
Diving into Cloud-based File Synchronization with
User Collaboration

Haiyang Wang1 , Xiaoqiang Ma2 , Feng Wang4 , Jiangchuan Liu2 ,3, Bharath Kumar Bommana1 , Xin Liu5*
1 University of Minnesota Duluth, USA, Email: {Haiyang, bomma008}@d.umn.edu

2Simon Fraser University, Burnaby, Canada, Email: {xma1O.jcliu}@cs.sfu.ca
3South China Agricultural University, Guangzhou, China

4The University of Mississippi, University, USA, Email: fwang@cs.olemiss.edu
5Tsinghua University, China, xinliutsinghua@gmai1.com

Abstract-In this paper, we take a close look to understand
the cloud-based file synchronization and collaboration systems.
Using the popular Dropbox as a case study, our measurement
reveals its cascaded computation and communication operations
that are far more complicated than those in conventional file
hosting. We show that this serial design is necessary for the cloud
deployment, which effectively avoids the possible task interfer
ence inside the computation cloud; yet it also leads to higher
service variance across users. Even worse, in a collaborative file
editing session, users' updates would be discarded without any
warning. The drop rate is unfortunately related to the slowest
collaborator, which severely hinders the system scalability and
user satisfaction. We further investigate the root causes of this
phenomenon as well as other performance bottlenecks and offer
hints for practical improvement.

I. INTRODUCTION

Recent years have witnessed the rising popularity of c1oud
based file storage systems. Such commercial products as Drop
box [1], Gdrive [2] and Skydrive [3] not only provide reliable
file hosting but also enable effective file synchronization for
user collaboration. It is known that this new generation of file
synchronization is greatly benefited from cloud computing.
For example, Dropbox is using Amazon's S3 service for
file storage; Gdrive and Skydrive, on the other hand, utilize
the cloud platforms by Google and Microsoft, respectively.
The richer services as well as abundant computation, storage,
and communication resources enabled by the clouds, way
beyond those by conventional servers or CDNs, no doubtable
contribute to the tremendous success of these systems.

It is however known that the QoS (quality of service) of
such synchronization systems is far from being satisfactory,
particularly in terms of synchronization latency. With the
expansion of system scale, it frequently exceeds the accepted
level for practical collaboration, which has been widely com
plained l . Unfortunately, the framework design and protocol
operation of the systems remain vague to the general public.
Identifying the exact performance bottlenecks or enabling
theoretical and practical optimization is acutely challenging
and largely blinding to date.

I For example, in the official Dropbox forum http://forums.dropbox.com/
topic.php?id= 12859.

*Corresponding Author

In this paper, we reveal the cascaded stages during Drop
box's file synchronization, namely, pre-processing, uploading,
downloading, and post-processing. We show that this series
of computation and communication operations, which is far
more complicated than those in conventional file hosting [4],
is necessary for Dropbox-Iike services especially considering
the cloud deployment. Such a design can significantly improve
service reliability and avoid the possible task interference
on cloud-based virtual machines (VMs); yet it also leads to
higher latency and cost. In particular, the variance of latency
across different users increases with larger population, and
thus individual users may face severe performance degradation
when the system scale grows.

Even worse, our measurement shows that, in a collaborative
file editing session, Dropbox would discard users' updates
without any warning. The drop rate is unfortunately related
to the slowest (in terms of latency) collaborator in the sys
tem, which severely hinders the system scalability. To ensure
reliability, a user may have to wait tens of seconds for each
(even the smallest) update when the number of its collaborators
exceeds 10. This safe interval ramps up quickly, as revealed
by our measurement across different numbers of users under
various network conditions. We further investigate the root
causes of this phenomenon and other performance bottlenecks
by diving into the cloud infrastructure of Dropbox-like systems
and offer hints of practical improvement.

The rest of this paper is organized as follows. In Section
II, we present the related works. After that, we decompose
the synchronization latency of Dropbox in Section III. Section
IV explores the synchronization performance of Dropbox, and
Section V explores the collaboration among the users. Section
VI discusses the root causes of dropping updates and offers
hints for practical improvement. Section VII concludes the
paper.

II. BACKGROUND AND RELATED WORKS

File storage and synchronization has long been a critical
service in the IT industry. Since the first development of RAID
(redundant array of independent disks) [5], many storage and
synchronization technologies have been proposed for local
and networked environments. In the Internet, client-server- or
CDN-based protocols [4] and peer-assisted protocols [6] both

have seen wide deployment; they mainly support file hosting,
with no or limited user collaborations.

Cloud computing provides elastic service, powerful capacity
and low cost to service providers. These salient features have
opened new opportunities to support Internet applications on
cloud platforms [7] [8] [9]. Wu et al. [10] explored the use
of cloud for video-on-demand applications; Kannan et al. [11]
examined the optimization of home clouds for mobile devices.
Many studies have also addressed application designs that
leverage cloud platforms [12] [13] or optimize the cloud traffic
[14] [15]. A number of companies have also been enticed to
deploy their own cloud-based file storage and synchronization
systems [1] [2] [3] [16]. To better understand these systems,
Drago et al. [17]analyzed the system workload of Dropbox.
They found that the Dropbox performance is mainly driven
by the distance between clients and storage data centers. A
recent study from Li et at. [18] showed that a considerable
portion of the cloud sync traffic is in a sense wasteful, and can
be effectively avoided or significantly reduced via carefully
designed data sync mechanisms.

Different from the existing studies, our work is focusing on
the protocol of cloud-based synchronization and collaboration.
We reveals the cascaded stages during Dropbox's file synchro
nization and identify a severe bottleneck of cloud-based file
synchronization, shedding new light on future explorations.

III. DESIGN DECOMPOSITION OF FILE SYNCHRONIZATION

In this section, we first discuss the most widely used
core functionality of Dropbox, namely file synchronization.
We provide a detailed measurement, which decomposes the
synchronization process and reveals the associated overhead.

We start from an experiment of two Dropbox users. We
select two nodes from the planet-lab platform to deploy the
Dropbox client application, one as the data source that uploads
the file, and the other as the destination that needs to be
synchronized. The data source is located in the University
of British Columbia (UBC) and the destination is deployed
in Simon Fraser University (SFU). Both nodes have similar
hardware capacity with 1. 7 GHz CPU, 4 GB memory and
1 Gbps Ethernet adaptor. We link these two nodes with the
same Dropbox account. Once we move a file to the Dropbox
folder, this file will be synchronized to another PC, and we use
synchronization latency to represent the time span of the whole
synchronization process. We are focusing on two metrics that
are closely related to the synchronization latency: the CPU
utilization, and the downloading/uploading rates on these two
PCs.

We first synchronize a 500 MBytes file between these two
PCs. In the experiment, we generate the file by writing random
characters. After each synchronization, we randomly shuffle
the file to avoid the cache functions of Dropbox and ensure the
whole file is uploaded. Otherwise Dropbox will only update
the changed part.

Figure 1 and Figure 4 present the CPU utilization and
the downloading/uploading rate on these two Dropbox users,
respectively. The solid lines refer to the data source, and the

2

dotted lines refer to the destination. As we can see from
Figure 1, the CPU utilization elevates sharply in the first 20
seconds after we put the file into the Dropbox folder. During
this time, there is no high-speed data transmission in Figure 4.
A closer look shows that this elevating CPU load corresponds
to such file pre-processing as splitting the files into chunks
and computing their hash values using the SHA-256 algorithm
to avoid redundant file uploading [19]. We further check
the packet level activities and find that the Dropbox client
application (on the data source) is also communicating with
the load-balancers to obtain the IP address of Dropbox delivery
servers and sending chunk hashes to the delivery servers for
comparison. This pre-processing stage is marked as Stage I in
the figures, which remarkably elevates the CPU usage without
much data transmission.

After pre-processing, we can see that the uploading traffic
on the data source starts to increase. In Figure 4, the uploading
rate increases to around 1000 KBytes/sec. Meanwhile, the
CPU utilization in Figure 1 decreases to around 50%. We mark
this as Stage 2. It is worth noting that if we compare the 50%
CPU utilization in Figure 1 (Stage 2) with the 1000 KBytes/sec
uploading rate in Figure 4 (Stage 2), we can find that the
uploading rate cannot cause such a high CPU utilization. An
intuitive explanation is that the Dropbox client application
is compressing the chunks while uploading. To verify this,
we compute the total uploaded bytes and compare it with
the original file size. We find that the total uploaded byte is
around 255 MBytes which is much smaller compared to the
original file size of 500 MBytes. It is easy to see that the file
compression efficiently reduces the time cost in uploading.

As we can see from Figure 4, as soon as the data source
finishes the uploading, the destination will start downloading
(marked as Stage 3 in the figures) from Dropbox servers.
Figure 1 indicates that the CPU utilization at the destination
during this stage is much lower compared to the uploading
stage at the data source. Since both servers have similar
hardware configurations, we believe that this low CPU uti
lization is because the file decompressing process is much
easier than the file compressing2 . Another noticeable feature
is that the downloading will start only when the entire file
has been successfully uploaded to the Dropbox servers. The
reason is that the file is segmented and compressed on the data
source. The Dropbox servers are designed to merge the chunks
together and then send the file to storage servers before further
delivery. Although this design might not be the most efficient
for minimizing synchronization latency, it largely avoids the
possible errors during the file uploading and compressing. This
distinguishes Dropbox from conventional file hosting systems
that are often pipelined [4] [6].

When the downloading stage finishes, the downloading rate
at the destination drops to zero. However, Figure I shows
that the CPU still keeps working for another 60 seconds
after the downloading stage, indicating that there is a post-

2 We also change the data source and destination, and observe that for the
same computer, the CPU utilization is lower for downloading.

I 4

I

File sIZe
500MBytes
255MBytes after
compression

I

3 4

File size:
300MB~es
153MBytes after
compression

Fig. 1: Client CPU utilization
(file size 500 MBytes)

Fig. 2: Client CPU utilization
(file size 300 MBytes)

Fig. 3: Client CPU utilization
(file size 30 MBytes)

_U~oadingrate

on the Source

I 4
File size:
500MBytes
255MBytes after

000 roo

, 4

File size:
300M Bytes
153M Bytes after

300 400 500

Downlooo ll9 Rate I
"""' onthedesti.nat io.'

U~oadlng Rate
on the destlnallon

File size:
30MBytes
16MBytes after
compression

Time slots (seconds) Time slots (seconds)

Fig. 4: Client downloading/uploading
rate (file size 500 MBytes)

Fig. 5: Client downloading/uploading
rate (file size 300 MBytes)

Fig. 6: Client downloading/uploading
rate (file size 30 MBytes)

processing stage (marked as Stage 4). Since the files are
segmented and compressed on the sender side, this CPU load
is for decompressing the received chunks and merging them
together.

In summary, our measurement shows that the Dropbox file
synchronization can be decomposed into 4 cascaded stages: (1)
pre-processing, (2) uploading, (3) downloading, and (4) post
processing. To generalize this observation and avoid possible
bias, we have conducted a series of experiments and present
representative results in Figures 2-3 and 5-6. We can see
clear stages in all the experiments as marked in these figures.
It is also worth noting that in Figure 2 and Figure 6, there is a
very small delay (around 3 sec) between the end of uploading
and the start of downloading stages. We believe that it is
mainly due to the costs of such operations on the Dropbox
servers as finding the right VMs for delivery and sending the
files to S3. This delay is relatively low (less than 5 seconds
in all cases), which can be largely ignored.

While these serial operations look natural, they are ap
parently less efficient than pipelined operations as in the
traditional file storage systems, e.g., [4] [6]. Besides simplicity
and better reliability in handling data, the uniqueness of cloud
virtualization would be a key reason toward adopting the serial
operations. It has been found that, for a virtual machine, the
traffic load can largely slow down the computation-intensive
tasks (such as compressing/decompressing) and create a severe
bottleneck in cloud-based systems [20]. This is because the

control and data paths in a virtualized network interface
controller (NIC) are much longer than that of a non-virtualized
counterpart; e.g., in EC2, the paravirtualized NIC involves 3
CPU interrupts and 3 data copies for receiving one packet, as
contrast to 1 interrupt and 1 in a bare-metal NIC. The impact
on multi-core CPUs is even higher with extra switches across
CPU s to handle the interrupts. To avoid potential interference,
the bandwidth-intensive and computation-intensive tasks shall
be interleaved without overlap, as Dropbox does. We will
examine the etlectiveness of this straightforward solution as
well as its performance bottlenecks in the following sections.

TABLE I: Synchronization latency with different file size

I FILE SIZE l AVG I STD I MAX I MIN I
15 MBytes 69.6 sec 3.2 72.0 sec 66.0 sec

30 MBytes 131.3 sec 1.5 133.0 sec 130.0 sec

60 MBytes 256.0 sec 19.2 278.0 sec 242.0 sec

120 MBytes 609.3 sec 41.0 644.0 sec 564.0 sec

240 MBytes 1211.3 sec 64.0 1275.0 sec 1147.0 sec

IV. PERFORMANCE OF FILE SYNCHRONIZATION

A. Latency and Scalability

To understand the performance of Dropbox, we first inves
tigate the synchronization latency between 2 Dropbox users

" -g 1200-

~
!!:.- 1000-

~
:ffi 800

C
o

:;:; 6()(J-

~ ·c

~ 400

%,----~----"W~C----~,w,---~--~
Content size (Mbytes)

Fig. 7: Synchronization latency of
Dropbox

111111
S,j, lei,,,,,, wllh
drop rate of zero ,

•• 1.1
1 2 3 4 5 6 7 8 9 10 11 12 13

Updating interval (5)

Fig. 10: # of dropped updates with
ditlerent upload intervals

'~~~~~'W~~200~-=2W~-=~~-=~~
RTT between client and server (ms)

Fig. 13: Safe interval when uploading
rate is limited to 100 KBytes/sec (file
size 5 MBytes)

~140

§ 120

~ _'00

8
~
i= 60

I
- Total synchronization latency I
- Uploading latency
- - - Pre-processing latency

20 30 40
of Dropbox clients

Fig. 8: Time cost on the data source
(uploader side)

0.2 0.4 0.6 0.8 1 1.2 1.4 1_6 1_8 2

File size (Kbytes) x 104

f80,----=-=---=---=-----=--~--__,

~ 140

a
(,) 120

ill
~ 100

8 80
Q)

E
i= 60

20 30 40

of Dropbox clients

Fig. 9: Time cost on the destination
(downloader side)

150 200 250 300

RTT between client and server (ms)

Fig. 11: Safe intervals under different Fig. 12: Safe intervals under different
file sizes RTTs (file size 5 MBytes)

'~~~~-='W~~200~-=2W~-=300~-='---~
RTT between client and server (ms)

Fig. 14: Safe interval when uploading
rate is limited to 200 KBytes/sec (file
size 5 MBytes)

" -g35
8
m
~30

~
~ 25

~20
(/)

'~~~~-='W~-=200~-=2W~-=300'----=---C
RTT between client and server (ms)

Fig. 15: Safe interval when uploading
rate is limited to 300 KBytes/sec (file
size 5 MBytes)

The detailed statistics can be found in Table I.

4

with ditlerent file sizes. We then increase the number of users
to examine its impact.

In the first experiment, the configuration is similar to that
in the previous section, but the file size varies. We randomly
generate the content of files in each experiment and test the file
size of 15 MBytes, 30 MBytes, 60 MBytes, 120 MBytes and
240 MBytes, respectively. We run each experiment 4 times and
present the average and standard deviation of synchronization
latency in Figure 7. It is easy to see that the synchronization
latency increases roughly linearly with the file size. The
standard deviation also slightly increases with larger files. This
result shows that Dropbox can scale quite well with file size.

To examine the synchronization latency across more Drop
box users, we carry out a Planet-lab based experiment across
51 Dropbox users (one data source and 50 destinations) using
a file of 30 MBytes. We use this scale because the advertised
capacity of one Dropbox account is currently 40 (based on
Dropbox's official documents). Moreover, it is also hard to
assume that a user will use one single Dropbox account to
synchronize the files across over 50 computers in real-world.

Figures 8 and 9 present the average and standard deviation
of time costs of different stages (the four stages that we
have mentioned in the last section) at the data source and

destinations, respectively. We can see that the average time
costs of these four stages are not sensitive to the increasing
number Dropbox users. However, the variance of latency
across different users increases with the number of users, and
thus individual users may face severe performance degradation
when the system expands.

We also find that the time cost of file uploading is always
more expensive than that of downloading. The pre-processing
and the post-processing, on the other hand, are generally quite
fast especially compared to data transmission. In particular,
the pre-processing of a 500 MBytes file (before compressing)
is around 60 seconds, and the post-processing costs only 80
seconds. The pre-/post-processing of smaller files (less than 1
MBytes), will cost even less time (around 10 sec). While this
time cost is not significantly high, it can be further optimized
via more efficient compressing/decompressing algorithms.

B. Discussion

Our experimental results indicate that the existing Dropbox
system scales well with the number of users in terms of
average synchronization latency. The variance of the latency
however increases, implying that Dropbox is not limiting
the transmission rate of different users to achieve equal
synchronization latency. Some users can finish the synchro
nization of a 300 MBytes contents within 10 minutes while
others may have to wait for more than 30 minutes. This
variance is caused by the ditlerent computation capabilities
that are responsible for pre-/post-processing, and the different
network bandwidth of clients and VMs that are responsible
for uploading/downloading. Different from the conventional
synchronization techniques that rely on a centralized server,
the different VMs in the Dropbox system are highly variant
in terms of their network bandwidth which is mainly caused
by the interference of computational work load [21]. The sig
nificant variance also introduce challenges to the consistence
of the synchronization file, which is essential to the version
control in user collaboration. It is difficult to ensure fairness
for ditlerent users given that the VMs are highly distributed.
Such unfairness has also been complained by Skydrive and
Gdrive users. While this would be acceptable for free services,
it can severely hinder the commercialization of such systems
for paid users. Our results also suggest that this problem is
getting worse when the system scale expands. Providing both
fast and fair services, or better yet guaranteed services, to
all subscribers remains a challenging task for Dropbox-like
systems.

In addition, from Figure 4 and Figure 5, the file uploading
from Dropbox client application to the EC2-based Dropbox
servers contribute to almost 60% of the synchronization la
tency. The uploading rates of Dropbox are mostly around 1 to
1.5 MBytes/sec whereas the downloading rates can achieve
more than 2 MBytes/sec. We also find that the uploading
rates are quite unstable over time (for example, in Figure 16),
which is not the case in the downloading stage. Since our
experimental platform is dedicated for the measurements, we
believe that this is due to the arriving loads of other Dropbox

200 400 600

Time slots (seconds)

Fig. 16: Uploading rate of the Dropbox client
(file size 600 MBytes)

users. To verify this, we have deployed a set of Xen-based3

local VMs to examine the overhead of both incoming and
outgoing traffic. Our experiment shows that the receiving of
TCP traffic is more expensive than sending. In particular, the
receiving rate of 200 MBytes/sec will cost more than 40%
CPU on a virtual machine that has 7.5 GB memory and 2
virtual cores. Meanwhile, the sending rate of 200 MBytes/sec
will only cost around 20% CPU on this VM. For example,
when more users upload their files to the Dropbox servers,
such an increasing receiving traffic will greatly slow down the
servers and unavoidably prolong the file processing as well
as message forwarding. Such interference potentially creates
a severe bottleneck in the system.

V. IMPACT ON USER COLLABORATION

It is encouraging to see that decomposing computation and
communication operations does not significantly atlect the
synchronization latency. Unfortunately, some individual users
may face severe performance degradation especially when the
system scale grows. For conventional file storage systems, the
impact is confined to these individual users. Powered by cloud
computing, Dropbox-like systems however also enable such
diverse user collaborations as editing and version management,
which have been a key factor toward their success. It is thus
necessary to examine the impact of heterogeneous users on
multi-party collaboration.

A very basic requirement of collaboration is that the system
should not discard users' updates without any warning [23].
To this end, Dropbox provides two key functions to handle
users' updates: keep conflict versions and record file uploading
history [24]. When multiple users are trying to update the
same file at the same time, only one copy will be saved as
the original update. Other updates, on the other hand, will
generate new copies of this file as "conflict version". This is
a very intuitive design to avoid the possible loss of users'
updates, which is also adopted in such conventional version

'Note that Amazon EC2 uses Xen-based virtualization [22]

File size (MB)

Safe interval (s)

Latency (ms)

Safe interval (s)

management applications as Subversion [25]. It is however
known that this function also has some problems. For example,
the synchronization of conflict files can trigger the generation
of more conflict versions and may overwrite some updates
from the users. To make sure that the users will not lose any
of their updates, Dropbox also provides a file history function
that keeps users' historical updates on the servers. According
to the official document of Dropbox [26], this function will
keep every single change in users' Dropbox folders over the
last 30 days for free users and unlimited time for paid users.

A. Single User Case

To examine the elfectiveness of these functions, we first
examine the case when the file updates only come from one
Dropbox user. Our objective is to see whether Dropbox can
keep all the historical updates for this user even when s/he is
slow in terms of the latency. We then extend this extreme case
to multiple collaborative users.

In our first experiment, the user updates a small file with the
size less than 0.1 KBytes to the Dropbox server. Slhe then tries
to edit the content of this file for 10 times. We vary the time
interval between consecutive updates from 1 to 15 seconds
and check the total number of historical files recorded on the
Dropbox server. The Round Trip Time (RTT) between this
user and the Dropbox server is about 80 ms.

The system should be able to keep all these 10 updates
and save them as historical files [26]. However, as we can
see from Figure 10, when the updating interval is set to 1
second, Dropbox loses 7 out of the 10 updates from the
user. This means that 70% of the user's historical updates are
dropped. It is interesting to see that when we slow down the
upload interval, the dropping rate will be reduced. When the
upload interval is equal to or longer than 12 seconds, Dropbox
records all the updates from the user. These results indicate
that Dropbox will discard users' updates even when they are
quite fast. To avoid this, the user has to wait at least 12 seconds
to send new updates. For the ease of discussion, we refer to
this interval as safe interval in the following sections.

To better understand this problem, we carry out experiments
under ditlerent file sizes and RTTs. Figure II further clarifies

I
~-L~~~~~~ __ ~ ______________ ~~:

Fig. 17: Experiment across multiple users

RI
::rl al
~.I
illl
d.' gl
oJ

6

the relationship between file size and safe interval. We can
again observe that the safe interval will increase with the file

. 4 size.
As we can see from Figure 12, when we increase the RTT

between the user and Dropbox servers5 , the safe interval will
increase correspondingly. When the server-client latency is
equal to 380 ms, the safe interval will be larger than 30
seconds, which is more than twice the safe interval with RTT
ranging from 80 to 230 ms. It is also noting that the safe
interval quickly elevates when the RTT exceeds 200 ms. This
is because the client's uploading rate is largely reduced when
the RTT is larger than 200. Considering such a the growth
trend, the can easily exceed the auto-saving interval of many
applications. It is known that Dropbox has a great number of
mobile users with potentially longer latencies [28]. As a result,
these users are more likely to lose their updates.

Figures 13, 14, and IS take a close look into the relationship
between the safe and uploading rate. In this experiment,
we use trickle [29] to limit the maximum uploading rate
of user clients. As we can see from Figure 13, a limited
uploading rate, say 100 KBytes/sec, will unavoidably lead
to large safe intervals around 40 seconds. If we compare
Figure 13 with Figure 14, we can see that the client with better
uploading capacity, say 200 KBytes/sec, will have smaller safe
intervals even with higher client-server RTT. This observation
is further confirmed in Figure IS where the uploading rate is
limited to 300 KBytes/sec. We also report the safe interval
under ditlerent file sizes with the maximum uploading rate
of 100 KBytes/sec in Table IV. We can see that the trend
of safe interval is more predictable for larger files. When
the file size reaches 3 MBytes, the safe interval increases
about 8 seconds for an extra MBytes. Recalling that the file
is compressed before uploading, with an compression ratio of

4Note that we have computed the total amount of the uploading traffic to
ensure that all of the 10 updates are successfully/completely uploaded to the
Oropbox server. This is to avoid the possible bias due to incomplete uploading.

sThe RTT is controlled by TC (Traffic Control Tool) [27].

0.6, the increased safe interval matches well with the extra
uploading traffic plus the communication overhead. We also
observe the same phenomenon when the maximum uploading
speed is set to 200 and 300 KBytes/sec, respectively.

B. Multiple User Case

Our experiment shows that Dropbox is more likely to dis
card a user's updates when s/he is slow in terms of the latency.
We now examine the multi-user collaboration scenario, in
particular, the impact of these high RTT users on the whole
session of collaboration.

As shown in Figure 17, our experiment starts with the case
of two Dropbox users. One is deployed in our campus (user A)
and the other is deployed in UBC (user B). These two Dropbox
users are editing the same file and both of them will send 10
updates with constant upload intervals. The RTT of both users
(to the Dropbox server) is around 80 ms and the file size is
less than 0.1 KBytes. Figure 17 shows an ideal example in the
Dropbox system where all the users' updates can be recorded
on the Dropbox server, either in the original file history or as
conflict versions. In this example, user A's updates are always
successfully uploaded (recorded in historical files) and user
B's updates are always generating conflict versions. The solid
lines show the data flow from user A and the dotted lines
indicate the data flow from user B. The Dropbox server will
save a total of 20 copies where 10 of them are recorded as
conflict versions (from B) and the other 10 as normal updates
(from A) in the original file history. If any of these updates
are missing, the users' collaboration will be affected.

As shown in Figure 18, we can see that the Dropbox again
drops the updates from users during collaborations. If we
compare this figure with Figure 10, we can see that the safe
interval increases due to the collaboration between the two
users. In particular, Figure 10 shows that Dropbox can record
all the updates from a single user when his/her upload interval
is larger than 12 sec. If there are two users editing this file,
12 sec can however no longer guarantee this. Their updates
cloud be dropped unless they slow down the upload interval to
more than 17 sec. Figures 19 and 20 present the details of these
saved updates, including whose updates are saved as historical
updates and whose updates are generating conflict versions.
By checking Figure 19 with the upload interval (x-axis) of
6 sec, we can see that 4 updates from the SFU user and 2
updates from the UBC user are saved as normal updates. From
Figure 20 (when the x-axis is equal to 6 sec), we can again
find that 1 update from the SFU user and 4 updates from the
UBC user are recorded as conflict version files. Therefore, the
Dropbox system has dropped 5 out of 10 updates from the SFU
user and 4 out of 10 updates from the UBC user6. Based on our
experiments, Dropbox will drop the updates from both users
with no determined patterns. This indicates that the Dropbox
system is not designed to discard these updates on purpose.

6We use these figures to show the existence of such a problem. We have
done the experiment multiple times and the results (average values) can be
found in our dataset at http://netsg.cs.sfu.caJdropboxdata.html.

7

This unpredictable dropping behavior will unavoidably bring
significant challenges to user collaboration.

Figure 21 further indicates that such a problem will become
worse when we increase the RTT for only one user (with
fixed file size less than 1 KByte). We can see that the
safe interval of both users will increase. When the RTT
exceeds 300 ms, both users have to wait over 40 seconds
to send their new updates. Otherwise, their updates could be
dropped by the system without any warning. We can find that
the overall system performance is severely confined by the
slowest collaborator. Unfortunately, the series of computation
and communication operations (discussed in Section IV and
V) increases the variance of latency across different users.
This variance however largely reduces the trustworthy of the
collaboration across all users.

Figure 22 indicates that the file size will also affect users'
safe interval (the RTTs of both users are fixed to 80 ms). We
can see that compared with the safe interval with only user,
the safe interval is noticeably longer. For example, the safe
interval will be around 17 and 57 seconds when the file size
is set to 0.1 KBytes and 20 MBytes, respectively, which is 5
and 8 seconds more than that with only one user, respectively.

Figure 23 further shows that the safe interval increases when
there are more users in larger-scale collaborations (with RTT
fixed to 80 ms and file size less than 0.1 KByte). The matter
will become even worse when there are some high latency
users in this larger-scale collaboration. Our experiment shows
that if 1 out of these 10 users have the latency of 300 ms, the
safe interval of all users will easily exceed 1 minutes.

VI. WHY ARE UPDATES DROPPED?

Randomly dropping updates is a nightmare for both Drop
box operator and its users. A intuitive explanation is that the
users are updating too fast, exceeding the safe interval and
hence the service capacity that Dropbox can offer. The solution
is therefore that the safe interval should be enforced for critical
updates/users. This is apparently only a temporary solution,
not the ultimate one that the users or we expect.

To unveil the root causes of the dropping, we revisit the
two types of communications in Dropbox file synchroniza
tion: the communication between users (both up loaders and
downloaders) and EC2 servers as well as the communication
between EC2 and S3 servers. Since we have already ensured
the uploading between users and EC2 servers (by comparing
the total amount of uploading traffic with the file size). It
is thus reasonable to believe that the problem is due to
the communication between EC2 and S3 servers. To better
understand this, we carry out some follow-up experiments to
see when the updates are more likely to be dropped. Figure 24
shows an example of our explanation. In this figure, the gray
boxes denote the Dropbox users and servers; the black boxes
denote the file (chunks), and the solid lines show the data flow
of file transmission. We also use dotted lines to mark the time
slots from to to t7'

In this example, user A is holding a file and starts to
synchronize this file at time to. This file is fully uploaded to the

Safe interval with
drop rate of zero

_ From SFU user
,From UBC user

10----~~-----~____,

9 _ From SFU client
8- LFrom UBC client

4-

~ ,-

n • • 4 6 8
I.

10 12 14 16 17
Updating interval (seconds) Updating interval (seconds)

Fig. 18: # of dropped updates with Fig. 19: # of normal updates from dif- Fig. 20: # of conflict versions from
ditlerent upload intervals (2 users) ferent users ditlerent users

60

55

::@' 50
C

845
CD
~40
co
2: 35
CD

~ 30

.2'
~ 25

130 180 230 280 0.5 1 1_5 2.5

X 104

4 5 6 7

RTT between client and server (ms) File size (Kbytes) # of Dropbox clients

Fig. 21: Safe interval under different
RTTs with file size of 5 MBytes (2
users)

Fig. 22: Safe interval under different
file sizes (2 users)

Fig. 23: Safe interval with more users

Dropbox EC2 server at time t3 and arrive at another user B at
time t7 . Note that the protocols between EC2 and S3 servers
are unknown. We therefore assume that the communication
between EC2 and S3 servers also starts at time t3. This is an
reasonable assumption because Figure 1 and Figure 6 indicate
that the gap between uploading and downloading stage is
indeed very small.

If another Dropbox user, say user C, is trying to upload the
same file between to and t3 to the EC2 server. This action
will trigger the generation of conflict versions since the EC2
server is receiving this file from user A. When these conflict
versions (or other normal updates) are further synchronized
between time t3 and t7 , they are very likely to be dropped.
This also explains why the safe interval is related to the RTT
and file size, as well as related to the total number of Dropbox
users.

Some earlier leaked information suggested that Dropbox
was planning to move some of their servers out of Amazon
and to upgrade to a hybrid service framework [30]. Although
this needs further confirmation and our measurement shows
that it has not been implemented, at least for now, a hybrid
service framework across more cloud platforms could be a
better alternative. It potentially makes Dropbox servers closer
to the users, which not only speeds up file synchronization
but also reduces the drop rate of users' updates. To validate
this, we have run experiment on Planet-lab nodes. We selected

20 nodes and put them into two groups. The first group
consists of users who are closer to the Dropbox servers (with
the maximum RTT being less than 90 ms and average hop
counts within 10). The second group consists of users who are
relatively far from the Dropbox servers (with the maximum
RTT being over 300 ms and average hop over 13). We test
the collaboration in these two groups separately on Dropbox.
Each user generates 10 updates with upload interval of 50 sec.
As shown in Figure 25, we can see that the drop rate can be
noticeably reduced when the Dropbox servers are closer to the
users. Previously, over 30% high RTT users sutler from a drop
rate over 50%; the drop rate decreases to less than 20% if the
users are closer to the servers. This observation suggests that a
single-data center-based solution might not be the best for the
cloud synchronization!collaboration systems; server placement
and selection play critical roles for further optimization.

VII. CONCLUSION

This paper investigated the protocols as well as the per
formance of Dropbox-like cloud file synchronization systems.
We particularly focused on the synchronization!collaboration
in such a system, and examined new issues and challenges due
to the cloud deployment.

Our study represents an initial attempt toward understanding
such a new generation of service. We expect that our findings
help with optimizing these systems as well as with migrating

o.

o.

o.

o.
LJ..
00.
()

o.

o.

o.

o.

1

9

8

7

6

5

4

3

2

t4 t5 t6 t7
I I I '
I I I I
I I I I I
~ Uploading stage + Send to 53 ~ I

I !E-- Downloading stage ~
~ Min Safe interval ~

Fig. 24: Analysis of safe interval

I I

,............

_ Clients with small latency
Slowest client: 90ms

1f----' _ Clients with large latency
Slowest client: 300ms

0
20% 40% 60% 80% 100% 0 20% 40% 60% 80%

Drop rate (out of 10 updates)

Fig. 25: Drop rate of ditlerent users

more Internet services to cloud platforms. There are many pos
sible future directions to explore. We are particularly interested
in efficient and scalable collaboration among the users with
decentralized cloud deployment, as well as examining other
similar applications to further generalize our findings.

REFERENCES

[1] Dropbox. [Online]. Available: https:llwww.dropbox.com/
[2] Gdrive. [Online]. Available: https://drive.google.com/
[3] Skydrive. [Online]. Available: http://windows.microsoft.com/skydrive/

home

9

[4] E. K. Lua. J. Crowcroft, M. Pias, R. Sharma, and S. Lim, "On the
Scalability of Data Synchronization Protocols for PDAs and Mobile
Devices," IEEE Network, 16(4) 22-28, 2002.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
"RAID: High-performance, Reliable Secondary Storage," ACM Comput
ing Surveys, 26(2), 1994.

[6] F. Liu, Y. Sun, B. Li, and X. zhang, "FS2You: Peer-Assisted Semi
Persistent Online Hosting at a Large Scale," IEEE Transactions on
Parallel and Distributed Systems, 21(10) 1442-1457, 2010.

[7] J. S. Ward, "A Performance Comparison of Clouds: Amazon EC2 and
Ubuntu Enterprise Cloud," Pmc. SICSA DemoFEST, 2009.

[8] A. Li, X. Yang, S. Kandula, and M. Zhang, "CloudCmp: Comparing
Public Cloud Providers;' Proc. USENIX Workshop on Hot TiJpics in
Cloud Computing (HotCloud), 2010.

[9] T. Benson, A. Akella, A. Shaikh, and S. Sahu, "CloudNaaS: A Cloud
Networking Platform for Enterprise Applications," in Proc. ACM SOCC,
20ll.

[10] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, "CloudMedia: When Cloud
On Demand Meets Video On Demand," in Pmc. IEEE ICDCS, 2011.

[11] S. Kannan, A. Gavrilovska, and K. Schwan, "Cloud4Home - Enhancing
Data Services with Home Clouds," in Proc. IEEE ICDCS, 2011.

[12] Y. Seung, T. Lam, L. E. Li, and T. Woo, "Seamless Scaling of Enterprise
Applications into The Cloud," in Proc. IEEE INFO COM, 2011.

[13] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, "Kingfisher: Cost-aware
Elasticity in the Cloud," in Proc. IEEE ICDCS, 2011.

[14] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, "Cloud Control with Distributed Rate Limiting," in Proc. ACM
SIGCOMM, 2007.

[IS] P. Singh, M. Lee, S. Kumar, and R. R. Kompella, "Enabling Flow
level Latency Measurements across Routers in Data Centers," in Pmc.
USENIX Workshop on Hot Topics in Management oj" Internet(HotICE)
,20ll.

[16] Sugarsync. [Online]. Available: https:!!www.sugarsync.com/
[17] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras,

"Inside Dropbox: Understanding Personal Cloud Storage Services," in
Pmc. ACM conference on Internet measurement conference (IMC),
2012.

[18] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai,
and Z. Zhang, 'Towards Network-level Efficiency for Cloud Storage
Services," in Proc. ACM SIGCOMM Internet Measurement Conference
(IMC), 2014.

[19] Dropbox Wiki. [Online]. Available: http://en.wikipedia.org!wiki!
Dropbox -service!

[20] R. Shea and J. Liu, "Understanding the Impact of Denial of Service At
tacks on Virtual Machines;' in Proc. IEEEIACM International Workshop
on Quality of Service (IWQoS), 2012.

[21] H. Wang, R. Shea, F. Wang, and J. Liu, "On the Impact of Virtualization
on Dropbox-Iike Cloud File Storage/Synchronization Services;' in Pmc.
IEEEIACM International Workshop on Quality of Service (TWQoS),
2012.

[22] Xen-based Amazon EC2. [Online]. Available: http://en.wikipedia.org!
wikil Amazon_Elastic_ Compute_Cloud!

[23] How to Use Dropbox as a Killer Collaborative
Work Tool. [Online]. Available: http://lifehacker.com/5792938/
how- to- use-drop box -as- a- killer -collaborati ve- work-tool/

[24] How do I recover old versions of files? [Online]. Available:
https:llwww.dropbox.comlhelp/1l/en!

[25] SVN. [Online]. Available: http://subversion.apache.org/
[26] Dropbox File History. [Online]. Available: https:llwww.dropbox.com/

helpllllen/
[27] Networking and Traffic Control On Linux. [Online]. Available:

http://tcng.sourceforge.neti
[28] Dropbox Anywhere. [Online]. Available: https:llwww.dropbox.com/

anywhere!
[29] trickle. [Online]. Available: http://monkey.org/~marius/pagesl?page=

trickle!
[30] Dropbox Move Out of EC2? [Online]. Available: http://www.quora.com/

Amazon- EC2IWhat -sites-moved- out -of-EC2- and- where- did- they- go!

