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Abstract—360° videos are becoming one of the major media
in recent years, providing immersive experience for viewers with
more interactions compared to traditional videos. Most of today’s
implementations rely on bulky Head-Mounted Displays (HMDs)
or require touch screen operations for interactive display, which
are not only expensive but also inconvenient for viewers. In
this paper, we demonstrate that interactive 360° video streaming
can be done with hints from gaze movement detected by the
front camera of today’s mobile devices (e.g., a smartphone). We
design a lightweight real-time gaze point tracking method for
this purpose. Using only the front camera, our solution detects
the users’ faces by a lightweight Haar-like cascaded classifier,
measures the user’s face-to-screen distance and sight angle, and
then derives the location of the user’s gaze point following a
customized triangularity model. We integrate it with streaming
module and apply a dynamic margin adaption algorithm to
minimize the overall energy consumption for battery-constrained
mobile devices. Our experiments on state-of-the-art smartphones
show the feasibility of our solution and its energy efficiency
toward cost-effective real-time 360° video streaming.

Index Terms—360° video, gaze tracking, mobile devices, energy
efficiency, machine learning.

I. INTRODUCTION

Recorded by an omnidirectional camera or a collection of

cameras, a 360° video contains the view in every direction

at the same time. Viewers can control their Field-of-View
(FoV) and interact with the scene through such devices as

a head-mounted display (HMD) to have a highly immersive

experience. In particular, a viewer can freely change both

the position and orientation in a virtual world, with a 6-

degrees of freedom (6DoF). This new type of media has been

increasingly popular in recent years, and major media service

platforms such as YouTube and Facebook have started offering

360° videos. In the meantime, nearly 7.1 million HMDs are

shipped in 2020, and it is predicted this number will grow to

76.7 million by 2024 [1].

With the development of both software and hardware de-

sign, mobile devices such as smartphones or tablets are also

ready for 360° videos. Compared with desktops or dedicated

hardware, mobile devices have much constrained computation

power and battery reservoir. Unfortunately, 360° videos are

known to be power- and energy-hungry given their high data

rate and real-time demands [2][3]. For a 360° video, the region

that the viewer is currently watching only counts for a small

portion of the whole video. Hence, its overall resolution of

the 360° video has to be at least 8K to achieve a reasonably

immersive experience [4]. As such, graphic rendering and

displaying on the screen impose heavy workloads for mobile

devices, not to mention the streaming module that needs

the real-time response to FoV changes. Many HMDs have

been developed to work with off-the-shelf mobile devices,

either using a mobile device as the video feed or enclose

it as the display. Today’s HMD solutions however remain

bulky (particularly if with an extra battery) and come with

extra costs, and also a certain user population (around 10-

20%) have reported experiencing sickness or nausea symptoms

from the use of HMDs [5]. There have also been mobile

video services allowing users to move their FoV by touching

and scrolling the screen of the device [6][7]. This however

requires synergization between eyes and fingers, which can

be challenging, particularly for those with motor disabilities.

To the best of our knowledge, there have been few works on

interactive mobile 360° video streaming that are hands-free

and without HMDs.

In this paper, we demonstrate that interactive 360° video

streaming can be done with hints from gaze movement de-

tected by the built-in front camera of today’s off-the-shelf

mobile devices. Without an HMD or touch operations, our

solution incurs no extra cost and is truly hands-free. Yet

the computation- and energy-demands for gaze detecting and

its integration with 360° video must be well planned. As a

matter of fact, today’s smartphones can consume as high as

2.8 Watt for high-quality motion picture recording along [8],

which is non-negligible. To this end, we present a lightweight

FoV controlling solution for a mobile device to track and

make use of the user’s gaze point on the screen. Using only

the front camera, our solution detects the users’ faces by

a Haar-like cascaded classifier, measures the user’s face-to-

screen distance and sight angle, and then derives the location

of the user’s gaze point following a customized triangularity

model. We integrate it with the streaming module and apply

a dynamic margin adaption algorithm to further reduce the

overall energy consumption for battery-constrained mobile

devices. We have implemented a prototype of our solution,

which simulates the process of gaze tracking on a laptop

and displays the gaze-controlled 360° video on a smartphone.

Our experiments on state-of-the-art smartphones confirm its

feasibility and energy efficiency toward cost-effective real-time

360° video streaming.

The rest of the paper is organized as follows. Section

2 summarizes the related works about gaze tracking and

360° streaming. Section 3 introduces our spatial gaze point

detection solution based on lightweight machine learning.

Section 4 proposes our algorithm to minimize the energy con-
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sumption by carefully selecting the region to stream. Section

5 shows our experiment results. We conclude our work and

provide some discussions about future work in Section 6.

II. RELATED WORK

In this section, we introduce some previous work on

360° video streaming and gaze tracking methods on mobile

devices. All the steps of our method potentially consume a

significant amount of energy and we need novel algorithms

to improve energy efficiency. Thus we also introduce related

work about improving energy efficiency on smartphones.

A. 360° Video Streaming

There have been many recent works addressing the high

resource demands of 360° videos streaming and displaying.

Tile-based streaming methods [9][10][11] have been proposed

to save bandwidth, which divide the whole video into several

tiles and then select the tiles to stream based on the current

FoV. These methods generally require HMDs, and some also

need the prediction of a saliency map, which introduces extra

computation to mobile devices. Dambra et al. [12] present an

approach with content manipulations (film editing) to limit

and even control the user’s motion in order to improve the

streaming. Experiments show that this method can reduce

head velocity up to 30% and save the bandwidth with more

than 25% reduction. Sassatelli et al. [13] introduce a new

additional degree of freedom for streaming, known as Virtual

Walls (VWs). VWs are designed to save bandwidth along

with preserving the visual quality by subtly limiting the user’s

freedom in well-chosen periods. Experiments with 18 users

confirm that if the VMs are positioned carefully, only a

substantial fraction of users seldom perceive them.

B. Gaze Tracking on Mobile Devices

Gaze tracking has always been an attractive area, but most of

the related research was done on PCs with dedicated hardware,

e.g., a Tobii eye tracker. Li et al. [14] propose a solution for

users to type on a common mobile device by manipulating

their gaze point. It employs a Gaussian regression model that

is coordinated with the camera on a Mac laptop. Since the

model delivers only coarse gaze point detection on the laptop

screen, they propose two techniques, namely, a group centroid

estimator and a transitional gaze remover, to calibrate and

prune the result for mobile devices. Their solution achieves

a typing accuracy of 97% and 89% in static and dynamic

environments, respectively, with latencies from 2s to 2.6s,

which is far from being real-time. A later solution, Gazture
[15], explores the usage of gaze point detection to define a

user’s gaze point movement as gestures for the interaction

purpose. Gazture achieves an accuracy of 1.8-2.4 cm at a

rate of 12.54 fps for gaze point detection but requires active

calibration from the user. Its average gesture recognition

accuracy is 82.5% at a user-device distance of 50 cm and

75% at 70 cm. These solutions do not target 360° videos, nor

have been integrated into 360° video streaming systems with

global energy optimization.

C. Energy Optimization for Mobile Media

Yan et al. [16] explore eye adaptation in HMDs, shifting

the default fixed full brightness to compromise the human

eyes in dark HMD. This can achieve 25% system energy

reduction with limited impact on the brightness perception.

In [2], Jiang et al. propose a mechanism QuRate to model

the correlation between the perceivable video quality and the

user behavior. QuRate builds on top of the user’s reduced level
of concentration on the video frames during view switching

and dynamically adjusts the frame rate with minimum impact

to the perceivable video quality. This extends the smartphone

battery life by up to 1.24 times. Yan et al. [17] propose a

customized energy management policy that dynamically con-

figures the mobile platform. The proposed online personality-

guided user satisfaction prediction model for individual can

improve the user experience by around 36% compared with

state-of-the-art energy management policies. He et al.[18]

propose a novel traffic redundancy elimination (TRE) system

named TailoredRe. It clusters the clones of smartphones in

the cloud and cooperatively conduct the redundancy detection

task to reduce cache resource consumption in the cloud.

Experiment results show that TailoredRe can achieve better

cache hit rate, end-to-end throughput, bandwidth saving and

energy efficiency compared with previous TRE methods.

III. SPATIAL GAZE POINT DETECTION WITH MOBILE

DEVICES

In this section, we focus on detecting the viewer’s spatial

gaze point solely using the built-in front camera of a mobile

device. We will then integrate our lightweight solution into

360° video streaming and optimize the energy efficiency in

the next section.

Fig. 1 illustrates the key steps of our solution, which starts

from the basic viewer feature detection for extracting useful

measurement of the viewer’s gaze and head pose and then

derives the viewer’s gaze point, i.e. the visual focus in the

space around the viewer. This spatial gaze point will then be

projected into a virtual space around the viewer, which will

be an informative hint for gaze detection and FoV control

in the 360° video playback, as will be described in the next

section. All these steps are carefully designed and optimized

for resource-constrained mobile devices.

A. Face and Landmark Detection

Most current mobile devices have their front cameras over

the top of their screens to acquire the images where their users’

faces are included. We first extract the viewer’s face from the

image captured by the front camera. To this end, we apply a

Haar-like cascaded classifier [19], a lightweight yet efficient

model for face detection. While the model can yield all faces

present from the input image, we assume that only the viewer’s

face is included in the typical 360° video playback scenario.

With the viewer’s face detected from the image, the pro-

posed method then extracts the face landmarks from the

cropped face image. For reliable face landmark detection, we

designed a deep learning-based detection from the MobileNet
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Fig. 1. Overview of the lightweight gaze tracking method for mobile devices

V2 model [20]. MobileNet is a general-purpose convolutional

neural network (CNN) for feature extraction tasks, designed in

a way optimized for mobile devices. Different from the CNNs

that apply traditional convolution layers, MobileNet splits the

layer into two sub-tasks: a depth-wise convolution for filtering

inputs, and a point-wise convolution for the combination of

the filtered values. The two sub-tasks together form a depth-

wise separable convolution block, which operates faster than

traditional convolution layers. The MobileNet V2 model we

use takes one channel 64 × 64 image inputs cropped from

the last step, and yields locations of 68 face landmarks [21],

which locate the viewer’s eyebrows, eyelids, nose top, mouth,

and the contour of the face.
From the derived face image and face landmarks, a series

of useful measurements can then be obtained for gaze point

detection, in particular, the gaze vector and the head pose. We

next introduce the gaze vector and head pose measurement

from face landmarks and further spatial gaze point detection.

B. Gaze Vector Measurement
The gaze vector is defined as the line of sight sourced

from the viewer’s pupil. The viewer’s head pose includes

two key features: the transform and rotation. The transform

indicates the 3-D location of the viewer’s head from the

camera, including the Euler distance between the head and the

screen. The rotation, on the other hand, indicates the impact

of the head rotation on the gaze vector.
For measuring the gaze vector of each eye, we use the

locations of the inner and outer corner of the eye region, as

well as the location of the pupil, as the hints. More specifically,

taking the middle of the two corners as the initial location of

the pupil, the deviation of the current location from the initial

location, either on azimuth or altitude, indicates the rotation of

the gaze vector on two dimensions. Formally, denote the gaze

vector from the left and right eyes as gl and gr respectively.

Assume that the azimuth deviation of the pupil in the left eye

causes an angle shift of θ, then the transformed gaze vector

g′
l is determined as follows:

g′
l =

⎡
⎣1 0 0
0 cos θ sin θ
0 sin θ cos θ

⎤
⎦ gl (1)

Similarly, assume that the azimuth deviation of the pupil

in the right eye causes an angle shift of φ, the transformed

gaze vector g′
r from the right eye can be determined on both

azimuth and altitude:

g′
r =

⎡
⎣1 0 0
0 cosφ sinφ
0 sinφ cosφ

⎤
⎦ gr (2)

C. Head Pose Measurement

For head pose measurement, we take the 3-D location of

the face landmarks on a generic head model as a reference

and use the 2-D location of the viewer’s face landmarks in

the image to compute the 6 Degree of Freedom (6-DOF) head

pose, i.e. the transform on three dimensions (x, y, z) and the

rotation (α, β, γ) along the 3 dimensions. Specifically, denote
matrices, Rx(α), Ry(β) and Rz(γ) as the rotation matrix

on three dimensions, then the general rotation matrix Rr is

calculated as follows:

Rr = Rz(γ)Ry(β)Rx(α) (3)

Denote the transform vector T = (tx, ty, tz)
T , then the

relationship between the 2D location of a face landmark (u, v)
and its 3D location (x, y, z) is as follows:

s

⎡
⎣uv
1

⎤
⎦ = I(Rr|T )

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ (4)

where s is the scale factor. The matrix I is the intrinsic matrix

of the camera, defined as follows:

I =

⎡
⎣fx 0 xo

0 fy yo
0 0 1

⎤
⎦ (5)

where fx and fy are the focus length of the front camera in

terms of pixels, and (xo, yo) is the principle point, which is

also the center of the screen.

By solving this Perspective-N-Points (PNP) problem, the

rotation matrix Rr and transform vector T can be calculated,

and then the 6-DOF head pose is derived.
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Fig. 2. Model for gaze vector and head pose measurement

Fig. 2 illustrates the model for measuring the gaze vector

and the head pose. The model is built from the ResNet

architecture [22], with a variation that 6 convolution layers

form three stacked residual blocks.

D. Spatial Gaze Point Detection

With the gaze vector and the head pose measured, the spatial

gaze point can be determined as the intersection of two lines

that are sourced from both of the eyes and stretching along

with the gaze. The translation of the head pose determines the

spatial location of the head, which is then translated as the 3D

location of the two eyes. Formally, denote the centers of the

two eyes as Pl and Pr respectively, and denote the vector from

one to two another as vlr. Similarly, denote the gaze vector of

the both eyes as gl and gr. The spatial gaze point Pg , which

is the intersection point of the two lines sourced from the two

eyes, is then determined as follows:

Pg = Pl ± ||gr × vlr||
||gr × gl|| gl (6)

where the sign of ± is determined by the two normal vectors

n1 = gr × vlr and n2 = gr × gl. If the dot product n1 · n2

has a value larger than 0, the sign is taken as plus; otherwise

the sign is taken as minus.

Fig. 3 illustrates that the spatial gaze point is taken as

the intersection point, which is determined by both the gaze

vectors and the head pose. Notably, if the two gaze vectors

are identical, there will not be an intersection point for the

two lines. In this case, we take the point where a line-plane

collision happens as the spatial gaze point, which we will

describe in the next subsection.

E. Measurement of 2D Gaze Point on Screen

The detected spatial gaze point may not be located on the

same surface as the screen. Since we eventually need the

viewer’s gaze point on the screen, the 3D spatial location of the

detected gaze point has to be projected onto a 2D coordinate

Fig. 3. Using gaze vector and head pose to determine the spatial location of
the gaze point

system. Take the location of the principal point Po(xo, yo),
which is the center point of the screen, as the initial location of

the viewer’s gaze point. The face-to-screen distance, denoted

as d, is derivable from the transformed vector on the z-axis.

Denote the Euler angle of the gaze vector on azimuth as Θh,

and similarly, the Euler angle on altitude as Θe, the location

of the gaze point Pg(xg, yg) can be calculated as:{
xg = xo + d tanΘh

yg = yo +
d tanΘe

cosΘh

(7)

where the viewer’s head rotates, the deviation of the Euler

angle ΔΘh and ΔΘe on azimuth and altitude can be acquired

from the rotation matrix respectively. The location of the gaze

point Pg(xg, yg) is then given by:{
xg = xo + d tan(Θh +ΔΘh)

yg = yo +
d tan(Θe+ΔΘe)
cos(Θh+ΔΘh)

(8)

When the viewer’s distance to the screen change, both the

rotation and transform of the head impacts the movement of
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Fig. 4. An example frame of our method: gaze point is plotted by the red
point; gaze vectors are shown by blue arrows; facial landmarks are shown by
white lines

the gaze point. Denote the new face-to-screen distance as d′,
the azimuth and altitude Euler angle deviation of the head as

ΔΦh and ΔΦe, the location of the gaze point Pg(xg, yg) is
then calculated as:{

xg = xo + d′ tan(Θh +ΔΘh −ΔΦh)

yg = yo +
d′ tan(Θe+ΔΘe)+ΔΦe

cos(Θh+ΔΘh−ΔΦh)

(9)

Fig. 4 shows a sample frame of the calculated gaze point

on screen. To better illustrate our method, the facial landmark

and gaze vector are also plotted in the frame.

IV. ENERGY EFFICIENT 360° VIDEO STREAMING AND

DISPLAY

With the lightweight gaze tracking module for mobile

devices, we now discuss the integrated system toward real-

time streaming and interaction, as shown in Fig. 5. Unlike

the traditional 360° videos that are displayed by HMDs, our

system only uses the front camera of the mobile device to

obtain the real-time gaze point on the screen, which serves

as a hint of FoV. Previous work [2] has demonstrated that

screen, network overhead, video decoding and view rendering

contribute to most of the energy consumption in 360° video

streaming. Thus we accordingly consider the four key hard-

ware modules in a mobile device, that is the front camera,

the computing module, the screen, and the network module.

The gaze point and other user information will be sent back to

the server, and the server will send the proper cropped frame

based on the user information. Then the follow up frames can

be decoded by the mobile device and displayed to the user.

A. Gaze-aware Margin Adaption

Since only part of the videos will be displayed to the viewer,

it is obvious that sending a small portion of the frames can

save the network bandwidth and decoding workload, which

in turn saves energy. Most existing 360° video applications

take a simple tiling scheme, which divides the whole frame

into several small tiles and only sends the tiles that are

within or around the current FoV. This unfortunately can still

waste a lot of bandwidth and consequent energy because of

the inconsistent pixel density, as demonstrated in [23]. We

instead base our design on the concept of VAM (Visible Area

plus Margin). A VAM frame includes the current FoV and

a carefully selected margin area around the FoV, which has

been used in the context of HMD with full head moverment

information [23]. Our gaze-tracking method however only

gives the gaze points on the screen and does not have the head

rotation information (the roll parameter). To address this issue,
we use the current gaze movement speed as a hint to determine

the margin area. This is based on the observation that a high

gaze movement speed generally causes more deviation of

the gaze tracking results. We also adopt a dynamic adaption

margin area instead of a static margin area to further save

bandwidth. Fig. 6 shows two examples of our method, in

which only the portion of the predicted FoV plus a dynamic

margin area to the client. The margin area is smaller when

the gaze movement speed is low and larger when the speed

increases. The experiment in the next section confirms the

effectiveness of our method.

Another challenge is how to correctly predict the FoV of

the next frame and the gaze movement speed. There has

been significant research on the use of advanced learning to

predict the FoV in the HMD context [9][24][25]. They are

however not well suited for our application context. First,

using learning for FoV prediction and the gaze track brings

heavy computing workload for the mobile device and will

definitely introduce more energy consumption. Second, most

of the current training datasets for 360° videos are based

on HMDs, which cannot be directly applied to our system.

To this end, we use a lightweight Linear Regression [26] to

approximate the predicted FoV and gaze movement speed. We

assume that the gaze trace moves at a nearly uniform speed

and will not change in a very short time (i.e. 0.1s). Then we

use approximate the gaze trace as a line in this short period.

B. Viewer-Attention and Blink-Aware Optimization

We have implemented a prototype of our design and have

extensively tested it. During the experiments, we have identi-

fied the key performance bottlenecks as well as a series of op-

portunities that can be explored for performance optimization.

First, we note that a viewer’s attention can often be distracted

from outside of the screen and their gaze will then be off

from the screen. This however never happens in the HMD

context since an HMD provides a fully enclosed virtual world

around the viewer. Hence, in our open viewing context, we

apply a ’lazy’ strategy when we find the gaze point is outside

the screen. In this situation, we only transmit the FoV area

to the client without margin area since the viewer does not

really care about the content of the video in these periods.

Another improvement is based on the natural adaptation of

human eyes. Blink detection has been studied for a long time

in other application contexts [27][28]. The human’s blinking

duration time is not trivial during video playback, either, albeit
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Fig. 6. Dynamic margin area frames based on gaze tracking: (a) smaller
margin area with low gaze movement speed; (b) larger margin area with high
gaze movement speed

not being well examined, particularly for 360° videos. The

duration of a blink is between 100–400 ms according to the

Harvard Database of Useful Biological Numbers and an adult

will have 10-20 blinks in a minute [29]. This will result in

up to 8s-period when the viewer’s eyes are partly closed in

one-minute video playback. As in the first situation, instead of

proactively updating the FoV, we only send the frame without

the margin area to the client.

The whole process to select the margin area based on real-

time gaze tracking is illustrated in Algorithm 1. After we

obtained the images of the viewer by the front camera, we

Algorithm 1: Dynamic Margin Selection Based on
Gaze Tracking
Input : The images of the viewer’s face captured by

front camera.

Output: The frames showed on the screen.

1 Initialize margin area parameter α, screen region N ;

2 while video playback unfinished do
3 Get the gaze point (xg, yg) on the screen by the

method introduced in Section 3;

4 if (xg, yg) is outside N or Blink detected then
5 Transmit origin frame F without margin area

to the client;

6 end
7 else
8 Get the predicted Fov F ′ for the next frame

and the current gaze movement speed v using

linear regression;

9 Transmit the appropriate frame based on the

predicted FoV plus the margin area αM to

the client;

10 end
11 Render the frames and display on the screen;

12 end

apply the method introduced in Section 3 to get the gaze point

(xg, yg) on the screen. If the gaze point is outside the screen

region or there is Blink detected, we do not update the FoV

and only transmit the origin frames to the client. On the other

hand, if the gaze point is located on the screen, we apply

linear regression to predict the FoV for the following frames

according to the previous gaze points in a short period. Then

we transmitted predicted FoV plus the margin area multiplied

by a coefficient α. The effectiveness of our algorithm and its

contribution to energy-saving is proved in the next section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Gaze point Detection on a screen divided into 3 × 3 tiles (left up,
up, right up, left, middle, right, left bottom, bottom, right bottom)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. FoV movement trace on a screen divided into 3× 3 tiles

V. PERFORMANCE EVALUATION

We now present the performance evaluation results of our

prototype under different configurations. On the server’s side,

we use a workstation with 8 CPU cores and 16GB memory,

which delivers 360° videos encoded with H.264. We deploy

the player on a Google Pixel 4a phone, which has a 3140mAh2

battery and a front camera supporting up to 1080P video

recording in 30 FPS [30]. In our experiment, the FoV has

a range of 90° horizontal and 60° vertical. The basic margin

size is set to 10° in each direction.

A. Experiment Results

We first evaluate the performance of our lightweight gaze

point tracking method. We divide the whole screen into

9(3×3) tiles and let the viewers try their best to focus on the
center of each tile for 3-5s. We record the gaze point estimated

by our method and the results are shown in Fig. 7. We can see

that most of the gaze points locate in the correct region but

there are still some points outside the region. Given the limit of

(a)

(b)

Fig. 9. Comparison between our method and baselines (a) Boxplots of PPR
; (b) Boxplots of PER

our current Google Pixel 4a, the precision of the gaze tracking

implementation on it remain low. To address this problem, we

also simulate the tracking using a laptop with a GeForce RTX

2060 Graphics Card, which confirms the effectiveness of our

solution. Given the rapid evolution of today’s smartphones,

particularly the embedded neurocomputing chips, we believe

comparable high precision can soon be realized on off-the-

shelf smartphones. In our prototype, the update of FoV is

determined by the estimation of gaze point. We move the FoV

towards the region where the estimated gaze point is the spatial

center. In the experiments of FoV update, the viewers also try

their best to focus on the center of each tile. The traces of

the FoV movement are shown in Fig. 8. We can see that the

FoVs are generally moving towards the spatial point where

the viewer is staring.

Next, we evaluate the performance of our Dynamic Margin

Selection Algorithm and its contribution to energy saving.

To evaluate the feasibility of our algorithm, we define two

new evaluation matrices named “pixel-precise rate” (PPR) and

“pixel-efficiency rate” (PER). PPR means the percentage of the

pixels in the FoV that are included in the predicted FoV plus

margin area. When there are some pixels not included in the

received frames, we can only render the view on the screen
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with nearby pixels and this will definitely impact the watching

experience of viewer. Thus a higher PPR will guarantee a good

watching experience of viewer during the 360° video playback.

PER means the percentage of pixels that are used to render and

display in the whole transmitted frame. A higher PER means

that fewer extra pixels are transmitted to the client and save

the network bandwidth in the server. To evaluate our method,

we also implement two traditional methods as baselines:

• Tile: Tile-based method which divides the whole frame

into 4× 4 tiles.

• Static Margin: Static margin area method in which the

margin size is set to 10° in each direction.

We compare the PPR and PER of our method to Tile and

Static Margin. The results are shown in Fig. 9. Our method

has a higher PPR compared to Static Margin which confirms

the feasibility of our design. Although Tile has a relatively

higher PPR, its PER is much lower than the other two methods.

This means much energy and bandwidth are wasted in its

process of 360° video display, which is intolerable in our

energy-intensive system. Our method also has better PER

compared to Static Margin. Although most of the frames in

Static Margin have high PER, there are still some frames

that have very low PER. The reason is that the PER will

decrease significantly when the FoV prediction is not precise.

Our method effectively tackles this challenge by applying a

larger margin area in such situations.

To evaluate the contribution of our method to energy effi-

ciency, we deploy our method and the baseline methods Tile
and Static Margin on our experimental mobile phone. To

ensure consistency, all the other applications on the smart-

phone are terminated during the playback of 360° videos.

We plot the remaining battery percentage during one-hour

360° video playback in Fig. 10. We can see that our method

and Static Margin consume less energy compared to Tile.
Yet the energy consumption of Static Margin will increase

significantly when the size of the margin region increases. It is

hard for Static Margin to maintain a low energy consumption

and high PPR/PER simultaneously. We can conclude that our

method has the best balance of energy efficiency and quality

of display among the three methods.

VI. CONCLUSION AND FUTURE WORK

We designed a new real-time gaze point tracking method in

this paper and applied it to interactive 360° video streaming.

This method releases the user from the inconvenience of

HMDs and hands operations. To tackle the energy challenge of

our system, we designed a dynamic margin adaption algorithm

to improve the energy efficiency of the power-hungry system.

The experiments on a real smartphone showed the feasibility

and efficiency of our system. Although its accuracy is still

low now and we have to simulate some parts on a laptop,

we believe it brings a new orientation for future applications

and devices. In future work, we will continue improving the

accuracy of gaze point tracking using pupil center estimation

algorithms and explore other levers such as frame coding to re-

duce more energy consumption. We will also explore advanced

Fig. 10. Evaluation of energy consumption among three methods

learning tools such as model compression and work toward a

fully fledged implementation on advanced smartphones.
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