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ABSTRACT

Automobiles have become one of the necessities of modern

life, but also introduced numerous traffic accidents that threat-

en drivers and other road users. Most state-of-the-art safety

systems are passively triggered, reacting to dangerous road

conditions or driving behaviors only after they happen and

are observed, which greatly limits the last chances for col-

lision avoidances. Therefore, timely tracking and predicting

the driving behaviors calls for a more direct interface beyond

the traditional steering wheel/brake/gas pedal.

In this paper, we argue that a driver’s eyes are the inter-

face, as it is the first and the essential window that gathers

external information during driving. Our experiments suggest

that a driver’s gaze patterns appear prior to and correlate with

the driving behaviors for driving behavior prediction. We ac-

cordingly propose GazMon, an active driving behavior mon-

itoring and prediction framework for driving assistance ap-

plications. GazMon extracts the gaze information through a

front-camera and analyzes the facial features, including facial

landmarks, head pose, and iris centers, through a carefully

constructed deep learning architecture. Our on-road experi-

ments demonstrate the superiority of our GazMon on predict-

ing driving behaviors. It is also readily deployable using RG-

B cameras and allows reuse of existing smartphones towards

more safely driving.

Index Terms— Gaze, Driving Assistant, Mobile Com-

puting, Deep Learning

1. INTRODUCTION

Automobiles have become one of the necessities of modern

life and deeply penetrated into our daily activities. They un-

fortunately also introduce numerous social problems, among

which traffic accidents are most notoriously threatening auto-

mobile drivers and other road users. Besides well-developed

passive safety equipments such as belt and air bag, active au-

tomobile safety systems are also under rapid development in

recent years. They use positioning devices, built-in cameras,
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or laser beams to identify potentially dangerous events, so as

to avoid imminent crashes. According to U.S. data [1], sys-

tems with automatic braking can reduce rear-end collisions

by an average of 40%.

Despite being referred to as active, most of these system-

s remain passively triggered by a vehicle’s surroundings and

its driving interface (i.e., steering wheel, brake, and gas ped-

al) [2][3]. Such systems react to dangerous road conditions

or driving behaviors only after they happen and are observed.

Given the well-known two-second rule1, such passive reac-

tion can greatly limit the last chances for collision avoidances.

For example, an alert from a Blind Spot Warning system oc-

curs after the driver turns the steering wheel, which, on a high-

way, can be too late to avoid a collision if the speed is over

120 km/h. The Adaptive Front-lighting system, which has

been developed to enhance night visibility, also follows the

angle change of the steering wheel and accordingly changes

the lighting pattern to compensate for the curvature of a road.

The lag from steering wheel movement to light movement,

however, is not negligible (being activated after 1/4 turn of

the wheel and sometimes one or two full turns).

In short, timely tracking and predicting the driving be-

haviors is essential and important towards improving driv-

ing safety, and we need a new and more direct interface be-

yond the traditional steering wheel/brake/gas pedal. We ar-

gue that a driver’s eyes are the interface, as this is the first

and the essential window that gathers external information.

Our crowdsourcing measurements reveal strong correlation-

s between the eye-gazing patterns and the driving behaviors,

which are further confirmed by our on-road experiments to be

discussed later. In particular, gaze patterns occur prior to the

corresponding driving behaviors, which offers a great chance

to overcome the two-second rule.

To this end, we develop GazMon, an active driving be-

havior monitoring and prediction framework for driving as-

sistance applications. GazMon extracts the gaze information

from a front-camera and predicts driving behaviors based on

the gaze patterns. The patterns are analyzed through a super-

vised deep learning architecture. In particular, we incorporate

a joint Convolutional Neural Network (CNN) and Long Short

1A driver usually needs about two seconds to react to avoid accident.
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Fig. 1: GazMon immersive emulating environment
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Fig. 2: Gaze patterns appear prior to driving behaviors

Term Memory (LSTM) network, which first identifies low-

level activities, and then scales up to predict complex high-

level driving behaviors.

Our GazMon does not rely on very advanced and high-

cost eye tracking devices (e.g., Tobii EyeX2). It is readily de-

ployable using RGB cameras and can be easily integrated to

intelligent in-vehicle systems, e.g., CarPlay and Android Au-

to, minimizing/reducing the reliance on extra hardware. It

also allows the reuse of existing smart phones for driving be-

havior prediction. Our GazMon demonstrates that a careful

design can turn a smartphone from an accident contributor

into a crash preventer. With GazMon, driving applications

can warn and return feedbacks to drivers without distracting

them, e.g., through voice instructions, to improve the safe-

ty. We have deployed the trained deep learning models of

GazMon with Mobile TensorFlow on Android smart phones,

e.g., Google Pixel and Vivo X9 Plus. We conduct extensive

on-road experiments for driving behavior prediction, which

also provide additional feedbacks to GazMon to fine-tune the

deep learning model. The evaluation results report significant

prediction accuracy improvements over different state-of-art

solutions.

2https://tobiigaming.com/

2. WHY WE INCORPORATE GAZE PATTERNS

INTO DRIVING PREDICTION?

In this paper, we explore the opportunities to predict driving

behaviors through analyzing drivers’ gaze patterns. We seek

to first answer the following question: Do a driver’s gaze pat-

terns appear prior to the driving behaviors? To investigate

the correlations between them, we capture the driver’s gaze

patterns and the steering wheel through our testbed. For safe-

ty concerns, our testbed runs in a virtual reality environment

as shown in Fig. 1(a). The driving simulator platform runs on

a customized PC, which is connected to four 27-inch monitors

as shown in Fig. 1(b), where the NVIDIA Surround Technol-

ogy enables to combine displays to create the most immersive

emulating environment. As illustrated in Fig. 1(c), we choose

Tobii eyeX 4C3 as the eye-tracking device to collect the users’

gazing data due to its affordable price for our testbed, suitable

sampling rate, and reasonable accuracy. The eye-tracking de-

vice consists of three illuminators and one camera, where the

illuminators create the pattern of near-infrared light on view-

er’s eyes, and the camera captures high-resolution images of

the driver’s eyes and the patterns. In this simulation platfor-

m, volunteers play a driving simulation game, namely Euro

Truck Simulator 2, which makes people feel as driving a vehi-

cle in real life. We record a driver’s behaviors with the gaming

wheel and pedals set and capture the driver’s gazing patterns

with the eye-tracking device.

We perform experiments over 50 experienced drivers on

the gaze patterns to explore their potential relationships with

the driving behaviors. The results reveal that the driver’s gaze

patterns appear prior to the drivers’ behaviors, thus opening

new opportunities to explore. Fig. 2 shows a typical exam-

ple of the gaze patterns collected from a volunteer and the s-

teering wheel turning behaviors, which is the most important

feature in driving a vehicle. We plot the driver’s gaze pattern-

s at the horizontal direction, where a positive degree means

that the driver is looking on the left and a negative one means

looking on the right. And the steering wheel turning behav-

ior is plotted in a similar way. It is clear to see that the gaze

3https://tobiigaming.com/eye-tracker-4c/
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Fig. 3: Gaze Patterns from Typical Driving Behaviors

patterns highly correlate with the driving behaviors but come

ahead of some time advance, e.g. shoulder check comes prior

to left turn for about 10-15 seconds. We count the time gap

that gaze patterns appear prior to driving behaviors, which is

approximately 5.09 seconds on average and large enough for

the two-second rule to apply.

Then we need to answer the following question: How a

driver’s gaze patterns correlate with the driver’s behaviors?

As we know, the single gaze point is ineffective to predic-

t driving behaviors. Our experiments reveal that if we stack

the gaze points across a small time interval into a vector, then

this vector can be a good indicator of different driving behav-

iors. Fig. 3 shows the gaze patterns from eight typical driving

behaviors, i.e., cruising, scanning, looking at navigator, dis-

tracting, checking left side road, left turn, checking right side

road and right turn. This example shows that gaze patterns are

distinct with different driving intentions, and we can predict

the driving behaviors through analyzing gaze patterns.

3. SYSTEM IMPLEMENTATIONS

Our GazeMon framework does not rely on a particular eye-

tracking hardware. In the long run, advanced eye tracking so-

lutions could be seamlessly integrated into the vehicles’ on-

board systems with affordable cost, and our GazeMon will

benefit from it. On the other hand, we also note that nowa-

days mobile phones are ubiquitous and widespreadly used,

where more than a third of the world’s population is estimated

to have smartphones by 2019. Given that people carry their

phones everyday everywhere, the phones have great poten-

tials to serve as eye gazing tools in vehicular environments, s-

ince mobile phones can directly capture images from the front

RGB camera and require no modifications to the existing on-

vehicle systems. Another benefit is that the high adoption

rate of technology upgrades on mobile phones can lead to

rapid development and deployment of new camera technol-

ogy and allow the use of computationally expensive methods.

Fig. 4: Smartphone in the real-world experiment

Fig. 5: Overall Performance of GazMon System

Our GazMon is the first attempt towards this direction, which

can achieve high prediction accuracy in a timely manner as

later demonstrated by our on-road experiments.

The mobile phone part of GazMon is implemented as an

app on Android OS 5.1.1 as shown in Fig. 4. On startup,

the GazMon app launches an Android activity (CameraAc-

tivity.java) which basically accesses the camera by using the

Android Camera2 package. Then GazMon uses the supported

JNI (Java Native Interface) procedures to interact with dlib-



Table 1: The Accuracy of Driving Behavior Prediction versus Prediction Gap

Cruise Left Turn Right Turn Left Line Right Line

P R F P R F P R F P R F P R F

1 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

2 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.98 0.99 0.96 1.00 0.98 1.00 0.97 0.99

3 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.97 0.98

4 0.96 1.00 0.98 1.00 1.00 1.00 1.00 0.95 0.98 0.98 0.98 0.98 0.99 0.99 0.99

5 0.96 0.87 0.91 0.94 0.92 0.93 0.88 0.94 0.91 0.88 0.98 0.93 0.95 0.90 0.92

6 0.96 0.98 0.97 0.84 0.96 0.90 0.89 0.91 0.90 0.84 0.91 0.88 0.97 0.78 0.86

7 0.94 0.93 0.94 0.93 0.61 0.74 0.98 0.94 0.96 0.94 0.98 0.96 0.75 0.96 0.84

8 0.98 0.98 0.98 0.85 0.57 0.68 0.97 0.90 0.93 0.83 0.96 0.89 0.72 0.87 0.79

android engine and the recent proposed dlib library to extract

a sequence of eye gazing features including facial landmarks,

head pose, and iris centers from the incoming image stream.

In training stage, GazMon uploads the drivers’ videos

with the preprocessed eye gazing features in a batch to the

server, when the high-speed wireless connection is available.

The preprocessed eye gazing features are used for training the

deep learning architecture, where the ground truth of the driv-

ing behaviors is labeled based on the videos from the front

cameras. The server part of the GazMon is deployed on our

customized desktop, where our deep learning architecture in-

corporates a joint Convolutional Neural Network (CNN) and

Long Short Term Memory (LSTM) network, so as to first i-

dentify low-level activities, and then scale up to predict com-

plex high-level driving behaviors. The CNN and LSTM clas-

sifiers are implemented in Keras with cuDNN on Dual Nvidia

GTX 1080Ti GPUs.

In prediction stage, the GazMon app running on a smart-

phone can timely process the images captured by the device’s

camera and predict the driving behaviors based on the deep

learning architecture pre-trained by the aforementioned ap-

proach, so as to provide realtime services to users, where the

preprocessed eye gazing features are fed into TensorFlow Mo-

bile’s core engine implemented by Google developers.

4. ON-ROAD EXPERIMENTS

Tab. 1 shows the details of prediction accuracy in precision

(P), recall (R) and F-Score (F) of our GazMon approach,

where each column denotes the driving activity performed

and each row represents the prediction time gap (as shown

at the beginning of each row). As shown in the table, the

precision of driving behavior prediction is at least 0.96 in 4

seconds, which indicates that GazMon can allow 200% of

the gap required by the two-second rule and still distinguish

various driving behaviors with high accuracy. We thus use

4 seconds as the default predicted time gap for the remained

experiments. We also observe that the left lane change (LL)

has better prediction accuracy than the right lane change (R-

L) in longer predicted time gap, because the left lane change

takes longer time as the vehicle needs accelerate to merge in-

to the left lane. When the predicted time gap is larger than

5 seconds, the prediction accuracy decrease for the right lane

change (RL) and left turn (LT). This is because the experi-

enced drivers always have right shoulder check before both of

those behaviors. If the predicted time gap is too large, it will

cause that the prediction is mainly based on the right shoulder

check and thus cannot well distinguish these two behaviors.

Fig. 5 shows the performance of our GazMon compared

with different state-of-the-art approaches. To this end, we

implement five commonly used classifiers (k-Nearest Neigh-

bors, one-vs-all Linear SVM, Decision Tree, Random For-

est, and Quadratic Discriminant Analysis) as well as the C-

NN based approach used in iTracker [4] and a LSTM based

approach. The result clearly shows that GazMon can achieve

22% higher accuracy than iTracker that only uses CNN. This

demonstrates the benefits of the LSTM architecture used in

GazMon on learning dynamic temporal relationships from a

sequential spectrum frames for driving behavior prediction.

At the same time, GazMon also obtains 36% higher accuracy

than the LSTM-based approach, which illustrates the neces-

sity of the CNN architecture used in GazMon to efficiently

extract the features for driving behavior prediction. Our Gaz-

Mon also outperforms the other five commonly used classi-

fiers, achieving 40% gain over the best approach (SVM) a-

mong them.

5. REFERENCES

[1] “Crashes avoided: Front crash prevention slashes police-

reported rear-end crashes,” The Insurance Institute for Highway

Safety (IIHS) Status Report, vol. 51, no. 1, January 28, 2016.

[2] Cagdas Karatas, Luyang Liu, Hongyu Li, Jian Liu, Yan Wang,

Sheng Tan, Jie Yang, Yingying Chen, Marco Gruteser, and

Richard Martin, “Leveraging wearables for steering and driv-

er tracking,” in Proceedings of IEEE INFOCOM 2016.

[3] Dongyao Chen, Kyong-Tak Cho, Sihui Han, Zhizhuo Jin, and

Kang G Shin, “Invisible sensing of vehicle steering with smart-

phones,” in Proceeding of ACM MobiSys 2015.

[4] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan,

Suchendra Bhandarkar, Wojciech Matusik, and Antonio Torral-

ba, “Eye tracking for everyone,” in Proceedings of IEEE CVPR

2016.


