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Abstract-In this paper, we take a close look to understand 
the cloud-based file synchronization and collaboration systems. 
Using the popular Dropbox as a case study, our measurement 
reveals its cascaded computation and communication operations 
that are far more complicated than those in conventional file 
hosting. We show that this serial design is necessary for the cloud 
deployment, which effectively avoids the possible task interfer
ence inside the computation cloud; yet it also leads to higher 
service variance across users. Even worse, in a collaborative file 
editing session, users' updates would be discarded without any 
warning. The drop rate is unfortunately related to the slowest 
collaborator, which severely hinders the system scalability and 
user satisfaction. We further investigate the root causes of this 
phenomenon as well as other performance bottlenecks and offer 
hints for practical improvement. 

I. INTRODUCTION 

Recent years have witnessed the rising popularity of c1oud
based file storage systems. Such commercial products as Drop
box [1], Gdrive [2] and Skydrive [3] not only provide reliable 
file hosting but also enable effective file synchronization for 
user collaboration. It is known that this new generation of file 
synchronization is greatly benefited from cloud computing. 
For example, Dropbox is using Amazon's S3 service for 
file storage; Gdrive and Skydrive, on the other hand, utilize 
the cloud platforms by Google and Microsoft, respectively. 
The richer services as well as abundant computation, storage, 
and communication resources enabled by the clouds, way 
beyond those by conventional servers or CDNs, no doubtable 
contribute to the tremendous success of these systems. 

It is however known that the QoS (quality of service) of 
such synchronization systems is far from being satisfactory, 
particularly in terms of synchronization latency. With the 
expansion of system scale, it frequently exceeds the accepted 
level for practical collaboration, which has been widely com
plained l . Unfortunately, the framework design and protocol 
operation of the systems remain vague to the general public. 
Identifying the exact performance bottlenecks or enabling 
theoretical and practical optimization is acutely challenging 
and largely blinding to date. 

I For example, in the official Dropbox forum http://forums.dropbox.com/ 
topic.php?id= 12859. 
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In this paper, we reveal the cascaded stages during Drop
box's file synchronization, namely, pre-processing, uploading, 
downloading, and post-processing. We show that this series 
of computation and communication operations, which is far 
more complicated than those in conventional file hosting [4], 
is necessary for Dropbox-Iike services especially considering 
the cloud deployment. Such a design can significantly improve 
service reliability and avoid the possible task interference 
on cloud-based virtual machines (VMs); yet it also leads to 
higher latency and cost. In particular, the variance of latency 
across different users increases with larger population, and 
thus individual users may face severe performance degradation 
when the system scale grows. 

Even worse, our measurement shows that, in a collaborative 
file editing session, Dropbox would discard users' updates 
without any warning. The drop rate is unfortunately related 
to the slowest (in terms of latency) collaborator in the sys
tem, which severely hinders the system scalability. To ensure 
reliability, a user may have to wait tens of seconds for each 
(even the smallest) update when the number of its collaborators 
exceeds 10. This safe interval ramps up quickly, as revealed 
by our measurement across different numbers of users under 
various network conditions. We further investigate the root 
causes of this phenomenon and other performance bottlenecks 
by diving into the cloud infrastructure of Dropbox-like systems 
and offer hints of practical improvement. 

The rest of this paper is organized as follows. In Section 
II, we present the related works. After that, we decompose 
the synchronization latency of Dropbox in Section III. Section 
IV explores the synchronization performance of Dropbox, and 
Section V explores the collaboration among the users. Section 
VI discusses the root causes of dropping updates and offers 
hints for practical improvement. Section VII concludes the 
paper. 

II. BACKGROUND AND RELATED WORKS 

File storage and synchronization has long been a critical 
service in the IT industry. Since the first development of RAID 
(redundant array of independent disks) [5], many storage and 
synchronization technologies have been proposed for local 
and networked environments. In the Internet, client-server- or 
CDN-based protocols [4] and peer-assisted protocols [6] both 



have seen wide deployment; they mainly support file hosting, 
with no or limited user collaborations. 

Cloud computing provides elastic service, powerful capacity 
and low cost to service providers. These salient features have 
opened new opportunities to support Internet applications on 
cloud platforms [7] [8] [9]. Wu et al. [10] explored the use 
of cloud for video-on-demand applications; Kannan et al. [11] 
examined the optimization of home clouds for mobile devices. 
Many studies have also addressed application designs that 
leverage cloud platforms [12] [13] or optimize the cloud traffic 
[14] [15]. A number of companies have also been enticed to 
deploy their own cloud-based file storage and synchronization 
systems [1] [2] [3] [16]. To better understand these systems, 
Drago et al. [17]analyzed the system workload of Dropbox. 
They found that the Dropbox performance is mainly driven 
by the distance between clients and storage data centers. A 
recent study from Li et at. [18] showed that a considerable 
portion of the cloud sync traffic is in a sense wasteful, and can 
be effectively avoided or significantly reduced via carefully 
designed data sync mechanisms. 

Different from the existing studies, our work is focusing on 
the protocol of cloud-based synchronization and collaboration. 
We reveals the cascaded stages during Dropbox's file synchro
nization and identify a severe bottleneck of cloud-based file 
synchronization, shedding new light on future explorations. 

III. DESIGN DECOMPOSITION OF FILE SYNCHRONIZATION 

In this section, we first discuss the most widely used 
core functionality of Dropbox, namely file synchronization. 
We provide a detailed measurement, which decomposes the 
synchronization process and reveals the associated overhead. 

We start from an experiment of two Dropbox users. We 
select two nodes from the planet-lab platform to deploy the 
Dropbox client application, one as the data source that uploads 
the file, and the other as the destination that needs to be 
synchronized. The data source is located in the University 
of British Columbia (UBC) and the destination is deployed 
in Simon Fraser University (SFU). Both nodes have similar 
hardware capacity with 1. 7 GHz CPU, 4 GB memory and 
1 Gbps Ethernet adaptor. We link these two nodes with the 
same Dropbox account. Once we move a file to the Dropbox 
folder, this file will be synchronized to another PC, and we use 
synchronization latency to represent the time span of the whole 
synchronization process. We are focusing on two metrics that 
are closely related to the synchronization latency: the CPU 
utilization, and the downloading/uploading rates on these two 
PCs. 

We first synchronize a 500 MBytes file between these two 
PCs. In the experiment, we generate the file by writing random 
characters. After each synchronization, we randomly shuffle 
the file to avoid the cache functions of Dropbox and ensure the 
whole file is uploaded. Otherwise Dropbox will only update 
the changed part. 

Figure 1 and Figure 4 present the CPU utilization and 
the downloading/uploading rate on these two Dropbox users, 
respectively. The solid lines refer to the data source, and the 
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dotted lines refer to the destination. As we can see from 
Figure 1, the CPU utilization elevates sharply in the first 20 
seconds after we put the file into the Dropbox folder. During 
this time, there is no high-speed data transmission in Figure 4. 
A closer look shows that this elevating CPU load corresponds 
to such file pre-processing as splitting the files into chunks 
and computing their hash values using the SHA-256 algorithm 
to avoid redundant file uploading [19]. We further check 
the packet level activities and find that the Dropbox client 
application (on the data source) is also communicating with 
the load-balancers to obtain the IP address of Dropbox delivery 
servers and sending chunk hashes to the delivery servers for 
comparison. This pre-processing stage is marked as Stage I in 
the figures, which remarkably elevates the CPU usage without 
much data transmission. 

After pre-processing, we can see that the uploading traffic 
on the data source starts to increase. In Figure 4, the uploading 
rate increases to around 1000 KBytes/sec. Meanwhile, the 
CPU utilization in Figure 1 decreases to around 50%. We mark 
this as Stage 2. It is worth noting that if we compare the 50% 
CPU utilization in Figure 1 (Stage 2) with the 1000 KBytes/sec 
uploading rate in Figure 4 (Stage 2), we can find that the 
uploading rate cannot cause such a high CPU utilization. An 
intuitive explanation is that the Dropbox client application 
is compressing the chunks while uploading. To verify this, 
we compute the total uploaded bytes and compare it with 
the original file size. We find that the total uploaded byte is 
around 255 MBytes which is much smaller compared to the 
original file size of 500 MBytes. It is easy to see that the file 
compression efficiently reduces the time cost in uploading. 

As we can see from Figure 4, as soon as the data source 
finishes the uploading, the destination will start downloading 
(marked as Stage 3 in the figures) from Dropbox servers. 
Figure 1 indicates that the CPU utilization at the destination 
during this stage is much lower compared to the uploading 
stage at the data source. Since both servers have similar 
hardware configurations, we believe that this low CPU uti
lization is because the file decompressing process is much 
easier than the file compressing2 . Another noticeable feature 
is that the downloading will start only when the entire file 
has been successfully uploaded to the Dropbox servers. The 
reason is that the file is segmented and compressed on the data 
source. The Dropbox servers are designed to merge the chunks 
together and then send the file to storage servers before further 
delivery. Although this design might not be the most efficient 
for minimizing synchronization latency, it largely avoids the 
possible errors during the file uploading and compressing. This 
distinguishes Dropbox from conventional file hosting systems 
that are often pipelined [4] [6]. 

When the downloading stage finishes, the downloading rate 
at the destination drops to zero. However, Figure I shows 
that the CPU still keeps working for another 60 seconds 
after the downloading stage, indicating that there is a post-

2 We also change the data source and destination, and observe that for the 
same computer, the CPU utilization is lower for downloading. 
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Fig. 5: Client downloading/uploading 
rate (file size 300 MBytes) 

Fig. 6: Client downloading/uploading 
rate (file size 30 MBytes) 

processing stage (marked as Stage 4). Since the files are 
segmented and compressed on the sender side, this CPU load 
is for decompressing the received chunks and merging them 
together. 

In summary, our measurement shows that the Dropbox file 
synchronization can be decomposed into 4 cascaded stages: (1) 
pre-processing, (2) uploading, (3) downloading, and (4) post
processing. To generalize this observation and avoid possible 
bias, we have conducted a series of experiments and present 
representative results in Figures 2-3 and 5-6. We can see 
clear stages in all the experiments as marked in these figures. 
It is also worth noting that in Figure 2 and Figure 6, there is a 
very small delay (around 3 sec) between the end of uploading 
and the start of downloading stages. We believe that it is 
mainly due to the costs of such operations on the Dropbox 
servers as finding the right VMs for delivery and sending the 
files to S3. This delay is relatively low (less than 5 seconds 
in all cases), which can be largely ignored. 

While these serial operations look natural, they are ap
parently less efficient than pipelined operations as in the 
traditional file storage systems, e.g., [4] [6]. Besides simplicity 
and better reliability in handling data, the uniqueness of cloud 
virtualization would be a key reason toward adopting the serial 
operations. It has been found that, for a virtual machine, the 
traffic load can largely slow down the computation-intensive 
tasks (such as compressing/decompressing) and create a severe 
bottleneck in cloud-based systems [20]. This is because the 

control and data paths in a virtualized network interface 
controller (NIC) are much longer than that of a non-virtualized 
counterpart; e.g., in EC2, the paravirtualized NIC involves 3 
CPU interrupts and 3 data copies for receiving one packet, as 
contrast to 1 interrupt and 1 in a bare-metal NIC. The impact 
on multi-core CPUs is even higher with extra switches across 
CPU s to handle the interrupts. To avoid potential interference, 
the bandwidth-intensive and computation-intensive tasks shall 
be interleaved without overlap, as Dropbox does. We will 
examine the etlectiveness of this straightforward solution as 
well as its performance bottlenecks in the following sections. 

TABLE I: Synchronization latency with different file size 

I FILE SIZE l AVG I STD I MAX I MIN I 
15 MBytes 69.6 sec 3.2 72.0 sec 66.0 sec 

30 MBytes 131.3 sec 1.5 133.0 sec 130.0 sec 

60 MBytes 256.0 sec 19.2 278.0 sec 242.0 sec 

120 MBytes 609.3 sec 41.0 644.0 sec 564.0 sec 

240 MBytes 1211.3 sec 64.0 1275.0 sec 1147.0 sec 

IV. PERFORMANCE OF FILE SYNCHRONIZATION 

A. Latency and Scalability 

To understand the performance of Dropbox, we first inves
tigate the synchronization latency between 2 Dropbox users 
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The detailed statistics can be found in Table I. 
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with ditlerent file sizes. We then increase the number of users 
to examine its impact. 

In the first experiment, the configuration is similar to that 
in the previous section, but the file size varies. We randomly 
generate the content of files in each experiment and test the file 
size of 15 MBytes, 30 MBytes, 60 MBytes, 120 MBytes and 
240 MBytes, respectively. We run each experiment 4 times and 
present the average and standard deviation of synchronization 
latency in Figure 7. It is easy to see that the synchronization 
latency increases roughly linearly with the file size. The 
standard deviation also slightly increases with larger files. This 
result shows that Dropbox can scale quite well with file size. 

To examine the synchronization latency across more Drop
box users, we carry out a Planet-lab based experiment across 
51 Dropbox users (one data source and 50 destinations) using 
a file of 30 MBytes. We use this scale because the advertised 
capacity of one Dropbox account is currently 40 (based on 
Dropbox's official documents). Moreover, it is also hard to 
assume that a user will use one single Dropbox account to 
synchronize the files across over 50 computers in real-world. 

Figures 8 and 9 present the average and standard deviation 
of time costs of different stages (the four stages that we 
have mentioned in the last section) at the data source and 



destinations, respectively. We can see that the average time 
costs of these four stages are not sensitive to the increasing 
number Dropbox users. However, the variance of latency 
across different users increases with the number of users, and 
thus individual users may face severe performance degradation 
when the system expands. 

We also find that the time cost of file uploading is always 
more expensive than that of downloading. The pre-processing 
and the post-processing, on the other hand, are generally quite 
fast especially compared to data transmission. In particular, 
the pre-processing of a 500 MBytes file (before compressing) 
is around 60 seconds, and the post-processing costs only 80 
seconds. The pre-/post-processing of smaller files (less than 1 
MBytes), will cost even less time (around 10 sec). While this 
time cost is not significantly high, it can be further optimized 
via more efficient compressing/decompressing algorithms. 

B. Discussion 

Our experimental results indicate that the existing Dropbox 
system scales well with the number of users in terms of 
average synchronization latency. The variance of the latency 
however increases, implying that Dropbox is not limiting 
the transmission rate of different users to achieve equal 
synchronization latency. Some users can finish the synchro
nization of a 300 MBytes contents within 10 minutes while 
others may have to wait for more than 30 minutes. This 
variance is caused by the ditlerent computation capabilities 
that are responsible for pre-/post-processing, and the different 
network bandwidth of clients and VMs that are responsible 
for uploading/downloading. Different from the conventional 
synchronization techniques that rely on a centralized server, 
the different VMs in the Dropbox system are highly variant 
in terms of their network bandwidth which is mainly caused 
by the interference of computational work load [21]. The sig
nificant variance also introduce challenges to the consistence 
of the synchronization file, which is essential to the version 
control in user collaboration. It is difficult to ensure fairness 
for ditlerent users given that the VMs are highly distributed. 
Such unfairness has also been complained by Skydrive and 
Gdrive users. While this would be acceptable for free services, 
it can severely hinder the commercialization of such systems 
for paid users. Our results also suggest that this problem is 
getting worse when the system scale expands. Providing both 
fast and fair services, or better yet guaranteed services, to 
all subscribers remains a challenging task for Dropbox-like 
systems. 

In addition, from Figure 4 and Figure 5, the file uploading 
from Dropbox client application to the EC2-based Dropbox 
servers contribute to almost 60% of the synchronization la
tency. The uploading rates of Dropbox are mostly around 1 to 
1.5 MBytes/sec whereas the downloading rates can achieve 
more than 2 MBytes/sec. We also find that the uploading 
rates are quite unstable over time (for example, in Figure 16), 
which is not the case in the downloading stage. Since our 
experimental platform is dedicated for the measurements, we 
believe that this is due to the arriving loads of other Dropbox 
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Fig. 16: Uploading rate of the Dropbox client 
(file size 600 MBytes) 

users. To verify this, we have deployed a set of Xen-based3 

local VMs to examine the overhead of both incoming and 
outgoing traffic. Our experiment shows that the receiving of 
TCP traffic is more expensive than sending. In particular, the 
receiving rate of 200 MBytes/sec will cost more than 40% 
CPU on a virtual machine that has 7.5 GB memory and 2 
virtual cores. Meanwhile, the sending rate of 200 MBytes/sec 
will only cost around 20% CPU on this VM. For example, 
when more users upload their files to the Dropbox servers, 
such an increasing receiving traffic will greatly slow down the 
servers and unavoidably prolong the file processing as well 
as message forwarding. Such interference potentially creates 
a severe bottleneck in the system. 

V. IMPACT ON USER COLLABORATION 

It is encouraging to see that decomposing computation and 
communication operations does not significantly atlect the 
synchronization latency. Unfortunately, some individual users 
may face severe performance degradation especially when the 
system scale grows. For conventional file storage systems, the 
impact is confined to these individual users. Powered by cloud 
computing, Dropbox-like systems however also enable such 
diverse user collaborations as editing and version management, 
which have been a key factor toward their success. It is thus 
necessary to examine the impact of heterogeneous users on 
multi-party collaboration. 

A very basic requirement of collaboration is that the system 
should not discard users' updates without any warning [23]. 
To this end, Dropbox provides two key functions to handle 
users' updates: keep conflict versions and record file uploading 
history [24]. When multiple users are trying to update the 
same file at the same time, only one copy will be saved as 
the original update. Other updates, on the other hand, will 
generate new copies of this file as "conflict version". This is 
a very intuitive design to avoid the possible loss of users' 
updates, which is also adopted in such conventional version 

'Note that Amazon EC2 uses Xen-based virtualization [22] 
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management applications as Subversion [25]. It is however 
known that this function also has some problems. For example, 
the synchronization of conflict files can trigger the generation 
of more conflict versions and may overwrite some updates 
from the users. To make sure that the users will not lose any 
of their updates, Dropbox also provides a file history function 
that keeps users' historical updates on the servers. According 
to the official document of Dropbox [26], this function will 
keep every single change in users' Dropbox folders over the 
last 30 days for free users and unlimited time for paid users. 

A. Single User Case 

To examine the elfectiveness of these functions, we first 
examine the case when the file updates only come from one 
Dropbox user. Our objective is to see whether Dropbox can 
keep all the historical updates for this user even when s/he is 
slow in terms of the latency. We then extend this extreme case 
to multiple collaborative users. 

In our first experiment, the user updates a small file with the 
size less than 0.1 KBytes to the Dropbox server. Slhe then tries 
to edit the content of this file for 10 times. We vary the time 
interval between consecutive updates from 1 to 15 seconds 
and check the total number of historical files recorded on the 
Dropbox server. The Round Trip Time (RTT) between this 
user and the Dropbox server is about 80 ms. 

The system should be able to keep all these 10 updates 
and save them as historical files [26]. However, as we can 
see from Figure 10, when the updating interval is set to 1 
second, Dropbox loses 7 out of the 10 updates from the 
user. This means that 70% of the user's historical updates are 
dropped. It is interesting to see that when we slow down the 
upload interval, the dropping rate will be reduced. When the 
upload interval is equal to or longer than 12 seconds, Dropbox 
records all the updates from the user. These results indicate 
that Dropbox will discard users' updates even when they are 
quite fast. To avoid this, the user has to wait at least 12 seconds 
to send new updates. For the ease of discussion, we refer to 
this interval as safe interval in the following sections. 

To better understand this problem, we carry out experiments 
under ditlerent file sizes and RTTs. Figure II further clarifies 
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the relationship between file size and safe interval. We can 
again observe that the safe interval will increase with the file 

. 4 size. 
As we can see from Figure 12, when we increase the RTT 

between the user and Dropbox servers5 , the safe interval will 
increase correspondingly. When the server-client latency is 
equal to 380 ms, the safe interval will be larger than 30 
seconds, which is more than twice the safe interval with RTT 
ranging from 80 to 230 ms. It is also noting that the safe 
interval quickly elevates when the RTT exceeds 200 ms. This 
is because the client's uploading rate is largely reduced when 
the RTT is larger than 200. Considering such a the growth 
trend, the can easily exceed the auto-saving interval of many 
applications. It is known that Dropbox has a great number of 
mobile users with potentially longer latencies [28]. As a result, 
these users are more likely to lose their updates. 

Figures 13, 14, and IS take a close look into the relationship 
between the safe and uploading rate. In this experiment, 
we use trickle [29] to limit the maximum uploading rate 
of user clients. As we can see from Figure 13, a limited 
uploading rate, say 100 KBytes/sec, will unavoidably lead 
to large safe intervals around 40 seconds. If we compare 
Figure 13 with Figure 14, we can see that the client with better 
uploading capacity, say 200 KBytes/sec, will have smaller safe 
intervals even with higher client-server RTT. This observation 
is further confirmed in Figure IS where the uploading rate is 
limited to 300 KBytes/sec. We also report the safe interval 
under ditlerent file sizes with the maximum uploading rate 
of 100 KBytes/sec in Table IV. We can see that the trend 
of safe interval is more predictable for larger files. When 
the file size reaches 3 MBytes, the safe interval increases 
about 8 seconds for an extra MBytes. Recalling that the file 
is compressed before uploading, with an compression ratio of 

4Note that we have computed the total amount of the uploading traffic to 
ensure that all of the 10 updates are successfully/completely uploaded to the 
Oropbox server. This is to avoid the possible bias due to incomplete uploading. 

sThe RTT is controlled by TC (Traffic Control Tool) [27]. 



0.6, the increased safe interval matches well with the extra 
uploading traffic plus the communication overhead. We also 
observe the same phenomenon when the maximum uploading 
speed is set to 200 and 300 KBytes/sec, respectively. 

B. Multiple User Case 

Our experiment shows that Dropbox is more likely to dis
card a user's updates when s/he is slow in terms of the latency. 
We now examine the multi-user collaboration scenario, in 
particular, the impact of these high RTT users on the whole 
session of collaboration. 

As shown in Figure 17, our experiment starts with the case 
of two Dropbox users. One is deployed in our campus (user A) 
and the other is deployed in UBC (user B). These two Dropbox 
users are editing the same file and both of them will send 10 
updates with constant upload intervals. The RTT of both users 
(to the Dropbox server) is around 80 ms and the file size is 
less than 0.1 KBytes. Figure 17 shows an ideal example in the 
Dropbox system where all the users' updates can be recorded 
on the Dropbox server, either in the original file history or as 
conflict versions. In this example, user A's updates are always 
successfully uploaded (recorded in historical files) and user 
B's updates are always generating conflict versions. The solid 
lines show the data flow from user A and the dotted lines 
indicate the data flow from user B. The Dropbox server will 
save a total of 20 copies where 10 of them are recorded as 
conflict versions (from B) and the other 10 as normal updates 
(from A) in the original file history. If any of these updates 
are missing, the users' collaboration will be affected. 

As shown in Figure 18, we can see that the Dropbox again 
drops the updates from users during collaborations. If we 
compare this figure with Figure 10, we can see that the safe 
interval increases due to the collaboration between the two 
users. In particular, Figure 10 shows that Dropbox can record 
all the updates from a single user when his/her upload interval 
is larger than 12 sec. If there are two users editing this file, 
12 sec can however no longer guarantee this. Their updates 
cloud be dropped unless they slow down the upload interval to 
more than 17 sec. Figures 19 and 20 present the details of these 
saved updates, including whose updates are saved as historical 
updates and whose updates are generating conflict versions. 
By checking Figure 19 with the upload interval (x-axis) of 
6 sec, we can see that 4 updates from the SFU user and 2 
updates from the UBC user are saved as normal updates. From 
Figure 20 (when the x-axis is equal to 6 sec), we can again 
find that 1 update from the SFU user and 4 updates from the 
UBC user are recorded as conflict version files. Therefore, the 
Dropbox system has dropped 5 out of 10 updates from the SFU 
user and 4 out of 10 updates from the UBC user6. Based on our 
experiments, Dropbox will drop the updates from both users 
with no determined patterns. This indicates that the Dropbox 
system is not designed to discard these updates on purpose. 

6We use these figures to show the existence of such a problem. We have 
done the experiment multiple times and the results (average values) can be 
found in our dataset at http://netsg.cs.sfu.caJdropboxdata.html. 
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This unpredictable dropping behavior will unavoidably bring 
significant challenges to user collaboration. 

Figure 21 further indicates that such a problem will become 
worse when we increase the RTT for only one user (with 
fixed file size less than 1 KByte). We can see that the 
safe interval of both users will increase. When the RTT 
exceeds 300 ms, both users have to wait over 40 seconds 
to send their new updates. Otherwise, their updates could be 
dropped by the system without any warning. We can find that 
the overall system performance is severely confined by the 
slowest collaborator. Unfortunately, the series of computation 
and communication operations (discussed in Section IV and 
V) increases the variance of latency across different users. 
This variance however largely reduces the trustworthy of the 
collaboration across all users. 

Figure 22 indicates that the file size will also affect users' 
safe interval (the RTTs of both users are fixed to 80 ms). We 
can see that compared with the safe interval with only user, 
the safe interval is noticeably longer. For example, the safe 
interval will be around 17 and 57 seconds when the file size 
is set to 0.1 KBytes and 20 MBytes, respectively, which is 5 
and 8 seconds more than that with only one user, respectively. 

Figure 23 further shows that the safe interval increases when 
there are more users in larger-scale collaborations (with RTT 
fixed to 80 ms and file size less than 0.1 KByte). The matter 
will become even worse when there are some high latency 
users in this larger-scale collaboration. Our experiment shows 
that if 1 out of these 10 users have the latency of 300 ms, the 
safe interval of all users will easily exceed 1 minutes. 

VI. WHY ARE UPDATES DROPPED? 

Randomly dropping updates is a nightmare for both Drop
box operator and its users. A intuitive explanation is that the 
users are updating too fast, exceeding the safe interval and 
hence the service capacity that Dropbox can offer. The solution 
is therefore that the safe interval should be enforced for critical 
updates/users. This is apparently only a temporary solution, 
not the ultimate one that the users or we expect. 

To unveil the root causes of the dropping, we revisit the 
two types of communications in Dropbox file synchroniza
tion: the communication between users (both up loaders and 
downloaders) and EC2 servers as well as the communication 
between EC2 and S3 servers. Since we have already ensured 
the uploading between users and EC2 servers (by comparing 
the total amount of uploading traffic with the file size). It 
is thus reasonable to believe that the problem is due to 
the communication between EC2 and S3 servers. To better 
understand this, we carry out some follow-up experiments to 
see when the updates are more likely to be dropped. Figure 24 
shows an example of our explanation. In this figure, the gray 
boxes denote the Dropbox users and servers; the black boxes 
denote the file (chunks), and the solid lines show the data flow 
of file transmission. We also use dotted lines to mark the time 
slots from to to t7' 

In this example, user A is holding a file and starts to 
synchronize this file at time to. This file is fully uploaded to the 
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Dropbox EC2 server at time t3 and arrive at another user B at 
time t7 . Note that the protocols between EC2 and S3 servers 
are unknown. We therefore assume that the communication 
between EC2 and S3 servers also starts at time t3. This is an 
reasonable assumption because Figure 1 and Figure 6 indicate 
that the gap between uploading and downloading stage is 
indeed very small. 

If another Dropbox user, say user C, is trying to upload the 
same file between to and t3 to the EC2 server. This action 
will trigger the generation of conflict versions since the EC2 
server is receiving this file from user A. When these conflict 
versions (or other normal updates) are further synchronized 
between time t3 and t7 , they are very likely to be dropped. 
This also explains why the safe interval is related to the RTT 
and file size, as well as related to the total number of Dropbox 
users. 

Some earlier leaked information suggested that Dropbox 
was planning to move some of their servers out of Amazon 
and to upgrade to a hybrid service framework [30]. Although 
this needs further confirmation and our measurement shows 
that it has not been implemented, at least for now, a hybrid 
service framework across more cloud platforms could be a 
better alternative. It potentially makes Dropbox servers closer 
to the users, which not only speeds up file synchronization 
but also reduces the drop rate of users' updates. To validate 
this, we have run experiment on Planet-lab nodes. We selected 

20 nodes and put them into two groups. The first group 
consists of users who are closer to the Dropbox servers (with 
the maximum RTT being less than 90 ms and average hop 
counts within 10). The second group consists of users who are 
relatively far from the Dropbox servers (with the maximum 
RTT being over 300 ms and average hop over 13). We test 
the collaboration in these two groups separately on Dropbox. 
Each user generates 10 updates with upload interval of 50 sec. 
As shown in Figure 25, we can see that the drop rate can be 
noticeably reduced when the Dropbox servers are closer to the 
users. Previously, over 30% high RTT users sutler from a drop 
rate over 50%; the drop rate decreases to less than 20% if the 
users are closer to the servers. This observation suggests that a 
single-data center-based solution might not be the best for the 
cloud synchronization!collaboration systems; server placement 
and selection play critical roles for further optimization. 

VII. CONCLUSION 

This paper investigated the protocols as well as the per
formance of Dropbox-like cloud file synchronization systems. 
We particularly focused on the synchronization!collaboration 
in such a system, and examined new issues and challenges due 
to the cloud deployment. 

Our study represents an initial attempt toward understanding 
such a new generation of service. We expect that our findings 
help with optimizing these systems as well as with migrating 
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more Internet services to cloud platforms. There are many pos
sible future directions to explore. We are particularly interested 
in efficient and scalable collaboration among the users with 
decentralized cloud deployment, as well as examining other 
similar applications to further generalize our findings. 
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