
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007 1627

An Empirical Study of the Coolstreaming+ System
Bo Li, Susu Xie, Gabriel Y. Keung, Jiangchuan Liu, Ion Stoica, Hui Zhang, and Xinyan Zhang

Abstract—In recent years, there has been significant interest
in adopting the Peer-to-Peer (P2P) technology for Internet live
video streaming. There are primarily two reasons behind this
development: the elimination of infrastructure support and the
self-scaling property of P2P systems. The success of our system
Coolstreaming represented one of the earliest large-scale P2P
video streaming experiments. Since then, there have been several
large-scale commercial deployments. With desirable content,
these systems have the potential to scale orders of magnitude
beyond the existing academic P2P prototypes. However, to
transform this potential into reality, we need to understand
the key design trade-offs and principles, as well as the design
limitations of these systems.

There are two main design decisions in a P2P streaming
system: (i) How to form an overlay, and (ii) How to deliver the
content. Coolstreaming adopts a gossiping protocol for overlay
construction, and a swarm-based protocol for content delivery.
While these protocols provide excellent flexibility and effective-
ness in dealing with system dynamics and random failure, their
impact on the performance and the system scalability remain less
known. This paper takes an inside look at a commercial system
based on the Coolstreaming, called Coolstreaming+. We explore
its design choices and the impact of these choices on streaming
performance. Specifically, by using internal traces generated by
recent live broadcast events, we study the workload, performance,
and dynamics of the system. Based on these traces, we show that
(1) the churn is the most critical factor that affects the overall
performance of the system, and (2) there is a highly skew resource
distribution in P2P streaming systems, which has significant
impact on resource allocation. We further discuss the impact of
these observations on the system properties, and present solutions
to deal with various design challenges. In particular, we suggest
solutions to deal with the excessive start-up time and high failure
rates during flash crowd, which are two of the main challenges
any streaming system needs to address.

Index Terms—Video streaming, peer-to-peer technology, mea-
surement, IPTV.

I. INTRODUCTION

RECENTLY there has been significant interest in adopting
the Peer-to-Peer (P2P) technology for Internet live video

streaming [1]. There are primarily two factors fueling this
development: First, a P2P system requires no or minimum

Manuscript received March 16, 2007; revised August 29, 2007. The
research was supported in part by grants from RGC under the contracts
616505, 616406 and 616207, by a grant from HKUST under the contract
RPC06/07.EG27, by grants from NSF China under the contracts 60429202
and 60573115, by a grant from National Basic Research Program of China
(973 Program) under the contract 2006CB303000.

B. Li, S. Xie, and G. Keung are with the Department of Computer Science,
Hong Kong University of Science and Technology (e-mail: {bli, xiesusu,
gabriel}@cse.ust.hk).

J. Liu is with th School of Computing Science, Simon Fraser University.
I. Stoica is with the Computer Science Division, University of California

at Berkeley.
H. Zhang is with the Computer Science Department, Carnegie Mellon

University.
X. Zhang is with Roxbeam Corp. Beijing, China.
Digital Object Identifier 10.1109/JSAC.2007.071203.

support from specific network infrastructure supporting (like
IP multicast), and thus is cost-effective and easy to deploy.
Second, in such a system, each node that participates in a
video program is not only downloading content, but also
uploading to other participants watching the same program.
Consequently, it has the potential to scale as greater demand
also generates more resources.

Coolstreaming [2] represented one of the earliest large-
scale peer-to-peer video streaming experiments, which was
built on the notion of data-driven, somewhat similar to the
technique used in BitTorrent but with much more stringent
timing and rate constraints. The key idea is that every node
periodically exchanges its data availability information with a
set of partners, and retrieves unavailable data from one another.
The system demonstrated excellent self-scaling property over
the global Internet, in which the earlier experiment reported
a peak of 80,000 concurrent users with streaming rates over
400 Kbits/sec.

Since the first release of Coolstreaming, while keeping the
basic random partner selection, we have enhanced the system
in nearly all aspects, specifically: 1) the initial system adopted
a simple pull-based scheme for content delivery based on con-
tent availability information. This incurs per block overhead,
and more importantly, it results in a longer delay in retrieving
the video content. We have now implemented a hybrid pull
and push mechanism, in which the video content is pushed
by a parent node to a child node except for the first block.
It remarkably lowers the overhead associated with each video
block transmission, reduces the initial delay and increases the
video playback quality; 2) a novel multiple sub-stream scheme
is implemented, which essentially enables multi-source and
multi-path delivery for video streams. Observed from the
results, this not only enhances the video playback quality and
but also improves the effectiveness against system dynamics;
and 3) the buffer management and scheduling schemes are
completely re-designed to deal with the dissemination of
multiple sub-streams.

In the mean time, Coolstreaming-inspired commercial sys-
tems such as PPlive [3] and Sopcast [4] have also been
developed and deployed. however, question remains whether
a P2P streaming system can really scale to the capacity of
commercial TV channels, which can be millions or even
billions. Perhaps more importantly, the question is what set
of challenges and possible technical solutions are for these
system to scale with the QoS constraints. We believe under-
standing the fundamental design principles and system dy-
namics is an important step toward their further development.
Moreover, there has been few experimental studies on large-
scale P2P streaming systems. The main constraint in prior
studies was the lack of internal knowledge in the architec-

0733-8716/07/$25.00 c© 2007 IEEE

1628 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

ture and control mechanisms, due mainly to the proprietary
nature of commercial systems. Existing measurement studies
[5][6] could only seek for mechanisms at network edges,
such as packet sniffing, to capture the external behaviors of
such systems. This, however, often fails to provide insights
into the fundamental design trade-offs and to offer rational
explanations for the engineering decisions.

Our study in this paper differs from all prior works in that it
is based on an internal logging system that we have designed
with full knowledge of the Coolstreaming architecture and
control mechanisms. Specifically, we leverage a large set of
traces obtained from the very recent live streaming events
using Coolstreaming; we study the workload, performance,
and dynamics of the system. There are three major obser-
vations from this empirical study, 1) there is a highly skew
resource distribution in the systems; 2) the performance is
mostly affected by the system dynamics, in particular the
churn; and 3) the excessive start-up time and high failure
rates during flash crowd remain critical problems. We further
study their implications and the causes from the internal
system design, in particular 1) We describe the fundamental
design principles and trade-offs in Coolstreaming system; 2)
We discuss how a random peer selection algorithm can lead
to the topology convergence; and 3) using the set of real
traces, we quantitatively demonstrate how a novel buffering
technique resolve the problems associated with dynamics and
heterogeneity.

The rest of this paper is organized as follows. Section II
briefly reviews the related works. Section III describes the
basic architecture of the Coolstreaming system and the key
components. Section IV investigates the system dynamics, in
particular peer joining and peer adaptation processes. Section
V discusses system configuration, log system and sampling
errors. Section VI presents results from live event broadcast
and examines the performance. Finally, Section VII concludes
the paper with highlights on future research.

II. RELATED WORK

Earlier Internet video streaming systems were largely built
on the IP multicast model [7]. This model, while being
efficient in data delivering, encountered a number of practical
problems. Perhaps most significantly it requires each router to
maintain state, which violates the “stateless” architecture prin-
ciple and also brings difficulty in the design of such high level
functionalities as error, flow, and congestion control. Later,
researchers advocated moving multicast functionalities away
from routers towards end systems [8]-[10], in which multicast
functions like group membership and multicast routing were
implemented at end systems assuming only unicast service
underneath. A node participate in multicast via an overlay
structure, in which each of its edges corresponds to a unicast
path with another such node. It has been demonstrated in small
scale that it is feasible to implement such multicast functions
at end systems while keeping the core functionalities of the
Internet intact.

We make a distinction in this paper by referring Cool-
streaming as a data-driven P2P streaming system, in which
there is no explicit overlay topology construction. We refer

to the other approaches as tree-based overlay multicast, given
the explicit construction and maintenance of multicast tree(s).
This can be in the form of a single tree [9][10] or multi-trees
[11][12]. Data-driven systems do not explicitly construct and
maintain an overlay structure and often adopts a gossip-like
protocol to locate a peer with video content. Such a system
has demonstrated great potential to scale in the global Internet,
as proven by Coolstreaming [2], PPlive [3], and Sopcast [4],
which have attracted millions of viewers.

The success of Coolstreaming and similar systems has
attracted significant research interests. For example, Francis
et al. proposed an architecture called Chunkyspread [13] , in
which a randomized multi-tree is constructed to spread the
slices of the video stream and that the topology could be
improved iteratively by swapping parents with respect to the
load and delay measurement. In [14], Reza et al. examined
the data-driven P2P streaming system in a static setting and
showed that swarming and diffusion can be efficient for
content delivery. Recently, many measurement works have
also been done to understand these complex systems. In
[5], the performance of PPLive was measured using passive
packet sniffing and presented several interesting insights on the
streaming performance and workload characteristics. Another
measurement was done in [6] for PPLive and SopCast, which
provides additional observations on the stability of the system
and the cost of the download. Other recent measurement
studies can be found in [5][15][16]. However, there is a
major constraint in these studies, that is, the lacks internal
knowledge of system architecture. Hence, such measurements
could not completely reveal the internal dynamics and basic
design trade-offs.

III. BASIC ARCHITECTURE

Coolstreaming [2] was developed in Python in earlier 2004.
Its implementation is platform independent and supports Re-
alPlayer and Window media formats. Since the first release
(Coolstreaming v0.9) in March 2004, it has attracted millions
of downloads worldwide. The peak concurrent users reached
over 80,000 with an average bit rate of 400 Kbps, with users
from 24 different countries. More details can be found in
[2][17].

The effectiveness of the design principle and architecture of
Coolstreaming 0.9 have been demonstrated successfully and
are thus largely kept in the later development of Coolstream-
ing. In this section, we present an overview of the basic design
as well as the most recent updates.

A. Basic Components

The system consists of five basic modules: 1) the Member-
ship manager, which maintains the partial view of the overlay;
2) the Partnership manager, which establishes and maintains
partnership with other nodes; 3) the Scheduler, which is
responsible to schedule data transmission across streams; 4)
the Buffer, which stores video data before playback; 5) the
Buffer Map, which represents the current status of the buffer
and data requests.

LI et al.: AN EMPIRICAL STUDY OF THE COOLSTREAMING+ SYSTEM 1629

B. Overlay Construction and Maintenance

In Coolstreaming, each node has a unique identifier and
maintains a membership cache (mCache) containing a partial
list of the currently active nodes in the system. A newly joined
node contacts the boot-strap node for a list of nodes and stores
that in its own mCache. It then randomly selects a few nodes to
establish partnership maintained by the partnership manager
module. In other words, the partnership specifies that two
peers can exchange video availability information with each
other. A parent-children relationship can be established when
a node (the child) is actually receiving video content from an-
other node (the parent). Apparently, the parent-children nodes
are a subset of the nodes from the partnership. Partnerships
can be broken due to many reasons and the nodes will need
to perform the partner re-selection to maintain the continuity
of video streams.

C. Sub-streams and Buffering

In the current Coolstreaming, a video stream is divided
into multiple sub-streams and a node could subscribe for
sub-streams from different partners. A sub-stream is further
divided into blocks with equal size, in which each block is
assigned a sequence number representing its playback order.
Each node maintains an internal buffer, which consists of two
parts: synchronization buffer and cache buffer. A received
block is first put into the synchronization buffer for the
corresponding sub-stream. They will be combined into one
stream when blocks with continuous sequence numbers have
been received from each sub-stream.

A buffer Map or BM is introduced to represent the avail-
ability of the latest blocks of different sub-streams in the
buffer. This information also has to be exchanged periodically
among partners in order to determine which sub-stream(s)
to subscribe to. Specifically, BM is represented by a 2K-
tuple, where K is the number of sub-streams. The first K
components of the tuple records the sequence number of the
latest received block from each sub-stream. The second K
components of the tuple represents the subscription of sub-
streams from the partner.

D. Content Delivery

In a tree-based approach, content dissemination is deter-
mined by the overlay topology, in which a node typically
pushes the content through the overlay topology. In the data-
driven Coolstreaming, this is more complex and often requires:
1) peers gossip by exchanging content availability information
and 2) peers then use a pull-based approach to retrieve the
content from each other. This works well for file downloading
applications like BitTorrent, and was also adopted by the orig-
inal Coolstreaming. There are however two disadvantages of
a pure pull-based approach: (1) high bandwidth overhead and
(2) long delay. These disadvantages are due to the gossiping
protocol used to exchange information between peers, and that
a node needs to to independently request each data block.

The current Coolstreaming adopts a hybrid push-pull ap-
proach, in which each peer only sends a single request for
a sub-stream. Once the request is accepted, the parent node
will push all subsequent data blocks from this sub-stream

TABLE I
SYSTEM PARAMETERS OF COOLSTREAMING

R stream bit rate
K number of sub-streams
B buffer length (in unit of time)
Ts out-of-synchronization threshold, i.e., upper bound of accept-

able deviation between sub-streams
Tp maximum allowable latency for a partner behind other part-

ners and parents
Ta period for a peer to re-select a parent if needed
Dp sub-stream degree of node p
t↓ a nodes can still receive blocks from those temporary parents

during the time interval
tlose time for one of the children to lose the competition due to a

subscribed sub-stream lagging behind others

to the requested children peers. Similar approach has been
adopted in [18]. In this hybrid approach, two parameters need
to be determined: 1) from which part of the video stream
should a newly joined node start to subscribe to. In other
words, it needs to determine the initial sequence number of
the block that the node will start to retrieve; 2) how to select
an appropriate partner to subscribe for each sub-stream once
the initial sequence number is determined. We will further
elaborate on this as well as compare the hybrid approach with
pure pull operations in the following sections.

IV. INSIDE LOOK INTO SYSTEM DYNAMICS

In this section, we discuss the system dynamics including
peer joining, peer adaptation and relevant timing. Table I
summarizes the parameters and notations.

A. Peer Join

A newly joined node first contacts the boot-strap node for
an initial list of nodes that it expects to establish partnership
and stores the information in its mCache. With the exchange of
BM information, the newly joined node can obtain the video
availability information from a set of randomly selected nodes
from the list. As we have discussed before, the node then needs
to determine the initial sequence number of the block that it
will start to retrieve.

Suppose the range of the blocks available (i.e., the sequence
number of the video blocks) in all its partners are from n to m;
intuitively, the node should request from a block with sequence
number somewhere in the middle. The rationale for this is if
the node requests the block starting from the largest sequence
number m, the partner nodes might not have sufficient follow-
up blocks to satisfy the continuity requirement for the video
stream; on the other hand, if the node requests the block from
the lowest sequence number n, this can result in two problems:
1) such blocks might no longer be available once it is pushed
out of the partners’ buffer due to the playout; 2) it might
take considerable amount of time for the newly joined node
to catch up with the current video stream, which would incur
long initial delay.

From the above arguments, in the Coolstreaming system, a
node subscribes (i.e., pulls) from a block that is shifted by a
parameter Tp (to be defined in next sub-section) from the latest
block m. Once the initial sequence number is determined, the
node checks the availability of blocks in its partners’ BM and
then selects appropriate partner nodes as its parents for each
sub-stream.

1630 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

B. Peer Adaptation

Due to congestion and churns, it is important for any P2P
system to do peer adaptation, i.e., to search for new parent(s).
In the Coolstreaming system, this is triggered either by the
insufficient bandwidth received from a parent, or the existence
of more capable partners. To facilitate adaptation, we introduce
two thresholds {Ts, Tp}, which are related to the sequence
number of blocks for different sub-streams in each node
(say, node A). Ts is the threshold of the maximum sequence
number deviation allowed between the latest received blocks
in any two sub-streams in node A. Tp is the threshold of the
maximum sequence number deviation of the latest received
blocks between the partners and the parents of node A. We
denote HSi,A as the sequence number of the latest received
block for sub-stream Si at node A. For monitoring the service
of sub-stream j by corresponding parent p, two inequalities
can be introduced

max{|HSi,A − HSj ,p| : i ≤ K} < Ts (1)

max{HSi,q : i ≤ K, q ∈ partners} − HSj ,p < Tp (2)

Inequality (1) is used to monitor the buffer status of received
sub-streams for node A. If this inequality does not hold,
it implies that at least one sub-stream is delayed beyond
threshold value Ts. The second Inequality (2) is used to
monitor the buffer status in the parents of node A. Node A
compares the buffer status of current parents to that of its
partners. If this inequality does not hold, it implies that the
parent node is considerably lagging behind in the number of
blocks received when comparing to at least one of the partners,
which currently is not a parent node for the given node A.

When a peer selects a new parent from its partners, the
selected partner must satisfy the two inequalities. If there
is more than one qualified partners, the peer will choose
one of them randomly. A parent node that accepts the new
selection request will then push out all blocks of a sub-stream
in need to the requesting node. It is possible that a parent
with insufficient uploading capacity is selected, in which
case all children nodes have to compete for the insufficiently
aggregated upload capacity, and eventually one or more nodes
will lose and trigger the peer adaptation. We call this situation
peer competition, which will clearly cause a chain reaction
that disrupts streaming and makes the overlay unstable. To
address this problem, we introduce a cool-down timer that
confines nodes to perform peer adaptation once only within a
cool-down period of time Ta. As such, a node can locate a
capable parent only within a certain time limit.

V. LOG AND DATA COLLECTION

In this section, we describe the system configuration, log
system, format and sampling errors.

A. System Configuration

Each video program is streamed at a bit rate of 768 Kbps,
a typical rate for TV-quality streaming. The users contact a
web server to select the program that they intend to watch.
We use an ActiveX component in JavaScript code to collect
the peer activities as well as status information and reports

Boot-strap
Node

Servers Web Server

Log Server

Source

Fig. 1. Coolstreaming System Configuration

back to a log server. To provide better streaming service, we
have also deployed a set of dedicated servers (24) with 100
Mbps connections, as shown in Fig. 1. The source sends video
streams to the servers, which are collectively responsible for
streaming the video to peers. From the system’s point of view,
this improves the overall performance in two ways: 1) the
streaming capacity is steadily amplified with the deployment
of the servers; 2) the servers can be placed strategically, thus
the content is closer to the users.

B. Log System and Log File

We placed a dedicated log server in the system. Each
user reports its activities to the log server including events
and internal status periodically. The users and the log server
communicate with each other using the HTTP protocol. The
log server stores the reports received from peers into a log file.
Each log entry in the log file is a normal HTTP request URL
string referred as a log string. The information from a peer is
compacted into several parameter parts of the URL string and
reported to the log server. The URL string contains various
number of data blocks, which are formed in “name=value”
pairs and separated by “&”. Reports from peers can be divided
into two classes. The first class is activity report, which
indicates the peer activities such as join and leave. Activity
reports are sent out immediately when the corresponding
activities take place. The second class is status report, which
indicates the internal state of peers sent out every 5 minutes
periodically. There are three types of status reports:

• A QoS report records the perceived quality of service,
for example, the percentage of video data missing at the
playback deadline;

• A traffic report records the amount of video content
downloaded and uploaded;

• A partner report records partner activities. Since the
nodes might change partners frequently, we use a com-

LI et al.: AN EMPIRICAL STUDY OF THE COOLSTREAMING+ SYSTEM 1631

pact report that records a series of activities to reduce log
server’s load.

C. Sampling Errors

Given the asynchronous nature of the system, the sample
errors are inevitable. We will next discuss the main factors
causing the errors and their impacts on the results.

Clock skew: There are two time values for each report. The
first is the time when the report is generated at a peer, and
the second is the time when the report is received by the
log server. We refer to them as generation time and receive
time, respectively. The generation time is appended by peers
with the local time and the receive time is appended by the
log server. Since clocks between peers and the log server
might not be synchronized with each other, this potentially
causes measurement inaccuracies. However, there are several
reasons that these are not as severe as they appear to be: 1)
By default, the MS Windows automatically synchronize with
some Internet time servers; 2) The server time can always
be used as a reference time whenever necessary; 3) Many
measurements depend only on the differences from the local
time, for instance the duration of a video session, which do
not require synchronization.

Log server overloading: The log server can become a
potential bottleneck in the system. This causes two problems:
1) It takes an excessively amount of time to respond to a
report during peak times; and 2) If we use the receive time
to calculate the performance metrics such as join and leave
rates (defined in next section), the curve will be distorted due
to the time shift.

Errors in determining connection type: There is a need
to classify user connection types in order to determine the
uploading capacity distribution (see Section VI). This is
primarily based on the local information such as the IP address
and partnership status, thus errors can occur. Based on their
IP addresses, we can classify the users into private or public
users. By checking whether they are successful in establishing
TCP connections or not, we can further classify users into the
following four types:

• Direct-connect: peers have public addresses with both
incoming and outgoing partners;

• UPnP: peers have private addresses with both incoming
and outgoing partners. In real systems, peers can be aware
of UPnP devices in the network since they will explicitly
acquire public IP addresses from the devices;

• NAT: peers have private addresses with only outgoing
partners;

• Firewall: peers have public addresses with only outgoing
partners.

Consider a peer A with its partner B. Peer B is an incoming
partner if B initiatively establishes partnership with A. On
the other hand, B is an outgoing partner if the partnership
establishment of A is initialized by itself. If peer A with a
private IP address has only outgoing partner for a relatively
long period of time, it can be categorized as NAT user. It is
possible that later an incoming partnership is established, and
so the peer will report the change of the connection type.

(a)

(c)

(b)

Fig. 2. Evolution of the number of users in the system: (a) in the whole
day; (b) from 07:00 to 14:59 ; (c) from 18:00 to 23:59

This implicates a longer duration time can increase the
accuracy in determining peer connection type. After the first
state report, most of peers should be categorized into correct
type after first five minutes. The cases in which we fail to
determine the connection type involve usually short sessions.
Furthermore, a larger maximum number of partners also can
increase the accuracy in determining peer connection type.

Ungraceful leave: A user can leave the system anytime,
and its ActiveX control may not have sufficient time to

1632 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

(a)

(b)

Fig. 3. (a) User types in a whole day; (b) User types from 18:00 to 23:59

initiate a “graceful” leave. For example, when an impatient
user closes the browser directly, the ActiveX control will
be killed immediately without reporting to the log server or
notifying its partners. In that case, the peer’s partners will
not be able to report any activities for this peer in the next
report. Such ungraceful leaves are often short and happen at
peak hours, and bring discrepancy in counting the number of
video sessions. Ungraceful leaves can be detected by checking
the existence of periodical state reports from peers. If a
peer missed two consecutive state reports, we treat it as an
ungraceful departure. Given the fact that the report period is 5
minutes, it may take us up to 10 minutes to detect a ungraceful
departure. However, the ungraceful leaves represents only a
small percentage of the total leaves. In our measurements, we
have found 15991 ungraceful leaves, which account for only
5% of the total sessions. To eliminate the bias introduced by
ungraceful leaves, we have filtered out these leaves from the
results we present in Section VI. The only exception is Fig.
2a, which shows the number of sessions over time.

Inaccurate view of overlay: The log system receives part-
nership report every 5 minutes. Given this coarse granularity
and synchronization problem in the reports, this affects the
accuracy in deriving the overlay at an instant of time. Further,
the current log system does not record any pair-wise perfor-
mance measurements, making it difficult to obtain the overlay
and partnership information.

The data set does not allow us to derive accurate overlay
topology. We believe in future, it is of great relevance to
examine the concrete evidences about how the overlay topol-
ogy migrates and self-stabilizes under the random topology
construction.

VI. RESULTS

We now present and analyze the results obtained from live
broadcast events of Coolstreaming on 27th September, 2006.
This is a typical date that involves both steady group of users
as well as flash crowd, and we have observed similar results
in other measurement periods. We will describe the user and
session behaviors, and analyze the fundamental performance
limitations as well as impacts from the system design. We will

Fig. 4. Number of cluster formed with multiple peers with different user
connection types

also examine the resource distribution in the system and the
QoS related metrics.

A. User Types and Distribution

Upon initiating a join operation, each user is assigned a
unique ID. The log system keeps track of the user IDs as
well as their IP addresses and port numbers. The total number
metric represents the number of users with unique IDs that
are in the system at a particular time. A cluster represents
a set of users having the same IP addresses but distinctive
IDs. As we will show later, typically a clusters represent a set
of users behind the same NAT. Finally, a session denotes the
time interval between the time the user joins the system until
it leaves. In each session, a client (user) reports up to four
events to the log server:

• Join event: This event is reported when the client joins
the system and connects to the bootstrap node;

• Start subscription event: This event is reported as soon
as the client establishes partnership relations with other

LI et al.: AN EMPIRICAL STUDY OF THE COOLSTREAMING+ SYSTEM 1633

A B C

Internet

A C

Internet

B

A

C

Internet

B

(a) (b) (c)

Fig. 5. (a) Peers behind the same NAT device; (b) Overlay construction improvement for NAT cluster; (c) Another optimization for NAT cluster

clients and starts receiving (video) data from its parent
node(s);

• Media player ready event: This event is reported when
the client receives sufficient data to start playing;

• Leave event: This event is reported when the user leaves
the system.

As defined earlier, a partnership represents the relationship
between two users, which may exchange data availability
information. An outgoing partner is a partner that can only
initiate partnership establishment; another node cannot initiate
partnership establishment to an outgoing partner. Outgoing
partners are typically the nodes behind NATs and firewalls
which cannot be contacted directly from the public Internet.
However, once a NAT or firewall user established a partnership
with another node, it can still upload video to other node
whenever it is capable of doing so. In other words, a NAT
or firewall user can become the parent for another node.

Fig. 2a plots the number of sessions in the system in the
whole day, as well as the number of ungraceful leaves versus
time. While the number of ungraceful leaves increases during
peak hours, it never exceeds 5% of the number of sessions in
any time periods. The result shows the number of ungraceful
leaves only occupies small portion of the whole population,
so that it should have small influences to the performance
measurements. Fig. 2b and Fig. 2c plot the number of sessions
in the system, join and leave rates, with a granularity of 1
minute between 07:00-14:59 and 18:00-23:59, respectively.
These plots illustrate user behavior in a typical weekday and
during the peak hours, respectively. The number of concurrent
users and the join rate are relatively modest during 07:00-
14:59, after which, they start to increase significantly and peak
around 22:00. The sudden drop in the number of users around
22:00 is caused by the ending of some programs. This shows
the scalability of the system, as the the number of nodes in
the system can quickly ramp up to 40, 000.

Fig. 3a and Fig. 3b plot the different types of users in the
system for the whole day and between 18:00-23:59. There
are three interesting observations: First, only around 20% of

users are directly connected or are connected via UPnP. Thus,
only a small percentage of peers in the system can be directly
accessed. This is consistent with the measurements in [2][17].
Second, there is a significant number of NAT users (more
than 45%) with limited uploading capabilities. Third, there are
some users that we cannot determine their connection types
in time. This is because either the delay in a log report when
the log server is busy, or a partnership is not stabilized before
we can determine the connection type.

Fig. 4 summarizes the peer clustering in the overlay, mainly
for users behind NATs. As expected, this has a negative impact
on the peer bandwidth contribution. Fig. 5 illustrates this
problem. In particular, peers behind the same NAT device
compete for incoming bandwidth at the device. As depicted in
Fig. 5a, all the three peers share the incoming bandwidth of
the edge device from outside peers (with public IP address).
Furthermore, the data received by each peer cannot be directly
shared with each others. Therefore locality can be possibly
explored to improve the content delivery, specifically: (i) Peers
at the edge should be able to negotiate with one another to
alleviate the redundancy. As shown in Fig. 5b, the incoming
traffic can be kept at a reasonable level under the upper bound
of the edge device, while the leave of the one peer, e.g. A or
C, shall not cause interruption to all other nodes; (ii) Another
improvement is possibly made by exploring the broadcast
nature of local network channels. For example, in Fig. 5c, peer
A can broadcast its data in the LAN to reduce the burden at
the edge devices.

B. Session Distribution

Recall that a session represents a pair of join/leave event
of a user. The session duration is the time interval between
a user joining and leaving the system. For a normal session,
the events reported include: 1) join event, 2) start subscription
event, 3) media player ready event, and 4) leave event. The
media player ready time is the time between a pair of join
and media player ready events; the start subscription time is
the time between a pair of join and start subscription events.

1634 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

(a)

(c)

(b)

Fig. 6. (a) Distribution of session duration; (b) Cumulative distribution
of session duration and normal session duration; (c) Distribution of re-try
sessions

In a normal session, the average upload/download bit rate
of a user can be calculated by dividing the total number of

bytes (sent/received) by the session duration. A failed session
is a session for which a leave event is reported before the
media player ready event. This indicates that a user fails to
start playing the video. The failure rate is computed by the
total number of failures every minute. The failures could be
counted more than once if a user re-joins the system after it
leaves.

Fig. 6a plots the distribution of the session duration. The
result suggests that once the users can successfully obtain the
video stream, they are fairly stable and remain in the system
throughout the entire program duration. On the other hand,
this plot also shows that there is a significant number of short
sessions. A comparison is shown in Fig. 6b, which plots the
cumulative distribution of session duration and normal session
duration. The figure describes most of short sessions belong to
start-up failures of newly joined nodes. This is consistent with
the results obtained earlier in [2][17]. We believe this is caused
by the combination of the random partnership algorithm and
high percentage of nodes behind NATs or/and firewalls. As
illustrated in Fig. 6c, over 20% of the users have tried 1 or 2
times in order to successfully start a video session. Hence, a
flash crowd has significant impact on the initial joining phase
in a P2P streaming system.

C. System Dynamics

We next examine more closely the performance impact from
system dynamics. Fig. 7a and Fig. 7b plot the join rate, leave
rate, and failure rate every minute before 21:00. It clearly
demonstrates that there exists a strong correlation between
failure events and join events, and failure events and leave
events. Fig. 8 plots the failure rate versus the number of
users in the system. This figure shows plots the failure rate
versus the system size for two cases: 1) when the rate of
joins/leaves is lower than 300 nodes per minute, and 2) when
the rate of joins/leaves is greater than 300 nodes per minute,
respectively. The circular data points cluster into two groups,
which both correspond to low join, leave and failure rates.
From the above observation, the clusters correspond to the
steady state of the overlay. The triangular data points do not
show any correlations between failure rate and system size,
implying that the failure is mostly caused by churn, while not
the size of the system.

The rationale behind the above observations is how the
overlay is constructed and maintained in the Coolstreaming.
Specifically, each peer maintains a partial view of the overlay
through the mCache. The update of the mCache entries is
achieved by randomly replacing entries when new partnership
is established. Older peers or less active peers will thus be
removed from the mCache gradually. However, during flash
crowds, the mCache might be filled with too many newly
joined peers, which often cannot provide stable video streams.
Under such a replication algorithm, it takes longer time for a
newly joined peer to obtain video stream.

This can also be validated through the response time data.
Fig. 9 shows the media player ready time distribution under
four different time periods: (i) 01:00 to 13:29, (ii) 13:30 to
17:29, (iii) 17:30 to 20:29, and period (iv) 20:30 to 23:59.
Observed from the figure, we can clearly see that the media

LI et al.: AN EMPIRICAL STUDY OF THE COOLSTREAMING+ SYSTEM 1635

Fig. 7. (a) Correlations between join rate and failure rate before 21:00; (b) Correlations between leave rate and failure rate before 21:00

ready time is considerably longer during period (iii) when
the join rate is higher. Possible improvement can be done by
designing a more effective mCache replication algorithm that
enables the mCache to converge to more stable peers rather
than newly joined peers. Peers will then have more chances
to establish stable partnership for retrieving the video content.

D. Resource Distribution

In this subsection, we examine the resource distribution in
the system and its implication on the performance. We define
a metric called contribution index, which is the aggregate
upload bandwidth (bytes sent) over the aggregate download
bandwidth (bytes received) for each user. This is different from
the Resource Index [19] that describes the resource available
in the system. The contribution index here captures the actual
uploading contribution from users during a particular broad-
cast event.

There are two issues relevant to the computation of contri-
bution index. First, since the log system does not differentiate
between the types of traffic, the aggregate download band-
width is mixed up with other traffic. One discrepancy can
be caused by the control traffic; for instance, two partners
exchanging video availability information through BMs. An-
other factor is the existence of servers. When the number of
users in the system is small, most users can be supported
by the servers, thus the contribution index from the users
is relatively low. Since the contribution index reflects the
willingness of each user for sharing video content and the
uploading capability, if the aggregate upload capacity from
a user is zero, the contribution index is also zero. On the
other hand, if the aggregate upload (bytes sent out) equals to
aggregate download (bytes received) of a user, the contribution
index is one, indicating that the user is capable of providing
full video streams to another user. To better capture the
granularity of the uploading contribution from each user, we

define the contribution level categorized by the average value
of the contribution index:

• Level 0: contribution index is larger than one. The user
can upload the whole video content to another user;

• Level 1: contribution index is between 0.5 and 1. The user
can at least upload half video content to its children;

• Level 2: contribution index is between 1/6 and 0.5. The
user can upload at least one sub-stream to its children;

• Level 3: contribution index is less than 1/6. The user
cannot upload a single sub-stream to its children.

Fig. 10a and Fig. 10b plot the contribution index distribu-
tions for the entire event and for the period between 18:00-
23:59, respectively. We can see that a significantly number of
users (over 60%) cannot stably contribute one sub-stream. We
believe this is because many of the users are behind NAT
and firewalls (see Fig. 3a). Fig. 10c plots the contribution
index against system size with 5−minute granularity. The
results suggest that when the system size is small, most of
the uploading capacity is provided by the servers. When the
number of users starts to increase, the finite uploading capacity
of the servers becomes insufficient, and the uploading capacity
in the system is gradually taken over by the streaming among
peers.

E. Quality-of-Service (QoS) index

Finally, we examine the QoS metrics that directly related
to user experience. Fig. 11a shows that the hybrid architecture
can significantly reduce the initial start-up delay, which is the
media player ready time of peers, compared with the pull-
based system. There are two reasons behind this improvement:
first, the hybrid pull and push mechanism reduces signal
overhearing associated each block transmission, which further
results in a faster catch up process for newly joined nodes.
Consequently this helps to reduce the initial startup delay;
second, the hybrid architecture improves the efficiency in data

1636 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

Fig. 8. Correlation between failure rate and system size

Fig. 9. Distribution of media player ready time under four different time
periods

transmission as the outgoing (uploading) bandwidth is more
effectively utilized.

Fig. 11b plots the distribution of the start subscription time
and media player ready time. There are two observations from
this result: 1) Many users could successfully find a capable
parent and receive sufficient video content to start playing the
video within a short period of time; 2) On the other hand, this
exhibits heavy-tailed distribution, indicating that there is also
a non-negligible amount of users that fail to find a capable
parent, and thus cannot obtain the video program in time. Fig.
11b also plots the cumulative distribution of the difference
between the media player ready event and start subscription
event, which essentially indicates the amount of time that a
user needs to wait for its buffer to be fulfilled. The results
are consistent with the real life experiences that on average a
user needs to wait 10-20 seconds before it can start playing
the video program.

We further define the continuity index as the percentages
of video content successfully received by each user before
its playback deadline. Fig. 12a plots the average continuity
index and the system size versus time, while Fig. 12b plots

(a)

(c)

(b)

Fig. 10. (a) Distribution of contribution index; (c) Distribution of contribution
index from 18:00 to 23:59; (b) Correction between contribution index and
system size

the average continuity index versus time for different types
of users in the system. Again, all type of users experience
very high continuity index. In other words, there is nearly no
disruption once a user is starting viewing a video program, as
confirmed by the real user experiences. There is a decrease
of the continuity index after 22:30; at that time, the program
ends, and the users start to leave the system.

LI et al.: AN EMPIRICAL STUDY OF THE COOLSTREAMING+ SYSTEM 1637

Fig. 11. (a) Comparison of initial start-up delay between pull-based and hybrid push-pull; (b) Comparison between start subscription time, media player
ready time and their difference

Fig. 12. (a) Comparison of continuity index and number of users ; (b) Average continuity index against time with different user connection types

Perhaps the most interesting observation is that the conti-
nuity index of direct-connected users is slightly lower than
that of NAT or firewall users. We believe this could be caused
by the churn effect. Observed from Fig. 2c that there is a
large number of users joining and leaving the system, during
which the small percentage of the direct-connected users are
swamped by a large number of partnership establishments and
stream requests.

This will congest the direct-connected users, it will take
tlose to one of the children to give up due to the sub-
stream lagging. The nodes can still receive blocks from those
temporary parents during the time interval t↓. On the other
hand, the catch-up processes of users behind NATs or firewalls
are often too slow and they will simply depart and re-enter
the overlay during peer churns, resulting (i) the low continuity

indices of NAT or firewall users could not be reported to
the log server due to their departures and the 5−minute
granularity of state report; (ii) re-entering nodes are treated as
newly joined nodes and experience catch up processes before
the media player ready events. The long response time and
zero continuity index during the catch-up process will not be
reflected to the performance measurement, since continuity
indices are only reported by state reports. Consequently, the
average continuity indices of NAT or firewall users can be
higher than (but unrealistic) than average continuity index of
direct-connect users. However, this does not seem to pose
serious problems, as the difference of the continuity index
is marginal.

1638 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 9, DECEMBER 2007

VII. SUMMARY

In this paper, we used a large set of live streaming traces
obtained from the Coolstreaming system, and studied the
workload, inherent system dynamics and performance mea-
surement. We first described the internal architecture and
key design trade-off in Coolstreaming. We showed that the
random partner selection and sub-streaming can effectively
deal with the system dynamics. With concrete evidences, we
demonstrated that: 1) The critical performance problem in P2P
streaming system is the excessive start-up time and high join
failure rates during flash crowd; 2) The system dynamics, in
particular the churn, is the most critical factor that affects
the overall performance; 3) There is a highly unbalanced
distribution in term of uploading contributions from nodes,
which has significant implications on the resource allocation
in such a system.

We believe the lengthy start-up time and high failure rates
are inherent problems in P2P streaming systems, especially
with the presence of large percentages of the nodes behind
NATs or firewalls. Further, when the size of the system is
small, finding a capable partner can take even longer time.
We have found that a certain number of server deployment is
of necessity. However, pure server-based approaches like CDN
can be costly and do not scale well. On top of that, there is a
practical difficulty in provisioning servers on-the-fly. Hence,
we believe that a large-scale commercial Internet streaming
system should be a hybrid system, i.e., P2P with assistance
from geographically distributed servers.

While the results from this study are encouraging and offer a
number of insights in understanding the P2P streaming system,
there are several open issues that need further examinations.
In particular, the data set does not allow us to derive accurate
overlay topology. We believe it is of great relevance to
examine the concrete evidences about how the overlay topol-
ogy migrates and self-stabilizes under the random topology
construction. There are also many optimizations that could
further improve the system performance, such as exploring
the clustering behavior at different users to better utilize the
resources, and to design structure-assisted content delivery
mechanism to reduce the impact from system dynamics.

REFERENCES

[1] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and Challenges
of Peer-to-Peer Internet Video Broadcast,” Proc. of the IEEE, Special
Issue on Recent Advances in Distributed Multimedia Communications,
2007.

[2] X. Zhang, J. Liu, B. Li, and P. Yum, “Coolstreaming/DONet: A Data-
driven Overlay Network for Efficient Live Media Streaming,” in Proc.
of IEEE Infocom, March 2005.

[3] http://www.pplive.com
[4] http://www.sopcast.org
[5] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement

Study of a Large-Scale P2P IPTV System,” to appear in IEEE Trans-
actions on Multimedia, 2007.

[6] A. Ali, A. Mathur and H. Zhang, “Measurement of Commercial Peer-
to-Peer Live Video Streaming”, Workshop in Recent Advances in Peer-
to-Peer Streaming, August, 2006.

[7] S. Deering, “Multicast Routing in Internetworks and Extended LANs,”
in Proc. of ACM Sigcomm, August 1988.

[8] P. Francis, “Yoid: Extending the Internet Multicast Architecture,”
http://www.icir.org/yoid

[9] Y. Chu, S. G. Rao and H. Zhang, “A Case for End System Multicast,”
in Proc. of ACM Sigmetrics, June 2000.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek and J. W.
O. Jr., “Overcast: Reliable Multicasting with an Overlay Network,” in
Proc. of OSDI, October 2000.

[11] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron
and A. Singh, “SplitStream: High-bandwidth Content Distribution in
Cooperative Environments,” in Proc. of SOSP, October 2003.

[12] V. N. Padmanabhan, H. J. Wang, P. A. Chou and K. Sripanidkulchai,
“Distributing Streaming Media Content Using Cooperative Network-
ing”, in Proc. of NOSSDAV, May 2002.

[13] V. Venkararaman, K. Yoshida and P. Francis, “Chunkspread: Hetero-
geneous Unstructured End System Multicast,” in Proc. of IEEE ICNP,
November 2006.

[14] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven
MEsh-based Streaming,” in Proc. of IEEE Infocom, May 2007.

[15] T. Silverston, and O. Fourmaux, “P2P IPTV measure-
ment: A comparison study,” Tech. Rep., October 2006.
http://www.arxiv.org/abs/cs.NI/0610133

[16] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt, “Mapping the PPLive
network: Studying the impacts of media streaming on P2P overlays,”
Tech. Rep. of University of Illinois at Urbana, August 2006.

[17] X. Zhang, J. Liu, and B. Li, “On Large-Scale Peer-to-Peer Live Video
Distribution: Coolstreaming and Its Preliminary Experimental Results,”
in Proc. of IEEE MMSP’2005, October 2005.

[18] M. Zhang, L. Zhao, J. L. Y. Tang, and S. Yang, “A Peer-to-Peer Network
for Live Media Streaming - Using a Push-Pull Approach,” in Proc. of
ACM Multimedia, November 2005.

[19] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Fea-
sibility of Supporting Large-Scale Live Streaming Applications with
Dynamic Application End-Points,” in Proc. of ACM SIGCOMM, August
30- September 3, 2004.

Bo Li (S89-M92-SM99) received his B. Eng.
(summa cum laude) and M. Eng. degrees in the
Computer Science from Tsinghua University, Bei-
jing in 1987 and 1989, respectively, and the Ph.D.
degree in the Electrical and Computer Engineering
from University of Massachusetts at Amherst in
1993. Between 1993 and 1996, he worked on high
performance routers and ATM switches in IBM Net-
working System Division, Research Triangle Park,
North Carolina. Since 1996, he has been with the
Department of Computer Science, Hong Kong Uni-

versity of Science and Technology. Since 1999, he has also held an adjunct
researcher position at the Microsoft Research Asia (MSRA), Beijing, China.
His current research interests are on adaptive video multicast, peer-to-peer
streaming, resource management in mobile wireless systems, across layer
design in multi-hop wireless networks, content distribution and replication.
He is currently a Distinguished Lecturer in IEEE Communications Society.
He has served on the editorial board for a large number IEEE journals such
as IEEE Transactions on Mobile Computing, IEEE Transactions on Wireless
Communications, IEEE Transactions on Vehicular Technology. He was the
also a guest editor for three special issues of IEEE Journal on Selected Areas
in Communications. He was the Co-TPC Chair for IEEE Infocom2004.

Susu Xie , (xiesusu@cse.ust.hk) received his bach-
elor degree from Tsinghua University in 1998. After
several years experience in software development in
real-time multimedia applications, he is currently a
Ph.D. candidate of Hong Kong University of Science
and Technology. His research interests are in the area
of Internet and wireless networks with emphasis on
multimedia applications.

LI et al.: AN EMPIRICAL STUDY OF THE COOLSTREAMING+ SYSTEM 1639

Yik Keung , (phgab@cse.ust.hk) is currently work-
ing toward the Ph.D. degree at the Department of
Computer Science and Engineering in Hong Kong
University of Science and Technology. He received
the B.S. and M.Phil. degree from the Department
of Physics, Hong Kong University of Science and
Technology in 2002 and 2004 respectively. His
previous research interests are in the area of wire-
less communication networks, with emphasis on
resource allocation and mobility management for
multimedia traffic. His current research interests are

in area of Internet and Peer-to-Peer networks with emphasis on multimedia
applications.

Jiangchuan Liu (S01-M03) received the B.Eng de-
gree (cum laude) from Tsinghua University, Beijing,
China, in 1999, and the Ph.D. degree from The Hong
Kong University of Science and Technology in 2003,
both in computer science.

He is currently an assistant professor in the School
of Computing Science, Simon Fraser University,
BC, Canada, and was an assistant professor at The
Chinese University of Hong Kong from 2003 to
2004. He was a recipient of Microsoft research
fellowship (2000), a recipient of Hong Kong Young

Scientist Award (2003), and a co-inventor of one European patents and two
US patents.

His research interests include Internet architecture and protocols, media
streaming, wireless ad hoc networks, and service overlay networks. He
serves as TPC member for various networking conferences, including IEEE
INFOCOM, IEEE MASS, and IWQoS. He was TPC Co-Chair for The
First IEEE International Workshop on Multimedia Systems and Networking
(WMSN05), Information System Co-Chair for IEEE INFOCOM04, and a
guest-editor for ACM/Kluwer Journal of Mobile Networks and Applications
(MONET), Special Issues on Wireless Sensor Networks and Wireless Mesh
Networks. He is an editor of IEEE Communications Surveys and Tutorials.
He is a member of IEEE and IEEE Communications Society, and an elected
member of Sigma Xi.

Ion Stoica is founder and the Chief Technology
Officer of Rinera Networks, Inc., and Associate
Professor in the EECS Department at University of
California at Berkeley. He has done research on
peer-to-peer network technologies in the Internet,
resource management, and network architectures.
Stoica is the recipient of a Sloan Foundation Fel-
lowship (2003), a Presidential Early Career Award
for Scientists & Engineers (PECASE) (2002), and
of the ACM doctoral dissertation award (2001).

Hui Zhang is founder and president of Rinera Net-
works, Inc., and Professor in the School of Computer
Science at Carnegie Mellon University. He has done
research on clean slate Internet architecture, Internet
QoS, multicast, and peer-to-peer video streaming
systems.

Zhang is an ACM Fellow. He received the Na-
tional Science Foundation CAREER Award in 1996
and the Alfred Sloan Fellowship in 2000. He held
the CMU SCS Finmeccanica Chair from 1998 to
2002. He was the Chief Technical Officer of Turin

Networks in 2000-2003.

Xinyan Zhang (S03) received the B.S. degree in
computer science from Tsinghua University, Beijing,
China, in 2001 and the M.Phil. degree from the
Department of Information Engineering, Chinese
University of Hong Kong in 2004. He developed and
implemented Coolstreaming, one of the largest Peer-
to-Peer global live streaming systems at the time
(2004-2005). He is with Roxbeam Corp.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.50000
 0.50000
 0.50000
 0.50000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.12500
 0.12500
 0.12500
 0.12500
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 783.000]
>> setpagedevice

