VM with
an entire networking service;

2) Hypervisor-level network I/O operations can
achieve nearly bare-metal performance as well as
high energy efficiency. In a general virtualized sys-
tem, since the hypervisor has the privilege to use
native device drivers, it is therefore reasonable to
take advantage of hypervisor-level network I/O
operations to shorten the network packet traverse
path which originally begins or ends inside a VM;

3) For the computation part in hybridworkloads, instead
of performing read and write operations on the file
system hosted in virtual disk, it will be generally more
efficient to operate on the file system hosted in mem-
ory space. Therein, instead of providing a virtual disk
device, we also seek to provide a lightweight in-mem-
ory file system interface for hybridworkloads.

Based on these observations, we propose Hylics, an enhan-
ced virtualization framework for hybrid workloads in cloud
environments.

3 FRAMEWORK DESIGN

In this section, we present the complete design of the Hylics
framework. To mitigate the self interference inside VM and
jointly optimize I/O and computation performance, the
principle is to decouple network I/O operations and com-
putation operations, as well as shorten the data traverse
path for both of the two parts. In particular, Hylics provides
an in-memory file system for storing application data and
shifts VM’s network operations to the hypervisor layer.
Such network operation offloading borrows the idea of sep-
arating the control plane and data plane of network trans-
mission. As such, in the Hylics architecture, the data
transfer only takes place at the hypervisor layer.

To provide an intuition of the Hylics design, in Figs. 9
and 10, we present a comparison between the Hylics
abstraction and the native virtualization abstraction. For the
data processing part, in the conventional virtualization
architecture design, a pair of frontend and backend virtual
disk interface is offered to transfer data between a VM and
its hypervisor, which incurs a great amount of virtualization
overhead. The data first need to be loaded from the hard-
ware disk drive to the hypervisor memory space. Such over-
head is then eliminated with the in-memory file system
provision in Hylics. For the network data transmission part,
the Hylics design directly enables VM to send data from
the in-memory file system, with the network service provi-
sioned at the hypervisor layer.

Fig. 8. KVM disk I/O subsystem.Fig. 7. KVM network I/O subsystem.

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 171

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

3.1 Overview

As presented in Fig. 11, the Hylics design consists of the
following components:

Shared in-Memory File System. The shared in-memory file
system stores the intermediate data for cloud applications.
The intermediate data in this context refer to the application
data stored in the file system that are required to be proc-
essed, for example, the raw video files to be transcoded and
then delivered, the original files to be compressed and then
transferred. In our design, the shared in-memory file system
is allocated in the virtual memory maintained by the host
kernel, which can dynamically grow and shrink to accom-
modate the files it contains. Note that the maximum size
limit of the file system can be adjusted on-the-fly; this fea-
ture enables us to provide an SLO-aware memory usage
control scheme. We will further present the detailed shared
in-memory file system design in Section 4.1.

Cloud Applications. Cloud applications that involve data
processing and network transmission can utilize the in-
memory file system provided by the Hylics architecture.
This is enabled by using the VFS interface provided by the
Linux kernel. The purpose of a VFS interface is to allow
applications to access different types of concrete file systems
in a uniform way. Note that the processing logic of cloud
applications remains unchanged, which is beneficial to the
application developers. As for the network transmission
part, cloud applications are provided with a modified

version of system calls to issue network transmission
request. In this fashion, the actual data transfer is originated
from the in-memory file system with the offloaded network
service at the hypervisor level.

Hylics Frontend Module. Hylics frontend module provides
programming interfaces for dealing with the network trans-
missions of cloud applications. To copewith different applica-
tions, we propose two different schemes for offloading
network transmission to the hypervisor layer, either by off-
loading network middleware modules, or by offloading valid
socket copies. The frontendmodule communicateswith cloud
applications and serves as an agent to retrieve file descriptor,
destination information, and socket level information. It will
then pass the information to the backend module to perform
actual data transfer. Meanwhile, it also closely measures the
performance metrics of cloud applications to provide raw
profiling results for further performance optimization.

Hylics Backend Module. Hylics backend module is respon-
sible for VMs’ network transmission, and runs in the user
space of the hypervisor layer. With themiddleware or socket
operations offloaded to the hypervisor layer, the backend
module serves the VMs by starting multiple threads to send
the data from the in-memory file system. The backend mod-
ule utilizes hypervisor-layer network stack to transmit the
application data, which can achieve nearly bare-metal
networking performance. To ensure security, the backend
module runs inside a separated zone in the host space.
Wewill further elaborate the design in Section 4.2.

System Profiler and Estimator. The system profiler in the
Hylics architecture is a collection of monitoring tools to get
the application performance indicators in a real-time fash-
ion, e.g., task response time, file system usage information
and detailed logs. We collect such data for the estimator to
analyze and identify the system model. In particular, we
leverage a widely-used queueing model predictor to
achieve a fast system model approximation. We also pro-
pose a self-adaptive control scheme to mitigate the residual
model errors. The identified system model is further used
for optimizing the memory usage. The detailed estimator
design is discussed in Section 5.

Hylics Controller and Orchestrator. We design the control-
ler to coordinate the computation progress and network
transmission of cloud applications. Meanwhile, the con-
troller also manages the file system size allocated for each
VM. The controller receives the feedback from the system
profiler and estimator. It also accepts users’ SLO indicator
as an input. Based on the information, it makes optimization

Fig. 9. Native workflow for hybrid workloads.

Fig. 10. Hylics workflow for hybrid workloads.

Fig. 11. Detailed system architecture.

172 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

decisions to enhance the resource usage. In consideration
of computation complexity, we design a simple yet effective
online feedback control loop. The design is further explain-
ed in Section 5. The orchestrator implements and executes
the controller’s optimization decisions, e.g., the optimized
in-memory file system space assignment for each VM.
The decisions are executed by the in-memory file system
resizing mechanism with standard kernel interfaces.

3.2 Case Study

We use the hybrid workload “transcoding and streaming”
as a concrete example to illustrate the entire workflow in
the Hylics architecture. The raw video segments, originally
stored in the virtual disk space, are now lifted and stored in
the shared in-memory file system. The transcoding task
fetches and processes the video segments from the shared
in-memory file system. This is enabled with a paravirtual-
ized file system interface via offloaded Linux VFS API. Due
to the general abstraction of the Linux VFS API, transcoding
task can still use the same system call on handling these file
I/O operations. The post-processed video segments are also
stored in the shared file system for the on-demand transmis-
sion. To fulfill the concurrent streaming request, the VM can
use the network middleware module at the hypervisor layer
for video streaming. The sending result is then passed back
to the VM via a lightweight guest-host communication
channel. Such communications only involve control mes-
sage exchange between the VM and its hypervisor, causing
minimum overhead as compared to transferring the actual
video data. The VM also has another option to offload
socket level operations to the hypervisor layer. In this sce-
nario, the VM first needs to set up connections with valid
sockets and then sends out video files with the modified
programming interfaces provided by the Hylics architec-
ture. While running the hybrid workload, the profiler
module continuously collects the runtime information and
keeps track of the performance indicators. In this case, we
use transcoding response time and sending throughput as
the default indicators. The Hylics controller gathers such
information from both the guest VM and its hypervisor and
then the estimator calculates the optimized memory space
required by the VM. Afterward, the orchestration is per-
formed to adjust the size of the in-memory file system.

4 SYSTEM IMPLEMENTATION

4.1 Sharing In-Memory File System

We delve into the implementation details of the shared in-
memory file system in this section. Typically, a file system is
used to define how file data are stored and retrieved, which
includes two types of information—the data blocks residing
on the file system, and the control information used to
maintain the state of the file system. An in-memory file sys-
tem uses resources and structures of memory subsystem,
which supports UNIX file semantics meanwhile is fully
compatible with other common file systems. Hosting a file
system inside the memory space provides better perfor-
mance for file reading and writing. This feature is utilized
by our Hylics design so that the general file access of cloud
applications causes a memory-to-memory copy of data, no
I/O requests for file control updates are generated. Mean-
while, since file system attributes are stored once in

memory, no additional I/O requests are needed for file sys-
tem maintenance. In the Hylics architecture, rather than
directly using dedicated physical memory, we choose to uti-
lize the operating system page cache maintained by the ker-
nel for storing file data. Such an implementation generally
provides increased read and write performance with no
adverse effects on the system compatibility. This is because
we can further take advantage of the native resource man-
agement policies in the Linux kernel. Another important
aspect is the space management of the in-memory file sys-
tem, instead of allocating a fixed amount of memory for
exclusive use, using system page cache space enables a
dynamic resizing mechanism depending on use, which
allows the Hylics architecture to adjust its memory usage
on-the-fly. To meet all the design criteria, we employed
tmpfs file system [18] during the implementation. When we
initialize the Hylics architecture, a VFS structure is allocated,
initialized and added to the kernel’s list of mounted file sys-
tems. A tmpfs-specific mount routine is then called, which
allocates and initializes a tmpfs mount structure, and then
allocates the root directory for the file system. It allows us to
use anonymousmemory in the page cache to store andmain-
tain file data. Since the kernel does not differentiate tmpfs file
data from other page cache uses, the stored file blocks can be
written to swap space. This could happen when the system
is in an urgent need ofmemory. Control information is main-
tained in physical memory allocated from kernel heap. The
file data are then accessed through only one level of indirec-
tion provided by the virtual memory system.

Besides the in-memory file system provision, another
critical issue is to efficiently share the file system between a
VM and its hypervisor. In the current design, we enable a
paravirtualized file system driver to minimize the virtuali-
zation overhead, which is based on the widely deployed vir-
tio framework [19]. This interface presents some unique
advantages over the traditional virtual block device. By par-
avirtualizing a file system interface, we further avoid a layer
of indirection in converting VM’s file system operations into
block device operations and then again into host file system
operations. A paravirtualized interface provides a precon-
nected and isolated channel between a VM and the hypervi-
sor, which incurs none of the overhead of arbitrary and
unnecessary encapsulation when going over a network
stack incurs. Our implementation is to leverage a light-
weight distributed file system protocol directly on top of
paravirtualized transport [20]. We achieve this by providing
a virtualization-aware transport interface through the virtio
framework. The shared file system space is then ported as a
local file system on the guest VM. To ensure system secu-
rity, we also enable standard Linux access control mecha-
nisms, including SELinux, chroot, and seccomp, to limit a
QEMU process to access its own resources. Each QEMU
process is restricted to only access the part of the shared file
system space that is relevant to the VM it runs.

4.2 Offloading Network Operations

To complete the Hylics design, another critical issue is to
offload VM’s network operations to the hypervisor. One
possible solution is directly using the network stack at the
hypervisor layer with offloaded network middleware mod-
ules. Such modules run at the hypervisor level and

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 173

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

cooperate with the hypervisor resources. The execution
results, interpreted as control messages, can be sent back to
the VM via an inter-domain communication channel, e.g., vir-
tio-vsock.4 Such offloading is favorable for those workloads
whose functional logic is easy to be further decoupled. They
can use a client side in the VMand a server side running at the
hypervisor level. The network I/O middleware modules off-
loaded at the hypervisor level can effectively reduce the num-
ber of VM-hypervisor context changes, as well as the device
emulation overhead. However, running an additionalmodule
at the hypervisor level may potentially raise concerns about
the complexity and security risks. We emphasize that, with a
careful design, the modification is minimal. The networkmid-
dleware module can be loaded as a user space process at the
hypervisor layer, and runs in an isolated environment. To
neutralize security vulnerabilities, the hypervisor can further
restrict the privilege of the network middleware module. For
instance, in the KVM environment, to defend against compro-
mised running components, a QEMU process can use plugin-
isolationmechanisms [21], [22].

Another possible solution is offloading TCP/UDP socket
level operations. Therein, we also design interfaces for
Hylics to pass the entire TCP/UDP processing functionality
by establishing a socket copy in the hypervisor layer. Partic-
ularly, we first provide a variant of the system call send()
or sendfile() for user applications. An application can
either use hylics_send() or hylics_sendfile() for
network transmission. The parameter includes socket
descriptor (which is obtained by accepting clients’ connec-
tion), file descriptor (by locating the targeted file), file offsets
and byte count. After getting parameters from cloud applica-
tions, the Hylics frontend module in the VM first converts
this socket descriptor to a socket structure with necessary
information for establishing the socket copy in the hypervi-
sor layer. Such information includes the source and destina-
tion IP addresses, source and destination ports. Meanwhile,
the Hylics frontend also interprets the file descriptor as a file
path inside the shared in-memory file system. As soon as
these parameters are passed to the Hylics backend module,
the backend module sets up a socket copy. It then begins to
fetch data from the in-memory file system and performs the
actual data transfer. When the transfer is completed, the
number of bytes sent is returned to the cloud application.
After the transmission begins, the original socket inside the
VM is disabled and the traffic is redirected to the hypervisor
layer by explicitly setting the packet forwarding policy.

5 MEMORY USAGE ANALYSIS AND ENHANCEMENT

Hylics leverages the memory resource at the hypervisor
layer to improve the overall performance of hybrid work-
loads. Therein, the space management of the shared in-
memory file system is undoubtedly a key design issue. Intu-
itively, the static management or fixed in-memory file sys-
tem size for each VM can provide isolation and fairness
between VMs. However, it may also result in either resource
waste or VM performance degradation. Furthermore, the
rigid management of memory usage also suffers from the
inflexibility in the presence of memory intensive tasks.
Therefore, We believe that system administrators should at

least be able to switch between static and dynamic strate-
gies. Although almost all modern hypervisors implement
memory overcommitment mechanisms such as ballooning,
page sharing, and swapping; they lack policies to coordi-
nate these mechanisms in order to minimize performance
degradation for cloud applications. We then introduce an
online approach to assign and adjust the utilized memory
space among different VMs. By online, we mean that the
controller design achieves system identification and makes
adjustment decision by processing pairs of input-output
measurements sequentially. In the cloud context, such
online processing is important since the task size and arrival
rate are highly dynamic and hence is the efficiency of the
Hylics memory space usage. As a next step, we propose an
online self-adaptive control scheme to meet users’ SLO while
keeping a moderate memory usage.

5.1 Online Self-Adaptive Control Scheme Design

To provide a robust control scheme, we combine queueing
modeling and adaptive control together in this work. The
reason why we need such a design is twofold. First, we learn
from Google’s trace analysis [23], [24] that typical job inter-
arrival time exhibits an exponential distribution. Although
Google’s trace data cannot include all possible hybrid work-
load types, the level of detail and mixture of workload types
in this trace is unprecedented [24]. Meanwhile, queueing
model is also widely applied in the cloud context to provide
simplification on the system that has a bottleneck stage [25],
[26]. Second, the adaptive control loop can build the residual
error model and enhance the controller performance. It can
reduce the inaccuracies in the queueing model and handle
the sudden change of hybrid workloads in a dynamic fash-
ion. The combination of queueingmodel predictor and adap-
tive control provides a better performance regulation under
awide range of workload conditions.

Our abstraction of a Hylics-enabled VM is an M/G/1
processor sharing queue (M/G/1/PS). With the network-
related tasks offloaded to the hypervisor layer, we assume
that the VM is now exclusively working on the computation
tasks with the assistance of the shared in-memory file sys-
tem. To begin the self-adaptive control scheme design, we
first introduce the notations in the queueing model (summa-
rized in Table 1). We denote by RðxÞ the average response
time of a computation task whose service time is x. Accord-
ing to the queueing model definition, the service time is an
i.i.d random variable in an M/G/1/PS system, denoted by
X, of which the probability distribution function is P ðXÞ,
with an average E½X�. The load and arrival rate of the queue
are denoted by r and �, respectively. The average response
time for all tasks on the VM, is then calculated by

R ¼
Z 1

0

RðtÞdP ðtÞ ¼ E½X�
1� r

: (1)

Let the size of the in-memory file system space allocated for
the VM be m. In this work, we assume that the average ser-
vice time of a task is a variable subject to the file system size
m. Then we have

RðtÞ ¼ E½Xjm�
1� �ðtÞE½Xjm� : (2)

4. http://wiki.qemu.org/Features/VirtioVsock

174 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

http://wiki.qemu.org/Features/VirtioVsock

The goal of the adaptive control is to adjust the average
response time of tasks RðtÞ as close to the reference delay t

as possible. The reference delay t indicates users’ SLO. Sup-
pose the queueing model is accurate, then from Equation (2),
we can then directly set the file system size m to get the
ideal average service time, so that we can further get the
steady response time to be exactly t.

As the next step, we present the adaptive feedback loop
design. In this context, the purpose of the adaptive control
loop is to correct the “residual errors” of the response time
(Dt) by dynamically tuning the adjustment of Hylics file
system space (Dm). Considering the overall performance of
the system, we apply direct adaptive control for its effi-
ciency and simplicity. We then consider the system as a dis-
crete time model with adjustable parameters estimated by a
recursive least squares (RLS) estimator [27], which is an
online version of the well-known least-square estimator.
Such online parameter estimation can provide us with real-
time feedback. The parameters are updated during each
control interval to minimize the queueing model error.
Then the control law is calculated by setting the adjustment
of Hylics space (Dm) to diminish the residual errors (Dt).

To be more specifically, in order to construct the control
law, the adaptive controller first needs to estimate the resid-
ual error model for the system whose parameters can be
used in the controller. In the following discussion, we
describe the scheme with a general model

Aðq�1ÞyðkÞ ¼ q�dBðq�1ÞuðkÞ; (3)

where

Aðq�1Þ ¼ 1þ a1q
�1 þ � � � þ anAq

�nA;

Bðq�1Þ ¼ b0 þ b1q
�1 þ � � � þ bnBq

�nB ; b0 6¼ 0;
(4)

and yðkÞ is the control output, uðkÞ is the control input. In the
Hylics context, yðkÞ corresponds to the residual error of the
response time DtðkÞ. and uðkÞ corresponds to the memory
space adjustmentDmðkÞ. Due to the digital implementation of
the controller, the effect of the control command determined
on time interval k can only bemeasured in interval kþ 1, then
we set the delay order as d ¼ 1. The model parameter of

Equation (4) are estimatedwith the RLS estimator. Let

uðkÞ ¼ ½u1ðkÞ; . . . ; unAðkÞ; unAþ1ðkÞ;
unAþ2ðkÞ; . . . ; unAþnBþ1ðkÞ�T ;

(5)

and

fðkÞ ¼ ½yðkÞ; yðk� 1Þ; . . . ; yðk� nA þ 1Þ; uðkÞ;
uðk� 1Þ; . . . ; uðk� nBÞ�T ;

(6)

The target function of the RLS estimator is defined as

min
ûðkÞ

JðkÞ ¼
Xk
i¼1
½yðiÞ � ûT ðkÞfði� 1Þ�2: (7)

The term ûT ðkÞfði� 1Þ in Equation (7) corresponds to
ŷ½ijûðkÞ�. This is the prediction of the output at instant i
(i � k) based on the parameter estimated at instant k, which
is obtained by using k measurements. The RLS algorithm
works by calculating the adaption gain matrix F and updat-
ing the model parameter u

F ðk� 1Þ ¼ F ðk� 2Þ � ½1þ fðk� 1ÞTF ðk� 2Þfðk� 1Þ��1

F ðk� 2Þfðk� 1Þfðk� 1ÞTF ðk� 2Þ;
(8)

uðkÞ ¼ uðk� 1Þ þ F ðk� 1Þfðk� 1Þ½yðkÞ
� fðk� 1ÞT uðk� 1Þ�; (9)

then the control law for the memory space adjustment is
given by solving

fðkÞT uðkÞ ¼ y�ðkþ 1Þ; (10)

where y�ðkþ 1Þ is the residual response time error at instant
kþ 1. In this case, since we are considering to let the
“residual errors” to diminish, then we need to set
y�ðkþ 1Þ ¼ 0. The above algorithm begins with initial condi-
tion F ð�1Þ ¼ f0I and f0 > 0.

Algorithm 1.Hylics File System Size Control

1: Pre-define R thresh andm thresh
2: Pre-define ci minthresh and ci maxthresh
3: Initialize gain matrix F ¼ f0I and parameter vector u
4: while control interval (ci) expires do
5: Acquire average response time RðtÞ from profiler
6: if DR � R thresh then
7: Update �ðtÞ and queueing model
8: Update m̂ by solving Equation (2)
9: m m̂
10: end if
11: Update adaption gain matrix F by Equation (8)
12: Update parameter vector u by Equation (9)
13: Acquire Dm by solving Equation (10)
14: if Dm � m thresh then
15: m mþ Dm
16: ci maxfci=2; ci minthreshg
17: else
18: ci minfci � 2; ci maxthreshg
19: end if
20: end while

As a summary, we list the key steps of the Hylics memory
space control algorithm in Algorithm 1. As shown in line 1

TABLE 1
Summary of Notations

Notations Definitions

RðxÞ average response time of a task
P ðxÞ PDF of service time
E½X� average service time
r load of a queue
� arrival rate of a queue
m current allocated in-memory file system space
t reference delay
k sequential number of a measurement pair
A;B; a; b; q general control model parameters
nA; nB; d control model orders
yðkÞ kth control output
uðkÞ kth control input
uðkÞ kth parameter vector
fðkÞ kth input-output pair
F ðkÞ kth adaption gain matrix
I identity matrix

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 175

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

and line 2 of the algorithm, we first need to define
the threshold of the response time changes (R thresh)
and memory space changes (m thresh). This is to avoid
the adjustment oscillations during the control loop.
ci maxthresh and ci minthresh are used for setting the upper
bound and lower bound of the control interval, respectively.
The control loop is executedwhenever the control interval (ci)
expires. Note that the control interval is also adaptively set to
avoid oscillations, which is shown in line 16 and line 18.

5.2 Case Study and Parameters Selection

We also use the hybrid workload “transcoding and stream-
ing” as an example to show how the proposed scheme
works. We first leverage the queueing model predictor to
approximate the transcoding performance. Then, the pro-
posed adaptive control loop compares the response time of
the transcoding task with the referenced transcoding delay
at each control interval. The controller then adjusts the usage
of the in-memory file system to approach the desired perfor-
mance. Whenever there is a large spike in the response time,
the queueing model predictor is recalculated. If there is only
a minor change in the transcoding response time, we update
the in-memory file system size merely with the adaptive
control loop. The video data are then transferred between
the in-memory file system and the default file system hosted
in the virtual disk based on the control law.

Next, we discuss how the model parameters are selected
in this work. The average service time E½Xjm� given specific
m for different workloads used in the queueing model pre-
dictor is measured offline. To this end, we first initiated a
lightweight workload on the VM.We then varied the utilized
in-memory file system size and measured the response time.
Themeasured average response time approximates the aver-
age service time since there is no queueing delay during the
experiment. We conducted the measurement test multiple
times (� 100) and then averaged the measured time to get
E½Xjm�. As the next step, we need to determine the model
orders nA and nB to complete the adaptive controller design.
The model orders nA and nB are also measured in an offline
fashion. We used the following method to determine these
parameters: we first disabled the adaptive controller and col-
lected offline data Dt by using only the queueing model pre-
dictor and a white noise input of Dm. Under different
combinations of nA and nB, we used a direct model identifi-
cation method—a default least square estimator to get the
corresponding model parameters, then we tested which u

acquired from these combinations has good fitting perfor-
mance. This means using the u, a new data group of collected
data pairs (Dm, Dt) produces high r2 value [27]. r2 denotes
the percentage of variations that can be explained by the
model. In the Hylics system design, we found the parameter
choice with nA ¼ 1 and nB ¼ 0 has the best fitting result.

6 PERFORMANCE EVALUATION

In this section, we conducted experiments to understand the
performance of the proposed design. The criteria include
file system read and write performance, computation per-
formance, networking performance, and energy efficiency.
First, we introduce the testbed configuration, together with
the hardware and software environments.

6.1 Experiment Configuration

Our experiments are conducted on a typical rack server Dell
PowerEdge R430 Server 1U. It is equipped with two Xeon
E5-2630 v3 2.4 GHz octa-core CPUs and 256 GB RAM. To
understand the networking performance, we deployed
another rack server with the same hardware configurations.
These two servers are installed with Intel Corporation Ether-
net Controller X540-AT2, and the interfaces are connected by
aNetgear XS712T switchwith 10 Gbps Ethernet link.

The operating system running on the host machine and
the guest VM is Ubuntu 16.04.2 LTS. The kernel version of
the host machine is Linux 4.4.0-78. For the guest VM, we
have upgraded the guest kernel (version 4.7.0+) to support
the virtio-vsock interface. We then configured qemu-kvm
2.5.0 on this testbed machine. Based on the typical VM con-
figurations in public clouds, we set the default number of
accessible vCPU to be 8 for the guest VM. The VM is then
equipped with 32 GB RAM. We used ifstat to measure
the network throughput with the probing interval set as
one second. To collect the detailed system information, we
captured the virtual CPU utilization using top, which is
a standard resource monitoring tool integrated into the
Linux distribution. Furthermore, we used the Linux hard-
ware performance analysis tool perf to collect such system
level statistics as CPU cycles and context switching infor-
mation. To avoid randomness in our data, we ran each
experiment 100 times and calculated the average and stan-
dard deviation. We used a Linux library function getti-

meofday() to calculate the running time of computation
tasks. The granularity is one microsecond. In terms of
energy efficiency, the CPU power consumption is captured
by RAPL counters in Intel’s Sandy Bridge processors.

To comprehensively understand the performance of
Hylics, we also selected representative benchmark tools
(dd and sysbench) and real-world applications (LIVE555,
FFmpeg, pigz, and Lighttpd), which are introduced
in Table 2. In detail, the transcoding task conducted by
FFmepg is a typical transsizing task. Transsizing consists of
operations on changing the picture size of video, which is
commonly seen in cloud environments for streaming
to different devices. Our video source is multiple 1440P
(2560	 1440) video segments with 60 FPS frame rate.
The length of one individual video segment is 30 seconds. In
our experiments, we performed transsizing tasks to convert
the video segments into different resolutions. The file com-
pression task is performed by pigzwith the default compres-
sion ratio, and we set the number of compression threads to
be exactly the same number of the allocated vCPUs.

6.2 Benchmark Test

As the first step, we used benchmarking tools sysbench
and dd to understand the file I/O performance of the
shared in-memory file system. Fig. 12 compares the read
throughput when the VM is reading from the virtual block
device (dev) and the Hylics in-memory file system (Hylics).
In this experiment, we disabled the operating system block
cache and varied the block size to thoroughly understand
the overall performance. As shown by our results, Hylics
file system performs better in both sequential read and ran-
dom read scenarios. This is mainly because the read opera-
tions are now executed inmemory space. Fig. 13 presents the

176 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

sequential write and random write throughput. Similarly as
the read benchmark tests, the Hylics file system outperforms
the native block device and has a more stable throughput.
During the above experiments, we can find that the in-mem-
ory file system provision especially favors for the random
read and write operations of small data blocks. Fig. 14 shows
the comparison when the VM is writing null characters with
the benchmarking tool dd. To ensure the fairness, we also
disabled the writing cache and required physically writing
the output data before the finish. This is performed by setting
the dd parameter “conv=fsync”. We found that, the in-mem-
ory file system achieves better write throughput than the
default virtual disk device in all experiments. Meanwhile,
we are also curious about the read and write performance of
the in-memory file system at the hypervisor level. We there-
fore performed the same sysbench tests at the hypervisor
layer. The results are listed in Figs. 15 and 16. As a matter of
fact, the read and write throughput at the hypervisor level
can both achieve gigabit-level performance.

6.3 Real-World Application Performance

We further demonstrate the performance gain brought by the
Hylics design with real-world applications. we also used the
same hybrid workloads as in the preliminary measurement
studies: 1) transcoding and streaming services, 2) file com-
pression and delivery services. In Fig. 17, we show the
improvement of the transcoding task completion time
brought by the Hylics design. As we have discussed in Sec-
tion 2, when the transcoding tasks and streaming tasks simul-
taneously run on the VM (labelled as “Interference” in the
figure), we can observe the longest task completion time.
Meanwhile, the completion time of stand-alone transcoding
tasks is labelled as “No Interference”, which serves as the
baseline. The completion time, when we offload network I/O
modules and socket level operations to the hypervisor layer,

is labeled in the figure as “Hylics-module” and “Hylics-
socket”, respectively. In all the experiments, we can observe
that the Hylics design shortens the transcoding task comple-
tion time. Furthermore, the performance is fairly close to the
“No interference” case.

As a next step, we varied the number of vCPUs assigned
to the VM and the total number of threads for the transcod-
ing tasks to investigate the impact of computation power.
The results presented in Fig. 18 indicate that Hylics also
achieves nearly ideal performance. Note that in the (8
vCPUs, 8 threads) and (4 vCPUs, 4 threads) cases, since the
transcoding task runs on all the available vCPUs, such a
configuration causes more severe self interference inside the
VM, as well as the worst computation performance. The
Hylics design, however, has a negligible increase in the task
completion time. In these experiments, Hylics exhibits a 7.8-
31.2 percent computation performance enhancement when
compared with the “Interference” case. We also tested the
performance when file compression tasks and file delivery
tasks were co-located on the VM. In this case, we varied
the size of the target file. The results are shown in Fig. 19.
Similarly as in the first experiment, the Hylics design
achieves almost the same computation performance as the

TABLE 2
Benchmark Tools and Real-World Applications

Tool Reference Description

dd https://wiki.archlinux.org/index.php/benchmarking Benchmark tool dd is used to test the speed of sequential file write.
sysbench https://wiki.postgresql.org/wiki/SysBench Benchmark tool sysbench is used to test the speed of sequential

and random file I/O.
LIVE555 http://www.live555.com/ The LIVE555 libraries are designed for multimedia streaming,

suitable for various cloud-based streaming applications.
FFmpeg https://www.ffmpeg.org/ FFmpeg is a common multimedia framework that is able to decode,

encode, transcode, mux, and demux multimedia files.
pigz https://zlib.net/pigz/ pigz is a compression utility that exploits multiple processors and

multiple cores to the hilt when compressing file data.
Lighttpd https://www.lighttpd.net/ Lighttpd is a fast and flexible web server implementation with a low

memory footprint.

Fig. 12. Sysbench VM read performance.

Fig. 13. Sysbench VM write performance.

Fig. 14. dd VM write performance.

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 177

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

https://wiki.archlinux.org/index.php/benchmarking
https://wiki.postgresql.org/wiki/SysBench
http://www.live555.com/
https://www.ffmpeg.org/
https://www.lighttpd.net/

“No Interference” case. The compression time is improved
by up to 26.2 percent in our experiments.

As for the networking performance, in Fig. 20 we present
the CDF of the video streaming throughput. In this figure,
we use “No interference” to label the stand-alone streaming
performance inside the VM. The “Interference” curve
describes the streaming throughput when we added concur-
rent transcoding tasks. By comparing the results between
“Interference” and “No Interference”, we can observe a 21.4
percent network throughput degradation. In this figure,
“Hylics-module” and “Hylics-socket” label the streaming
performance when the actual network data transfer is
offloaded to the hypervisor level. To summarize, when we
applied the Hylics architecture, the average throughput
reached up to 931 Mbps, which is close to the “No inter-
ference” case. It is noted that the performance of offloading
socket level operations to the hypervisor level is slightly
worse than directly offloading network I/Omodules. This is
because the socket level offloading needs to return the send-
ing result to the VM more frequently. In general, Hylics
resolves the self interference and achieves a 27.8 percent
network throughput enhancement. We also tested the net-
working performancewith the file compression and delivery
workload, which is shown in Fig. 21. The comparison also
shows the performance enhancement achieved byHylics.

6.4 Memory Control

To demonstrate the effectiveness of the memory control
scheme design, we applied the proposed file system space
control algorithm when running the transcoding and stream-
ing experiments. To maintain a reasonable stress on the VM,
we selected multiple 10-second 720P video segments as the
input. We used two sets of workloads in our tests. The first
set, workload #1 is a simple workload which has exponen-
tially distributed inter-arrival time with an average of 8 sec-
onds. The second set, workload #2 is a more complicated
workload which periodically changes the average inter-
arrival time from 8 seconds to 4 seconds. We consider the fol-
lowing running scenarios: If one video segment has not been

requested in the last one minute, it will be evicted from the
tmpfs to the standard file system inside the virtual disk space.
We furthermake the assumption that if the tmpfs is temporar-
ily full, then all the arrived transcoding requests will be han-
dled by the file system hosted in the virtual disk space. Based
on our real-world measurement in the target VM, when the
transcoding task is handled by the in-memory file system, the
average task completion time is 3.32 seconds, if the task is han-
dled by the default file system inside the virtual block device,
the average task completion time is 4.02 seconds. We then
used an offline measurement method to identify the correla-
tion between the file system size m and the average service
time E½Xjm�. The correlation can generally be fitted by an
extended inversely proportional function in this case.

To make a fair comparison, we used three different mem-
ory control schemes, namely, “adaptive only”, “queuing
prediction” and the combination of the both. The test lasted
for one hour and we set the referenced response time t to be
10 seconds since it equals the length of the video segments.
In addition, we set the parameter ci minthresh to be 30 sec-
onds, and set ci maxthresh to be 4 minutes. The average
response time of the transcoding tasks in this experiment is
shown in Figs. 22 and 23. In these two figures, we can see
that: (1) At the beginning stage, the adaptive only method
needs to gather enough measurement inputs to identify the
system performance, which leads to a slow convergence
speed; (2) The queueingmodel provides an approximation of
the real system performance. However, there still exists gaps
between the queueing model prediction and the real system
performance; (3) When combined with the adaptive control
scheme, the queueing model helps to set a better starting
point to identify the real system performance and hence pro-
vides better performance as well as fast convergence.We fur-
ther present the aggregated response time errors with
different settings in Table 3. The results show that combining
the queueing model prediction and the self-adaptive control
can achieve the least aggregated response time error. Further-
more, with thememory usage control and adjustment, Hylics
can operate with a moderate memory usage under dynamic

Fig. 15. Host read performance. Fig. 16. Host write performance. Fig. 17. Video trancoding performance.

Fig. 18. vCPUs and threads. Fig. 19. File compression performance. Fig. 20. Streaming server performance.

178 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

workload stress. The maximum amount of memory used for
the file system when handling workload #1 and workload #2
are 245 and 388MB, respectively.

We also pinpoint the power savings achieved by the
Hylics design. We closely measured the CPU power con-
sumptionwhile running the tests. In particular, Fig. 24 shows
the results when we only introduced the transmission tasks
(video streaming or file delivery) on the VM,with no compu-
tation tasks. In this experiment, Hylics is running with the
offloaded network I/O module. The power consumption is
therefore stable throughout the comparison. The results indi-
cate that, the power consumption of Hylics architecture is
much lower when compared with the transmission initiated
in the VM. As further shown in Fig. 25, after we initiated the
hybrid workloads, the power consumption of the Hylics sys-
tem is also better than the native virtualized system.

6.5 In-Depth Investigation

To reveal more details, we conducted an in-depth investiga-
tion to pinpoint where exactly the gain is from. We collected
low-level profiling benchmarks by perf when running the
stand-alone streaming tasks. We tested four cases: streaming
in VM, using network I/O module offloading, using socket
level offloading, and the bare-metal case. The results are pre-
sented in Table 4. The first benchmark context-switches per sec-
ond refers to the operation when the scheduler determines to
run another process or when an interrupt triggers a routine’s
execution (such as handling network buffer). The measure-
ments of these four cases are 762,991, 1,979, 2,423, and 1,856,
respectively, which demonstrates a significant improvement
brought by the Hylics design. An explanation on this is that
when handling high-volume streaming traffic inside the VM,
the streaming process and the traffic handling process keep
interrupting each other. Consider if we add the co-located
CPU intensive operations and disk I/O operations, the result

can get much worse. As a comparison, the Hylics design off-
loads the actual network data transfer to the hypervisor level,
and initiates the data transfer at memory space. As a conse-
quence, the frequent interrupts no longer exist and as is the
self interference. The second and third benchmark presented
are stalled cycles at the frontend/backend stage. A CPU cycle is
stalledwhen the instruction pipeline does not advance during
this cycle. In particular, the “frontend stages” are a group of
stages duringwhich the instructions are fetched and decoded.
During the “backend stages”, the instructions are then accord-
ingly executed. From ourmeasurement results, the number of
stalled cycles in the frontend has only a 2.14-2.64 percent dif-
ference. The number of stalled cycles in the backend, how-
ever, has a 15.41-15.62 percent difference. This shows that the
streaming process running inside the VM keeps waiting to be
scheduled to send out the data. Yet it is often interrupted by
the traffic handling process for sending the network buffer.
Furthermore, the comparison on instructions per cycle and
stalled cycles per instruction also shows that it is more efficient
to shift the I/O intensive operations to the hypervisor layer.

7 RELATED WORK

In Section 2.2, we have reviewed some recent works on
improving the I/O performance in virtualized environ-
ments. In addition to those works, there have been other
studies in the related fields.

Detecting and Resolving VM Interference. The interference
discussed in previous papers comes from the multi-tenancy
nature in virtualized cloud environments. The extent of such

Fig. 21. Web server performance. Fig. 22. Hybrid workload #1. Fig. 23. Hybrid workload #2.

TABLE 3
Aggregated Response Time Error

Workloads vCPUs RAM Adaptive Queue A+Q

Type#1 4 16 GB 14.2 s 27.3 s 8.8 s
Type#1 4 32 GB 10.2 s 21.4 s 7.5 s
Type#1 4 64 GB 20.4 s 25.9 s 9.4 s
Type#1 8 16 GB 10.1 s 28.5 s 7.6 s
Type#1 8 32 GB 18.2 s 31.3 s 5.1 s
Type#1 8 64 GB 15.7 s 40.5 s 8.4 s
Type#2 4 16 GB 26.0 s 34.9 s 12.3 s
Type#2 4 32 GB 22.1 s 33.5 s 15.4 s
Type#2 4 64 GB 18.8 s 45.8 s 14.9 s
Type#2 8 16 GB 28.1 s 37.5 s 12.1 s
Type#2 8 32 GB 21.1 s 33.2 s 11.4 s
Type#2 8 64 GB 32.1 s 41.5 s 16.0 s

Fig. 24. Transmission tasks.

Fig. 25. Hybrid workloads.

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 179

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

interference heavily depends on the combination of work-
loads running on co-located VMs [28]. Effective profiling and
prediction tools have been developed to keep track of such
interference [29], [30]. There have been recent efforts towards
identifying the impact and pattern of the interference among
co-located workloads, as well as developing efficient work-
load handling strategies [11], [31], [32], [33]. It is noted that
these methods are designed for cloud providers, which
require detailed runtime information and a global view on
the resource management. The techniques include smart
scheduling, livemigration, and resource containment. Service
reconfiguration is also suggested tomitigate such interference
from cloud consumers’ point of view [13], [14].

Energy Efficiency of Cloud Workloads. Mastelic et al. [34]
provided a comprehensive analysis on the energy efficiency
of the underlying cloud infrastructure. The survey covers
energy efficiency in server domain, supporting management
system domain, and appliance domain. There have been
studies focusing on the energy consumption of network
transactions [35], [36]. We have also seen studies targeting
on the optimization of power consumption for specific cloud
workloads, e.g., reducing power consumption of data cen-
ters through the placement of energy-hungry jobs/VMs [37],
[38]. Other pioneer works have explored solutions to mea-
sure and cap the energy consumption of VMs running in
cloud environments, e.g., Joulemeter [39]. The authors also
discussed different power consumption models to infer
power consumption from resource usage. The power con-
sumed during VMmigration is discussed in [40], [41].

Our Hylics design is inspired by these pioneer studies.
Yet it targets the self interference inside the VM in cloud
environments and also improving the overall energy effi-
ciency when handling hybrid workloads. Our work
expands the offloading operations with hypervisor-level in-
memory file system sharing. As such, it works well for a
wide range of applications, particularly for those involving
both intensive data transmission and real-time processing,
which can hardly be accommodated by existing tools.

8 CONCLUSION AND FUTURE WORK

In this paper, we closely examined the self interference from
real-world applications in virtualized environments. To
jointly optimize performance and energy efficiency for hybrid
workloads in cloud environments, we designed and devel-
opedHylics, a novel protocol-independent solution that lever-
ages hypervisor-level in-memory file system sharing. We
implemented a prototype of Hylics in KVMand evaluated the
overall performance with real-world workloads. The experi-
ment results indicate that such a design can largely improve
I/O performance and accelerate computation tasks in the
presence of the self interference. The energy efficiency of the

underlying server is also enhanced. In the future work, we
plan to implement Hylics-based solutions on other virtualiza-
tion platforms. Since Hylics significantly minimizes the self
interference, wewill also revisit the existing VM resource allo-
cation strategies to help cloud providers to achieve better ser-
vice performance and cost efficiency.

ACKNOWLEDGMENTS

This work is supported by an Industrial Canada Technology
Demonstration Program and an NSERC Discovery Grant.

REFERENCES

[1] A. J. Younge, R. Henschel, J. T. Brown, et al., “Analysis of virtuali-
zation technologies for high performance computing environ-
ments,” in Proc. IEEE Int. Conf. Cloud Comput., 2011, pp. 9–16.

[2] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into
network performance in virtual machine based cloud environ-
ments,” in Proc. IEEE INFOCOM, 2014, pp. 1285–1293.

[3] A. Gordon, N. Amit, N. Har’El, et al., “ELI: Bare-metal perfor-
mance for I/O virtualization,” ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 411–422, 2012.

[4] N. Har’El, A. Gordon, A. Landau, et al., “Efficient and scalable
paravirtual I/O system,” in Proc. USENIX Annu. Techn. Conf.,
2013, pp. 231–242.

[5] J. Hwang, K. Ramakrishnan, and T. Wood, “NetVM: High perfor-
mance and flexible networking using virtualization on commodity
platforms,” IEEE Trans. Netw. Service Manage., vol. 12, no. 1,
pp. 34–47, Mar. 2015.

[6] S. Gamage,D. X. R. Kompella, andA. Kangarlou, “Protocol respon-
sibility offloading to improve TCP throughput in virtualized envi-
ronments,”ACMTrans. Comput. Syst., vol. 31, pp. 1–34, 2013.

[7] S. Gamage, C. Xu, R. R. Kompella, and D. Xu, “vPipe: Piped I/O
offloading for efficient data movement in virtualized clouds,” in
Proc. ACM Symp. Cloud Comput., 2014, pp. 1–13.

[8] C. Xu, B. Saltaformaggio, S. Gamage, R. R. Kompella, and D. Xu,
“vRead: Efficient data access for hadoop in virtualized clouds,” in
Proc. ACM Annu. Middleware Conf., 2015, pp. 125–136.

[9] A. Gordon, M. Ben-Yehuda, D. Filimonov, and M. Dahan,
“VAMOS: Virtualization aware middleware,” in Proc. 3rd Conf. I/
O Virtualization, 2011, pp. 3–3.

[10] C. Xu, S. Gamage, H. Lu, et al., “vTurbo: Accelerating virtual
machine I/O processing using designated turbo-sliced core,” in
Proc. USENIX Annu. Techn. Conf., 2013, pp. 243–254.

[11] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for QoS-aware clouds,” in Proc.
ACM Eur. Conf. Comput. Syst., 2010, pp. 237–250.

[12] X. Chen, L. Rupprecht, R. Osman, et al., “CloudScope: Diagnosing
and managing performance interference in multi-tenant clouds,”
in Proc. IEEE Int. Symp. Model. Anal. Simul. Comput. Telecommun.
Syst., 2015, pp. 164–173.

[13] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” in
Proc. ACM Int. Middleware Conf., 2014, pp. 277–288.

[14] A. K. Maji, S. Mitra, and S. Bagchi, “ICE: An integrated configura-
tion engine for interference mitigation in cloud services,” in Proc.
IEEE Int. Conf. Autonomic Comput., 2015, pp. 91–100.

[15] C. Xu, X. Ma, R. Shea, H. Wang, and J. Liu, “MemNet: Enhancing
throughput and energy efficiency for hybrid workloads via para-
virtualized memory sharing,” in Proc. IEEE Int. Conf. Cloud Com-
put., 2016, pp. 980–983.

TABLE 4
Perf Profiling

Perf statistics VM stream Hylics-module Hylics-socket Bare-metal

Context switches per second 762; 991
 122 1; 979
 153 2; 423
 208 1; 856
 130
Stalled cycles frontend ð67:54
 1:26Þ% idle ð70:18
 1:25Þ% idle ð69:68
 1:02Þ% idle ð72:44
 0:97Þ% idle
Stalled cycles backend ð51:93
 0:58Þ% idle ð36:31
 0:52Þ% idle ð39:52
 0:77Þ% idle ð35:52
 0:33Þ% idle
Instructions per cycle 0:61
 0:05 0:97
 0:02 0:91
 0:03 0:97
 0:01
Stalled cycles per instruction 1:10
 0:05 0:72
 0:03 0:79
 0:03 0:72
 0:02

180 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

[16] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High per-
formance network virtualization with SR-IOV,” Elsevier J. Parallel
Distrib. Comput., vol. 72, no. 11, pp. 1471–1480, 2012.

[17] J. P. Billaud and A. Gulati, “hClock: Hierarchical QoS for packet
scheduling in a hypervisor,” in Proc. ACM Eur. Conf. Comput.
Syst., 2013, pp. 309–322.

[18] P. Snyder, “tmpfs: A virtual memory file system,” in Proc. Autumn
Eur. UNIX Users Group Conf., 1990, pp. 241–248.

[19] R. Russell, “virtio: Towards a De-Facto standard for virtual I/O
devices,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5, pp. 95–
103, 2008.

[20] V. Jujjuri, E. V. Hensbergen, A. Liguori, and B. Pulavarty, “VirtFS-
A virtualization aware file system pass-through,” in Proc. Ottawa
Linux Symp., 2010, pp. 109–120.

[21] B. Ford and R. Cox, “Vx32: Lightweight user-level sandboxing on
the x86,” in Proc. USENIX Annu. Techn. Conf., 2008, pp. 293–306.

[22] B. Yee, D. Sehr, G. Dardyk, et al., “Native client: A sandbox for
portable, untrusted x86 native code,” in Proc. IEEE Symp. Secur.
Privacy, 2009, pp. 79–93.

[23] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster usage
traces: Format + Schema,” Google Inc., Technical Report, revised
2014-11-17 for version 2.1. Nov. 2011. [Online]. Available:
https://github.com/google/cluster-data

[24] S. Di, D. Kondo, and F. Cappello, “Characterizing and modeling
cloud applications/jobs on a Google data center,” J. Supercomput.,
vol. 69, no. 1, pp. 139–160, 2014.

[25] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state
of the art, and future directions,” Proc. IEEE, vol. 102, no. 1,
pp. 11–31, Jan. 2014.

[26] D. Bruneo, A. Lhoas, F. Longo, and A. Puliafito, “Modeling and
evaluation of energy policies in green clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 11, pp. 3052–3065, Nov. 2015.

[27] K. J. A
�
str€om and B. Wittenmark, Adaptive Control. Chelmsford,

MA, USA: Courier Corporation, 2013.
[28] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao,

“Who is your neighbor: Net I/O performance interference in vir-
tualized clouds,” IEEE Trans. Serv. Comput., vol. 6, no. 3, pp. 314–
329, Jul.–Sep. 2013.

[29] Q. Zhu and T. Tung, “A performance interference model for man-
aging consolidated workloads in QoS-aware clouds,” in Proc.
IEEE Int. Conf. Cloud Comput., 2012, pp. 170–179.

[30] A. O. Ayodele, J. Rao, and T. E. Boult, “Performance measurement
and interference profiling in multi-tenant clouds,” in Proc. IEEE
Int. Conf. Cloud Comput., 2015, pp. 941–949.

[31] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “CPI2: CPU performance isolation for shared compute
clusters,” in Proc. ACM Eur. Conf. Comput. Syst., 2013, pp. 379–391.

[32] N. Rameshan, L. Navarro, E. Monte, and V. Vlassov, “Stay-away,
protecting sensitive applications from performance interference,”
in Proc. ACM Int. Middleware Conf., 2014, pp. 301–312.

[33] D. Novakovi�c, N. Vasi�c, S. Novakovi�c, D. Kosti�c, and R. Bianchini,
“DeepDive: Transparently identifying and managing perfor-
mance interference in virtualized environments,” in Proc. USENIX
Annu. Techn. Conf., 2013, pp. 219–230.

[34] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J. M. Pierson, and
A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,”
ACM Comput. Surveys, vol. 47, no. 2, 2015, Art. no. 33.

[35] R. Shea, H. Wang, and J. Liu, “Power consumption of virtual
machines with network transactions: Measurement and im-
provements,” in Proc. IEEE INFOCOM, 2014, pp. 1051–1059.

[36] C. Xu, Z. Zhao, H. Wang, R. Shea, and J. Liu, “Energy efficiency of
cloud virtual machines: From traffic pattern and CPU affinity
perspectives,” IEEE Syst. J., vol. 11, no. 2, pp. 835–845, Jun. 2017.

[37] D. Kusic, J. Kephart, J. Hanson, K. Nagarajan, and G. Jiang,
“Power and performance management of virtualized computing
environments via lookahead control,” in Proc. IEEE Int. Conf.
Autonomic Comput., 2008, pp. 3–12.

[38] K. Ye, Z. Wu, C. Wang, B. B. Zhou, W. Si, X. Jiang, and
A. Y. Zomaya, “Profiling-based workload consolidation and
migration in virtualized data centers,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 3, pp. 878–890, Mar. 2015.

[39] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya,
“Virtual machine power metering and provisioning,” in Proc.
ACM Symp. Cloud Comput., 2010, pp. 39–50.

[40] H. Liu, C. Xu, H. Jin, J. Gong, and X. Liao, “Performance and
energy modeling for live migration of virtual machines,” in Proc.
ACM Int. Symp. High Perform. Distrib. Comput., 2011, pp. 171–182.

[41] Q. Huang, F. Gao, R. Wang, and Z. Qi, “Power consumption of
virtual machine live migration in clouds,” in Proc. IEEE Int. Conf.
Commun. Mobile Comput., 2011, pp. 122–125.

Chi Xu (S’14) received the BSc degree in soft-
ware engineering from Xidian University, Xi’an,
China, in 2013 and the MSc degree in computing
science from Simon Fraser University, in 2016.
His current research interests include computer
and network virtualization, performance issues
in cloud computing, and hardware support for
big data applications. He is a student member of
the IEEE.

Xiaoqiang Ma (S’12-M’16) received the BEng
degree from the Huazhong University of Science
and Technology, Wuhan, China, in 2010, and the
MSc and PhD degrees from Simon Fraser Uni-
versity, Burnaby, BC, Canada, in 2012 and 2015,
respectively. He is currently an assistant profes-
sor with the School of Electronic Information and
Communication, Huazhong University of Science
and Technology. His research interests include
wireless networking, multimedia, cloud, and big
data. He is a member of the IEEE.

Ryan Shea (S’08-M’16) received the BSc and
PhD degrees in computer science from Simon
Fraser University, Burnaby, BC, Canada, in 2010
and 2016, respectively. He is currently a Univer-
sity research associate with Simon Fraser Uni-
versity, where he also completed the Certificate
in University teaching and learning. His research
interests include computer and network virtuali-
zation and performance issues in cloud comput-
ing. He is a member of the IEEE.

Haiyang Wang (S’08-M’13) received the PhD
degree in computing science from Simon Fraser
University, Burnaby, BC, Canada, in 2013. He is
currently an assistant professor with the Depart-
ment of Computer Science, University of Minne-
sota Duluth, Minnesota. His research interests
include cloud computing, big data, socialized con-
tent sharing, multimedia communications, and
peer-to-peer networks. He is a member of the
IEEE.

Jiangchuan Liu (S’01-M’03-SM’08-F’17) received
the BEng (Cum Laude) degree from Tsinghua Uni-
versity, Beijing, China, in 1999, and the PhD
degree from the Hong Kong University of Science
and Technology, in 2003, both in computer sci-
ence. He is currently a full professor (with Univer-
sity Professorship) with the School of Computing
Science, Simon Fraser University, BC, Canada.
He is a Steering Committee member of the IEEE
Transactions on Mobile Computing, and associate
editor of the IEEE/ACM Transactions on Network-

ing, the IEEETransactions onBigData, and the IEEETransactions onMul-
timedia. He is a co-recipient of the Test of Time Paper Award of IEEE
INFOCOM (2015), ACM TOMCCAP Nicolas D. Georganas Best Paper
Award (2013), and ACM Multimedia Best Paper Award (2012). He is a fel-
low of the IEEEand anNSERCE.W.R. SteacieMemorial fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XU ET AL.: ENHANCING PERFORMANCE AND ENERGY EFFICIENCY FOR HYBRID WORKLOADS IN VIRTUALIZED CLOUD... 181

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:56:29 UTC from IEEE Xplore. Restrictions apply.

https://github.com/google/cluster-data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

