
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016 3439

On the Distance-Sensitive and Load-Balanced
Information Storage and Retrieval

for 3D Sensor Networks
Wenping Liu, Member, IEEE, Hongbo Jiang, Senior Member, IEEE, Jiangchuan Liu, Senior Member, IEEE,

Xiaofei Liao, Member, IEEE, Hongzhi Lin, and Tianping Deng, Member, IEEE

Abstract—Efficient in-network information storage and re-
trieval is of paramount importance to sensor networks and has
attracted a large number of studies while most of them focus
on 2D fields. In this paper, we propose novel Reeb graph based
information storage and retrieval schemes for 3D sensor networks.
The key is to extract the line-like skeleton from the Reeb graph
of a network, based on which two distance-sensitive information
storage and retrieval schemes are developed: one devoted to
shorter retrieval path and the other devoted to more balanced
load. Desirably, the proposed algorithms have no reliance on
the geographic location or boundary information, and have no
constraint on the network shape or communication graph. The
extensive simulations also show their efficiency in terms of sensor
storage load and retrieval path length.
Index Terms—3D sensor networks, complex-connected 3D set-

tings, information retrieval, information storage.

I. INTRODUCTION

W IRELESS sensor networks have emerged as an enabling
technology for many applications. Among them, we

focus on the kind of applications where sensor nodes perform
real-time monitoring or tracking, and delivering the generated
data to interested users. Despite the large amount of data col-
lected by sensor networks, often the high-level information such

Manuscript received June 30, 2015; revised November 15, 2015; accepted
January 18, 2016; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor P.-J. Wan. Date of publication February 08, 2016; date of current version
December 15, 2016. This work was supported in part by the National Natural
Science Foundation of China under Grants 61202460, 61271226, 61272408,
61322210, 61572219, and 61502192; the China Postdoctoral Science Founda-
tion under Grant 2014M552044; the China Scholarship Council (CSC) under
Grant 201308420188; the Natural Science Foundation of Hubei Province under
Grant 2014CFA040; the Science and Technology Plan Projects of Wuhan City
under Grant 2015010101010022; and the Fundamental Research Funds for the
Central Universities under Grant 2015QN073. (Corresponding author: Hongbo
Jiang.)
W. Liu is with the School of Electronic Information and Communications,

Huazhong University of Science and Technology, Wuhan 430074, China, and
also with the Hubei University of Economics, Wuhan 430205, China.
H. Jiang, H. Lin, and T. Deng are with the School of Electronic Information

and Communications, Huazhong University of Science and Technology,Wuhan
430074, China (e-mail: hongbojiang2004@gmail.com).
J. Liu is with the School of Computing Science, Simon Fraser University, BC

V5A1S6, Canada.
X. Liao is with the School of Computer Science and Technology, Huazhong

University of Science and Technology, Wuhan 430074, China.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2016.2523242

as a semantic event report (e.g., the presence of toxic substances,
or the current location of the giraffes in a national park, etc.)
which is collaboratively aggregated by multiple sensors is more
meaningful and of interest. At the same time, the distributed
users could pose queries into the network at any time requesting
such information, anticipating the results with low access delay
and traffic cost. As such, efficient in-network data storage and
retrieval is of paramount importance and has attracted a large
number of studies [5], [6], [21]–[25], [28], [29]. Most of the
studies, however, focus on 2D sensor field, despite the fact that,
more recently, there are growing interests for studies on 3D
sensor networks [1], [9], [16], [17], [28], [29]. For example, with
the advances in vehicle technology, acoustic and optical un-
derwater communication, etc., many underwater/underground
monitoring applications, e.g., mine reconnaissance [15], come
into reality with cost effectiveness [1], [2].
It it noted that, a desirable information storage and re-

trieval scheme should be distance-sensitive [6], [23] or
locality-aware [5]. That is, if the user requesting information
(or so-called consumer) is of distance from one source
maintaining a copy of information (or so-called producer),
the consumer is able to retrieve a replication at a cost of
without reliance on the consumer/producer location informa-
tion. This property is of our great interest since it implies that
the consumer travels along the path hitting a replication as soon
as possible, thereby introducing low access delay and traffic
cost. Please see Fig. 1. Nonetheless, it is not a trivial task and
only a few of existing schemes [23], [24] are distance-sensi-
tive. In addition to distance-sensitivity, the balanced storage
load [5], [23] also makes an information storage and retrieval
scheme more practical in that the nodes are supposed to be less
powerful with limited storage capacity in sensor networks. Pre-
vious studies envision that an uneven storage load distribution
will eventually cause high storage cost and traffic cost on a
small subset of nodes, thereby consuming their energy quickly.
In literature, however, geographical hash tables (GHT)

[21], [31] based schemes are distance-insensitive, possibly
resulting in a large traffic cost and retrieval (thus the in-network
aggregation for semantic reports) delay, and double-ruling
schemes [5], [23], [24] are distance-sensitive and retrieval-guar-
anteed, yet they are primarily targeted for 2D sensor networks,
and the naive extension of double-ruling scheme where the
replication plane and retrieval plane are utilized only works
in regular-shaped 3D networks. To that end, Yang et al. [28],

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3440 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Fig. 1. Illustrative examples on a genus-1 3D sensor network with one concave
tunnel, e.g., deployed underwater surrounding an island. (a) The cut graph ob-
tained by [28], [29]; (b) The replication curve (in red) of the producer (shown
by the solid eclipse) and the retrieval curve (in blue) of the consumer (shown
by the solid rectangle) based on the cut graph in (a); (c) Two minimum cuts (in-
dicated by the red polygons) are identified to construct the Reeb graph, which
are then used to extract the line-like skeleton (shown by the dashed curve) and
decompose the network into a set of level sets where the sizes of level sets are
almost balanced. The line-like skeleton intersects with each level set, and the
construction of the short retrieval path between two nearby nodes can be guided
by the line-like skeleton and the feature function of Reeb graph; (d), (e), and
(f) show the CDFs of retrieval path length ratio, storage load and retrieval load,
respectively.

[29] proposed to cut open the closed boundary surface of an
arbitrary shaped 3D sensor networks to a topological disk along
the cut graph (see Fig. 1(a)), followed by mapping it to an
aligned planar rectangle such that double-ruling scheme is ap-
plicable on boundary surface. Even though the cut-graph based
scheme [28], [29] is retrieval-guaranteed, we emphasize that it
is not distance-sensitive, as shown in Fig. 1(b). Fig. 1(d) de-
picts the cumulative distribution function (CDF) of the ratio
(so-called retrieval path length ratio) of retrieval path length
to the shortest path length between each of 10,000 randomly
selected pairs of consumers and producers. Besides, due to
the frequent usage of boundary nodes for data replication and
retrieval, the boundary nodes will be inevitably overloaded, as
illustrated in Figs. 1(e) and 1(f).
Pinpointing that the drawbacks of the cut-graph based scheme

in [28], [29] stem from the fact that it is merely based on the
cut graph of the boundary surface, and the topological infor-
mation of the interior of the 3D network is totally ignored, in
this paper, we strive to design distance-sensitive and load-bal-
anced information storage and retrieve schemes for 3D sensor
networks. In contrast to existing schemes, this work takes ad-
vantage of a powerful tool—the Reeb graph [20], which is a

global abstraction and has the capability of encoding the under-
lying network topology [8]. Also we are aware that the Reeb
graph can be used for line-like skeleton extraction [7], an im-
portant infrastructure to reflect the major topological features
of the network [16], [17]. It is noted that the line-like skeleton
intersects each level set at a skeleton point within that level
set, mimicking the retrieval and replication curve in 2D double-
ruling base schemes, and two nearby points fall within either the
same level set, or two adjacent level sets. Hence, on top of the
Reeb graph (i.e., the level sets) and guided by the skeleton, we
can offer retrieval-guaranteed, distance-sensitive and load-bal-
anced data storage/retrieval schemes for 3D sensor networks
with an arbitrary shape.
Note that existing boundary recognition algorithms either

require high node density [32], uniformly distributed net-
work [10], [11], or location/distance information [4], [33],
which potentially limit their applicability in practice; at the
same time, the geographical location information of each node
is costly to obtain. As such, in this paper, we first propose
to extract the Reeb graph without reliance on boundary and
location information. Specifically, we identify the minimum
cut(s),1 as shown in Fig. 1(c), and regard the minimum distance
(in hops) of a node to the cut(s) as the feature function such
that the nodes having the same distance to the cut(s) within
a connected component form a level set, and accordingly the
Reeb graph is generated. On top of the Reeb graph, the line-like
skeleton can be readily extracted.
With the computed Reeb graph and line-like skeleton, we

present two Reeb graph based DCS schemes for 3D sensor net-
works, entitled NREEDS and REEDS . In NREEDS, the pro-
ducer replicates its sensed data in the hashed level set given a
hash function, which all nodes are assumed to know, of a certain
content attribute, under guide of the Reeb graph and skeleton.
In addition, we allow the nodes of the producer's resident level
set (referred to as home level set) and the skeleton nodes on the
way of replication to store a pointer indicating where the data is
originated, such that the retrieval path will intersect the replica-
tion path as early as possible, and thus the distance-sensitivity
is ensured. The consumer then follows the direction parallel to
the line-like skeleton to retrieve data of interest, either from the
home or hashed level set, depending on which one is nearer to
the consumer. Interestingly, the double-ruling scheme is a spe-
cial case of NREEDS in 2D settings. Please see Fig. 2.
On the other hand, in REEDS, the producer replicates the

data only in a subset of the hashed level set. More specifically,
within each level set, a shortest path tree is constructed rooted at
the line-skeleton node. Then, the producer replicates its sensed
data within the least-loaded sub-tree rooted at a child of the
line-like skeleton node, of the hashed level set. Similar with
NREEDS, the nodes in home level set and the skeleton nodes on
the way of replication also store a pointer. To fetch the interested
data, the consumer follows the direction parallel to the line-like
skeleton until it arrives the home or hashed level set, and moves
directly to the producer guided by the pointer of the nodes in the
home level set or travels along a circle to the targeted sub-tree

1If the network is genus-0, only one minimum cut is needed. Each cut corre-
sponds to a level set in the Reeb graph.



LIU et al.: DISTANCE-SENSITIVE AND LOAD-BALANCED INFORMATION STORAGE AND RETRIEVAL FOR 3D SENSOR NETWORKS 3441

Fig. 2. Double-ruling based storage and retrieval in a 2D sensor network.
(a) The producer leaves the copies of its data along the horizontal replication
curve, and the consumer retrieves the data along the vertical retrieval curve;
(b) The double ruling based scheme is the special case of our algorithm in 2D
environments where each horizontal curve corresponds to a level set of , the
collection of the centers of horizontal curves serve as the skeleton, and each
retrieval path is nearly parallel to the skeleton.

in the hashed level set. Clearly, the retrieval path by REEDS
could be longer than NREEDS, while on the up side the storage
overhead by REEDS can be much less. That is, REEDS and
NREEDS provide a tradeoff between the retrieval path length
ratio (thus the time cost) and storage overhead. Desirably, both
NREEDS and REEDS are distance-sensitive and load-balanced
as compared with the scheme in [28], [29]. Further, they do not
rely on the boundary information as the scheme in [28], [29]
does, and thus have wider applicability.
The rest of the paper is organized as follows. In Section II, we

introduce themotivations and preliminaries of the paper, and de-
tail the algorithms in Section III. We validate the proposed two
algorithms via extensive simulations in Section IV, followed by
briefly introducing the related work in Section V. Finally, we
conclude the paper in Section VI.

II. MOTIVATIONS AND PRELIMINARIES

The Reeb graph of an object has been envisioned
as a powerful tool for topology-based shape matching [3], and
line-like skeleton extraction [7], etc., in computer graphics
and computational geometry. In continuous domain, given a
smooth function (a.k.a feature function) defined on
object , the Reeb graph of is generated by continuously
contracting to a point each connected component of level sets,
i.e., the set of points with equal feature function value. In Reeb
graph, the vertices are critical points of function (i.e., minima,
saddles and maxima) and the edges are the arcs connecting
two adjacent critical points. A loop in the Reeb graph indicates
a tunnel, or hole, of the underlying object, and accordingly,
the Reeb graph of a genus- object has loops. Please see
Figs. 3(a)–3(c) for some intuition. As mentioned earlier, the
Reeb graph can be used for line-like skeleton extraction, where
each line-like skeleton point is approximately computed as the
center of a level set, which implies that the derived line-like
skeleton intersects with each level set. Thus, in 3D sensor
networks, if a sensor node replicates its sensed data within
(a part of) the level set, and the consumer retrieves the data
along the direction almost parallel to the line-like skeleton as
in [16], [17], the retrieve can be guaranteed. Meanwhile, when
the producer and the consumer are nearby, the retrieval path

Fig. 3. Illustrative examples on a genus-1 3D object in continuous domain. The
tunnel is mapped to a loop in the Reeb graph, where critical points are marked
as solid rectangles. (a), (c) The Reeb graph w.r.t height function
and , respectively, where the shaded areas represent the level sets;
(b), (d) The line-like skeleton (indicated by the thick curve) based on the Reeb
graph in (a) and (c), respectively.

will not be very long. Further, if the Reeb graph is properly
constructed such that the sizes of the level sets are roughly the
same, the storage load can be balanced. Hence, based on the
Reeb graph, we can design a load-balanced, retrieve-guaran-
teed, and distance-sensitive data storage and retrieval protocol,
which is the goal of this paper.
To achieve this goal, the key is to correctly construct the Reeb

graph. This is not straightforward since traditionally, the Reeb
graph is pose dependent. That is, it will change with the rota-
tion of the object, i.e., with different feature functions, and the
line-like skeleton extracted based on different feature functions
can be very different (see Figs. 3(b)–3(d)). Especially, when ap-
plied for data storage, the constructed Reeb graph should better
not incur large level sets, otherwise the storage load will be
imbalanced. For instance, in Figs. 3(a)–3(c), there are some
level sets with relatively large areas, and accordingly, the nodes
corresponding to these level sets will be overloaded. As such,
the selection of the feature function is of crucial importance
to understand and represent the topology of the object, and to
maintain a balanced storage load. This will be much more chal-
lenging in sensor networks since the boundary and geographic
location information are often unknown.
Our approach is to identify the minimum cut(s) of the under-

lying 3D network. Visually, a minimum cut is a level set with a
small volume (in continuous domain, e.g., the level sets in the
two wings of Fig. 3(a)) or node number (in sensor networks). If
we select the distance of a node to the minimum cut(s) as the
feature function, the volume (or size) of the level sets will be
evenly distributed (shown in Fig. 4(a)) and thus the imbalance
of storage load in 3D sensor networks can be alleviated.2 We
first formally introduce the definition of the cut and the weight

2One might argue that the feature function can be simply regarded as the dis-
tance of each point to an arbitrarily selected point. This method, however, as
one can image, will result in an unevenly distributed level set size, and conse-
quently, an imbalance of storage load.



3442 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Fig. 4. (a) An illustration in continuous domain. The minimum cut based Reeb
graph (lower part) in continuous domain. Two minimum cuts in the two wings
of Fig. 3(a) are used to construct the feature function; (b) The cut (bounded by
the green dashed polygon) and the minimum cut (bounded by the red dashed
rectangle) between source and destination .

of a cut, followed by the formulation of minimum cut problem
(MCP).
Definition 1: Let be a graph where denotes

the set of vertices and is the set of edges. Given two terminal
nodes, i.e., the source and the destination , the cut be-
tween and is a partition of into two disjoint parts
such that .
Clearly, the cut between and is by no means unique: there

can be an arbitrarily large number of cuts separating two ter-
minals into mutually exclusive parts. In this paper, we propose
to identify the so-called minimum cut between pairwise ter-
minals as it is often unique or easy to identify. We denote by

the th cut and the set of cuts , i.e.,
where is the number of cuts.

Definition 2: The weight of cut , denoted by ,
is the sum of the weights of boundary edges (e.g., the length of
boundary edge) in .
Definition 3: Given two terminal nodes of graph , the

minimum cut problem is to identify a cut
such that .
Fig. 4 depicts a cut and the minimum cut between and . Ob-

viously, for a genus-0 3D object, i.e., without tunnels or holes,
one minimum cut is enough to block the terminals; and for an
object with tunnels, there are minimum cuts. How-
ever, the minimum cut identification is rather challenging since
MCP cannot be solved in a linear time [26], and in sensor net-
works, the geographical location information and boundary in-
formation are often both unknown. To tackle this challenging
problem, in this research, we will present a lightweight and dis-
tributed algorithm to approximate the minimum cut(s), which
will be detailed in Section III.
With the identified minimum cut(s), each node computes its

hop count distance to the nearest minimum cut. The distance
function thus serves as a feature function to establish a Reeb
graph. That is, the vertices are the critical nodes, i.e., the min-
imum, maximum or saddles, of , and the edges link two adja-
cent critical nodes; the nodes in a connected component with the
same feature function form a level set. Note that the nodes in the
minimum cut also form a level set since their feature function
values are all defined to be zero.

Fig. 5. An illustration of terminals and the minimum cut in a cubic. The shaded
areas represent the minimum cut between the terminals. (a) The improperly se-
lected terminals and the minimum cut; (b) The right terminals on the
shortest path between two farthest nodes and the minimum cut.

As in a genus-0 network, the geodesic shortest paths between
the nearest boundary nodes of a line-like skeleton point decom-
pose the network into more than one connected component,
mimic of the boundary of each level set, thus, we can extract
the line-like skeleton after the construction of Reeb graph. In
Section III, we will detail the implementation of pose-indepen-
dent Reeb graph construction, line-like skeleton extraction, and
on top of them, the design of load-balanced, distance-sensitive
storage and retrieval protocols.

III. THE REEB GRAPH BASED INFORMATION STORAGE
AND RETRIEVAL

In this section, we introduce the details of the pose-indepen-
dent Reeb graph construction, line-like skeleton extraction, and
their applications for information storage and retrieval. We do
not require location or boundary information, as they might be
difficult to obtain for such scenarios as underground or under-
water environments, etc. Generally speaking, our algorithms
have three building blocks: Reeb graph construction, line-like
skeleton extraction, and information storage and retrieval
implementation.

A. Reeb Graph Construction

To construct the pose-independent Reeb graph of a 3D sensor
network with an arbitrary shape, the key is to select the right
feature function. Our work is based on the minimum cut(s), as
mentioned in Section II. Now we introduce the details of min-
imum cut identification and hereon the Reeb graph construction.
We first consider the 3D sensor network without holes, i.e.,

genus-0 network. To find the minimum cut, the selection of ter-
minals is important as the improperly selection will result in a
Reeb graph not applicable for a protocol with lightweight and
balanced storage loads (see Fig. 5(a)). Our approach has the fol-
lowing three phases.
1) Initialization Phase: One randomly selected node initi-

ates a network-wide flooding; the farthest node, say , marks
itself and then broadcasts a message to build a coarse Reeb
graph where the distance to serves as a feature function and the
vertices are the critical nodes corresponding to the local/global
minimum, local/global maximum or saddle(s) of the distance
function. Note that this coarse Reeb graph may cause an un-
evenly distributed level set size, as mentioned earlier, and thus



LIU et al.: DISTANCE-SENSITIVE AND LOAD-BALANCED INFORMATION STORAGE AND RETRIEVAL FOR 3D SENSOR NETWORKS 3443

cannot be applied to achieve storage load balance of sensor
nodes.
Recall that our approach is to locate the minimum cut be-

tween two terminal nodes which can be identified as follows. To
that end, an arbitrary node farthest from (e.g., ) is selected
to build the shortest path between and , and the terminals

can be any two nodes on the shortest path,3 as illustrated
in Fig. 5(b). We denote by the shortest path between
and . Then, the nodes on , except and , mark as vis-
ited, followed by building a new shortest path between and
without using the visited nodes. The process is repeated until

there is no path connecting and among the unvisited nodes.
Denote by the th shortest path between and by
using unvisited nodes, where represents the (global)
shortest path . Note that there might be multiple shortest
paths with an equal length. With a little abuse of notation, we
still denote them as .
2) Minimum cut Identification: According to the

Definition 3, a minimum cut is the cut with the smallest weight,
i.e., the length of boundary edges. To that end, we locate the
boundary shortest paths defined as follows.
Definition 4: A shortest path is a boundary shortest path if it

intersects with the network boundary.
Clearly, the identification of boundary shortest path is simple

when boundary information is given, while in our boundary-
free case, it is very challenging. Note that a boundary shortest
path often has a large deviation from the shortest path. Thus, we
propose a metric named deviation degree of a shortest path as
follows.
Definition 5: The deviation degree of a shortest path

, denoted by , is the maximum of hop count
distance between nodes on and those on .
Namely,

(1)

where represents the distance between and .
Lemma 1: For two shortest paths , if ,

then the length of is larger than that of , and
vice versa.
Lemma 2: For two different shortest paths and

, if the length of is larger than that of ,
then .

Proof: As stated in Lemma 1, if the length of is
larger than that of , there is a larger void when building

, which implies the diameter of the void of is
larger than . Hence, .
Theorem 3: A shortest path with a locally maximal

deviation degree is a boundary shortest path.
Proof: We prove this by contradiction. If is not a

boundary shortest path, then there is no boundary nodes, which
implies that there is at least one shortest path .
According to Lemma 1, the length of is larger than that

3We do not necessarily select as terminals because, as can be seen in the
following minimum cut identification process, the farther the terminals sepa-
rate, the more cost for the shortest path construction. Thus, we can select two
nodes having a separation of, e.g., 4 or 5 hops, to reduce the time and message
complexity.

of , and according to Lemma 2, the deviation degree
which contradicts with the assumption

that is locally maximal.
With Theorem 3, the boundary shortest paths can be easily

identified in a distributed fashion. However, the minimum cut
identification is not straightforward, as there are many nodes
on the boundary shortest paths, and not all of them consists of
the minimum cut; our strategy is to identify some key nodes
(referred to as key minimum cut nodes) on the boundary shortest
paths and also on the minimum cut.
Definition 6: A node is said to be a key minimum cut node if

1) it locates in a boundary shortest path, and 2) the ratio of the
number of its unvisited neighbors to that of visited neighbors is
locally minimal.
After identifying some key minimum cut nodes, we conduct a

greedy operation to connecting these nodes trying tomove along
the boundary paths, and the minimum cut between terminals can
be achieved.
3) Reeb Graph Establishment: The minimum cut is used to

define a feature function, hereby construct the Reeb graph.More
specifically, the nodes in the minimum cut issue simultaneously
an in-network flooding, and each node computes its distance to
the minimum cut. The distance of a node then serves as a feature
function to construct a Reeb graph where, a vertex is a critical
points of , an edge connects two adjacent critical points, and
a level set is a connected component of nodes with the same
distance function.
For the genus- network, the Reeb graph construction can be

done in a similar way. First, in the initialization phase, the coarse
Reeb graph with vertices is constructed. Between each
edge of the Coarse Reeb graph, we conduct the minimum cut
identification process in the above-mentioned way, and accord-
ingly, minimum cuts can be obtained. Then, each node
computes its distance to the nearest minimum cut; the nodes
within a connected component and having an equal distance
function value form a level set.

B. Line-Like Skeleton Extraction
The Reeb graph can be used for approximating the line-like

skeleton point, as mentioned earlier in Section II. Recall that
the feature loop(s), formed by the geodesic shortest path(s) be-
tween the feature nodes, of a line-like skeleton point can de-
compose the boundary into more than one connected compo-
nents [16], [17] in a genus-0 network. The feature loop, together
with the interior nodes nearest to the same feature loop, can be
naturally treated as a level set here. In this subsection we will
present the details of line-like skeleton extraction based on the
constructed Reeb graph.
As the line-like skeleton is locally symmetric to the under-

lying network, the line-like skeleton node should locate medi-
ally in the level set. Thus, in each level set, we simply find its
center in the following way. Initially, one node, say , is ran-
domly chosen to initialize a flood within the level set, and the
farthest node then floods in the level set to locate its far-
thest node, and so on. The process continues for a few rounds,
and the node, with the largest number of shortest paths passing
through it, identifies itself as the center of the level set, which
is approximately regarded as the line-like skeleton node of this



3444 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

level set. Eventually, according to their feature function values,
these skeleton nodes are orderly connected to derive the line-
like skeleton.

C. Information Storage and Retrieval Implementation

Now we propose to apply the constructed Reeb graph and
extracted line-like skeleton for the design of load-balanced and
distance-sensitive information storage and retrieval protocol for
an arbitrarily shaped 3D network. Note that each level set is as-
sociated with a unique edge of Reeb graph, i.e., locates between
two adjacent critical nodes. We thus assign a unique name for
each level set based on the feature function value and the asso-
ciated edge, and let each node store the Reeb graph such that
they know where to replicate or retrieve data. We first present a
naive Reeb graph based algorithm, named NREEDS, followed
by an alternative approach REEDS.
1) Naive Algorithm: NREEDS: A simple and intuitive

strategy based on the Reeb graph works as follows:
Step 1: Information Storage: Given a hash function

where denotes the set of possible content at-
tributes and the set of named level sets, the data with the
same content attribute is hashed to the same level set (referred
to as hashed level set), disregarding where the source is. Specif-
ically, each producer replicate its data within the hashed level
set in the following way.
Assume the network has been decomposed into

level sets. Each skeleton node first broadcasts a message within
its resident level set , whereafter every node

keeps the record of its distance to the skeleton node, denoted
by . Let . Then the distance

is normalized to be . The producer , say in
, first broadcasts a message within its resident level set (re-

ferred to as home level set) about its content attribute and other
nodes in stores a pointer about the content attribute and
resident level set name. 1) If the home and hashed level set fall
within the same edge of Reeb graph, first travels to an inter-
mediate node satisfying that

where denotes the feature function value
of any node in the hashed level set, and

where denotes the neigh-
bors of . Afterwards, sends to the skeleton node of its level
set a pointer indicating the content attribute and the source,
while keeps traveling to intermediate node until it
hits the hashed level set, say at . Finally, replicates the re-
ceived content within the hashed level set. 2) If the home and
hashed level set share different edges, then first finds the other
end (i.e., critical node) of the edge closer to the hashed level
set based on the locally stored Reeb graph, and then travels to
the level set corresponding to this end in above-mentioned way,
until it reaches a level set locating in the same edge of the hashed
level set. Then, travels to the hashed level set since they are
now associated with the same edge. Note that the hashed level
set and the producer might separate faraway. In this case, if the
consumer is close to the producer but fetches the data from the
hashed level set, the retrieval path can be very long and thus the

protocol is not distance-sensitive. As such, to ensure the dis-
tance-sensitivity, we let the nodes residing in the home level set
and the skeleton nodes of the level sets on the replication path
store a pointer indicating the content attribute and source.

Step 2: Information Retrieval: Similar with [5], we assume
that each node is aware of the hash function of a certain data type
such that they know where to retrieve the data of its interest, and
also we assume that the consumer does not reside in the home
or hashed level set, as in this case, the retrieval is rather simple.
Further, here we only consider the case that the consumer lo-
cates in the same edge of the hashed level set for ease of state-
ment, as the retrieval process can be similarly done in the other
case. Then there are three possible cases of a consumer's rela-
tive position: between home and hashed level set, not between
them but nearer to the hashed level set (i.e., hashed level set
sided), or home level set sided. When the consumer retrieves
the interested data, it first checks whether the skeleton node of
its resident level set has a pointer or not. If yes, it must locate be-
tween the home and hashed level set, and thus retrieves the data
from the closer level set according to the pointer information4
under the guide of the skeleton and feature function value as
described in step 1; otherwise, the consumer travels toward the
hashed level set. For each intermediate node on the way of the
travel, if there is a pointer, showing that the consumer is actually
closer to home level set where the current intermediate node re-
sides, the consumer can easily find the producer and fetch the
data by using the pointer information. Otherwise, the consumer
will keep moving until it reaches the hashed level set and return
when the data is fetched.
Clearly, protocol has the following properties:
Proposition 4: NREEDS is retrieval guaranteed, distance-

sensitive(i.e., if the consumer locates near the producer, the re-
trieval path will be short as well), and load-balanced.

Proof: As the line-like skeleton surely intersects with each
level set, the retrieval is always guaranteed. next we prove its
distance-sensitivity. If the consumer locates between the home
and hashed level set, then there must be a pointer stored in the
skeleton node of its resident level set. The consumer can fetch
the data either from the producer, or the nodes in hashed level
set, based on the difference of feature function values of the
consumer and the producer or the hashed level set. As such, the
retrieve path will not be long if the consumer and producer are
nearby. If the consumer does not locate between the home and
hashed level set, it will fetch the data from the nearer one, which
again shows that the retrieve path will be not long, and thus the
protocol is distance-sensitive.
As the distance of a point to the skeleton (or, the distance

to the skeleton point in its level set) is normalized, the pro-
tocol can avoid boundary nodes' overloading and thus balance
the retrieval load. Besides, the storage load is bounded by

, and each level set has an almost
equal size by construction in most cases. Therefore, the storage
and retrieval load can be balanced.

4The consumer knows the feature function value of the hashed level set, the
producer and itself, thus it is easy to know who is closer.



LIU et al.: DISTANCE-SENSITIVE AND LOAD-BALANCED INFORMATION STORAGE AND RETRIEVAL FOR 3D SENSOR NETWORKS 3445

2) An Alternative Approach: REEDS: Despite of these prop-
erties of NREEDS, the undesirability is that each node replicates
the data within the hashed evel set which might result in some
nodes heavily loaded if there are large level sets. Next we in-
troduce an alternative called REEDS which evenly distributes
the storage overhead. The key is to let a producer replicate the
data in a small part of the level set, i.e., a sub-tree, instead of the
whole level set.

Step 1: Information Storage: First, the line-like skeleton
node of each level set broadcasts a message within the level
set to build a shortest path tree, hereby a number of sub-trees
rooted at each child of the skeleton node. At the same time,
each child node of a skeleton node stores the storage load of
its sub-tree. Similar with NREEDS, each data is first hashed
to the hashed level set based on a hash function of the content
attribute. But here the producer only replicates its information
within the sub-tree with the smallest load. In addition, as de-
scribed in REEDS, each node stores its normalized distance to
the root skeleton node, and the nodes residing in the home level
set and the skeleton nodes on the way of replication stores a
pointer to show where the data is replicated.

Step 2: Information Retrieval: The consumer first travels
to the hashed level set of producer in the same way as in
NREEDS,5 and hits the hashed level set, say at . Then, con-
ducts a circle searching operation within the level set to reach
the sub-tree of a child of the skeleton node in the hashed level
set. That is, travels to the best intermediate node such that
1) and locate in different sub-trees, 2)

, 3) , and 4) has not
visited the resident level set of ; the process is repeated until
travels to the targeted sub-tree.
As the sub-tree size is much smaller than the level set size, no

nodes will be heavily loaded. If the broadcasted message travels
roughly at the same speed, each sub-tree will be as thin as a line.
In the end, the balance of storage load can be achieved. Besides,
the retrieval can also be guaranteed since can successfully
reach the hashed or home level set and each level set is regularly
shaped such that circle searching operation will not fail. Hence,
we have
Proposition 5: REEDS is retrieval-guaranteed, storage and

retrieval load balanced, and distance sensitive.
To highlight the difference between REEDS and NREEDS,

we first define the metric named Load Ratio as follows.
Definition 7: Let the network of size be decomposed into

level sets, and be the size of the th level set
. Then the load ratio of nodes in to that in ,

denoted by , is defined as

(2)

Theorem 6: The upper bound of the storage load ratio by
NREEDS is not smaller than that by REEDS.

Proof: We prove this in continuous domain. Let
be the level set with the largest and

smallest area (since each level set is a 2-manifold sheet),

5If hits the home level set, it can fetch the data from by NREEDS.

and denote the maximal distance of the line-like
skeleton point of and to other nodes in and ,
respectively. Clearly, is bounded by a disk centered at the
line-like skeleton point of with radius , and the disk
centered at the line-like skeleton point in with radius
is totally included in . Hence, the storage load ratio by
NREEDS has an upper bound of , and the upper
bound by REEDS is . Since ,6 we have

, which proves the claim.
Corollary 7: Let be the level set with the

smallest area. For each level set , the load ratio by
NREEDS is no smaller than that by .
Proposition 8: REEDS ismore storage-balanced and less dis-

tance-sensitive than REEDS in irregular-shaped networks.
Proof: In most cases except the cylinder-shaped network,

the network is often irregular-shaped, and the sizes of the level
sets are not always the same. Hence, generally speaking, the
upper bound of REEDS is much smaller than NREEDS, and
the difference of the storage load between two nodes in different
level set is larger for NREEDS than that for REEDS. In addition,
the retrieval path by REEDS includes the path by NREEDS and
the greedy shortest path built in the last mile. That is, the re-
trieval path length is larger than NREEDS, implying that it is
less distance-sensitive.
Thus, by proposingNREEDS andREEDS, we offer a tradeoff

between storage load balance and retrieval path length, i.e., dis-
tance-sensitivity.

D. Complexity Analysis
Theorem 9: The algorithms have an time and message

complexity where denotes the network size.
Proof: The algorithms consist of three steps.

1) During the first step, the coarse Reeb graph construction
and the selection of terminals both incur an com-
plexity. If the terminals are very close, e.g., four hops away,
the minimum cut identification is only conducted locally,
incurring a constant complexity for eachminimum cut, and
at most complexity in total. To construct the feature
function, each node computes its distance to the minimum
cut(s), which can be done via a simultaneous flooding from
the minimum cut(s) such that the complexity is linear to the
network size.

2) For the second step, to extract the line-like skeleton, each
level set computes its center, i.e., the line-skeleton node.
As the size of each level set is constant compared with the
network size, this step incurs a constant complexity within
a level set and at most in total. Since the skeleton
node number is far less than , the connection of line-like
skeleton nodes has a complexity of at most .

3) Finally, for storage and retrieval, the construction of tree
is conducted within each level set. Each node is affiliated
with one skeleton tree, and therefore this step only incurs
an complexity in total.

In summary, both NREEDS and REEDS have a linear time
and message complexity.

6The equality holds only when the network is cylinder-shaped everywhere.



3446 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Fig. 6. The line-like skeleton extraction under 3D sensor networks with different shapes, where boundary information of each scenario is unknown. The curves
represent the line-like skeleton. (a) Spiral, 3,464 nodes, avg. deg 15.42; (b) Headset, 3,260 nodes, avg.deg 16.94; (c) Y, 2,475 nodes, avg. deg. 18.22; (d) S, 2,244
nodes, avg. deg 17.25.

IV. PERFORMANCE EVALUATION
Previously we have presented Reeb-graph based data-centric

storage and retrieval protocols, named NREEDS and REEDS.
In this section, we will examine their performance via exten-
sive simulations. We first show the line-like skeleton computed
based on the construction of the boundary-free and pose-inde-
pendent Reeb graph. Then, to quantitatively measure the per-
formance of NREEDS and REEDS, we conduct a large number
of data storage and retrieval simulations on different scenarios,
and compare with the cut-graph based scheme (referred to as
Cut Graph) in [28], [29].

A. Simulation Setup
In our simulations, sensors are randomly deployed in the

sensing space; each sensor has the same communication radio
range, and the communication radio model follows by default
the unit disk graph (UDG). We do not assume the boundary
information or geographic location information.
In the data storage and retrieval simulations, we randomly

select 10,000 pairs of producers and consumers; for each pair-
wise producer and consumer, the producer first replicates its
data within the replication plane, i.e., the hashed level set (in
NREEDS) or replication sub-tree (in REEDS).
For fair comparison, to implement the Cut-graph algo-

rithm [28], [29], we manually detect the boundary of the 3D
networks; after a triangulation process, the boundary surface
is mapped to a rectangle virtual coordinate system, whereby a
simple 2D double rulings applies; an interior node then follows
along the greedy path to the boundary and conducts the 2D
double-ruling based scheme to store and retrieve data.
For quantitative comparison, we use two metrics: length ratio

and storage load. The length ratio of a retrieval path is the ratio
of the retrieval path length to the length of the shortest path
between a pair of producer and consumer, and the storage load
of a node is the number of packets the node received and stored
locally; for comparison, we compute the distribution of storage
load and retrieval length ratio by NREEDS, REEDS and Cut
Graph, respectively.

B. Simulation Results
Line-Like Skeleton Extraction: We first evaluate the perfor-

mance of the Reeb-graph based line-like skeleton extraction,

where the geographic location and boundary information are
all assumed to be unknown. Fig. 6 presents the results of the
algorithm under four different 3D scenarios, i.e., Spiral (see
Fig. 6(a)), HeadSet (see Fig. 6(b)),Y (see Fig. 6(c)) and S (see
Fig. 6(d)). From Fig. 6(a), we see that there are five zig zags,
and the extracted line-like skeleton by our algorithm correctly
reflects these four sudden turns and locate medially inside the
network, accurately capturing the main topological features
of the underlying network. From Figs. 6(b)–6(d), we observe
the similar results. That is, the extracted line-like skeletons are
all locally symmetric to the underlying 3D networks, showing
that our algorithm can correctly extract the line-like skeleton,
without reliance on the boundary information.
Performance Comparison of Information Storage and Re-

trieval: Fig. 7 depicts the comparison studies on data storage
and retrieval path length by conducting three algorithms,
namely Cut Graph, NREEDS and NREEDS, on the four
networks in Fig. 6. For the Spiral network (see Fig. 7(a)),
we can see that most of the retrieval paths by REEDS and
NREEDS have a small length ratio to the shortest path (see
row 1, Fig. 7(a)). More specifically, among the 10,000 pairwise
producers and consumers, there are more than 9,500 paths
having a length ratio less than 2, where NREEDS produces a
slightly smaller length ratio than REEDS. This is because after
hitting the home or hashed level set, REEDS conducts a greedy
operation to locate the least-loaded sub-tree. But we also can
see from Fig. 7(a) (row 2), that the storage load of REEDS is
much smaller than NREEDS. In the network with 3,464 nodes,
about 3,000 nodes have a storage load smaller than 50, while
about 2,000 nodes by NREEDS store less than 50 packets.
Clearly, compared with REEDS, NREEDS produces a small
length ratio but the storage load is relatively larger since it allow
the producers to replicate their data within the hashed level sets,
instead of the sub-trees as in REEDS. In other words, NREEDS
and REEDS provide for us a tradeoff between retrieval length
ratio and storage load. On the other hand, the result by Cut
Graph is the worst. Only a few retrieval path have a length ratio
smaller than 2, and about 5,500 retrieval paths have a length
ratio smaller than 4. This is because each interior node has to
firstly follow the greedy path to the nearest boundary node,
and then applies double ruling on the boundary surface; even
though the producer might be very close to the consumer, the



LIU et al.: DISTANCE-SENSITIVE AND LOAD-BALANCED INFORMATION STORAGE AND RETRIEVAL FOR 3D SENSOR NETWORKS 3447

Fig. 7. The performance comparison under 3D sensor networks in Fig. 6. Row 1: length ratio distribution; Row 2: storage load distribution. (a) Spiral; (b) Headset;
(c) Y; (d) S.

TABLE I
THE COMPARISON STUDY OF THE AVERAGE LOAD PER NODE

retrieval path could be very long, as mentioned in Section I.
Accordingly, the storage load of boundary nodes, together
with the interior nodes nearest to the boundary nodes, will be
very large, which is confirmed by our experiment (see row 2,
Fig. 7(a)). For the other three investigated scenarios, we see the
similar trend: NREEDS provides a smallest length ratio while
the storage load by REEDS is the smallest; Cut Graph delivers
the worst results in terms of both length ratio and storage load.
Table I presents the comparison results of the three algorithms

on the average load per node. As expected, we observe that the
average load per node by REEDS is smaller than REEDS and
Cut Graph. Counter-intuitively, the average load per node by
NREEDS is larger than but still comparable with Cut Graph.
This is because in the four investigated scenarios, the networks
all exhibit a long corridor shape, resulting in a long replica-
tion curve in the virtual planar rectangle by Cut Graph, and the
number of nodes on the replication curve is comparable with the
level set size.
Overall, both NREEDS and REEDS can guarantee retrieval

delivery, even without reliance on boundary information or
mesh structure like Cut Graph. NREEDS is more distance-sen-
sitive while REEDS yields more balanced and smaller storage
load. They provide a tradeoff between length ratio (or distance
sensitivity) and storage overhead, both of which outperform
Cut Graph.

V. RELATED WORK

In this section, we briefly introduce related work of dis-
tributed data-centric storage/retrieval (DCS) protocols with
good data persistence in 2D/3D sensor networks, and classify

them into two categories: GHT-based [18], [21], [31] and
double ruling-based schemes [5], [19], [23], [24], [28]–[30].

A. GHT-Based DCS Protocols
Ratnasamy et al. [21] first proposed to exploit the geograph-

ical hash tables (GHT) for data storage in 2D sensor networks.
In GHT, the data item generated by a node (producer) is mapped
to a position, and the node (named home node) closest to the po-
sition stores the data. For data persistence, the data is also repli-
cated locally on rendezvous nodes such that no sensed data will
be lost and the hotspot of communication can be avoided. Then,
the nodes (consumers) interested in the data of a home node re-
trieve the data according to GPSR [12] policy. The performance
of GHT in [21], primarily designed for 2D sensor networks,
heavily relies on the computed bounding box, and it suffers from
the irregularity of a complex network if the bounding box is not
accurately computed based on the convex hull, resulting in the
boundary nodes being overloaded. To this end, Zhou et al. [31]
proposed to identify the bottleneck(s) of 3D sensor networks by
computing the injectivity radius of the boundary nodes which
implies the narrowness of an interested region of the boundary
surface, and then compute the bounding box to improve the
performance of GHT. The undesirability is that when a com-
plex network has no bottleneck, it is incapable of computing
an accurate bounding box. Noticing that the irregularity of the
boundary surface at the concave nodes will bend the surface
skeleton, Liu et al. [18] proposed to locate the concave nodes by
extracting the surface skeleton, on top of which the computed
bounding box can be very tight. Note that GHT is distance-in-
sensitive, i.e., the retrieval path between consumer and producer
with a short distance may be long, possibly resulting in a large
retrieval delay and traffic cost. As a result, the in-network ag-
gregation for semantic reports suffers from a significant access
delay.

B. Double Ruling-Based DCS Protocols
Sarkar et al. [23], [24] developed a double-ruling scheme

where a producer leaves copies of the sensed data along a



3448 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

replication curve, and the consumer retrieves the data fol-
lowing a retrieval curve until it hits the replication curve;
theoretically, the double-ruling scheme is distance-sensitive
and retrieval-guaranteed. However, such a double-ruling
scheme is prone to fail for a network with multiple holes.
Fang et al. [5] proposed a divide-and-conquer policy to solve
this problem. After partitioning the network into tiles, a
two-level routing scheme is designed by combining the GHT
(when across tiles) and the double ruling scheme (if within the
same tile). Despite their success in 2D environments, however,
the double ruling based schemes in [5], [23], [24] are difficult
to utilize in 3D spaces, and the naive extension of them often
does not work well in irregular-shaped 3D sensor networks.
Recently, Luo et al. [19] proposed to parameterize a 3D net-
work volume to a solid cube, and design a quorum system
accordingly. Clearly, such a volumetric parametrization-based
double-ruling scheme is only applicable for the network topo-
logically equivalent to a solid cube, and cannot apply for the
practical scenarios where the volume usually cannot be mapped
to a solid cube. Zhang et al. [30] proposed to marry the quorum
system with harmonic fields such that it can work for complex
3D networks with holes. Yang et al. [28], [29] conducted a
3D-capable work to cut open the closed boundary surface of
the 3D sensor networks to a topological disk along the cut
graph of the surface, and then map the boundary surface to
an aligned planar rectangle where each boundary node has a
virtual coordinate such that double-ruling scheme is applicable
on boundary surface. Afterwards, each producer first sends
the data to its nearest boundary node and then replicates the
data along the horizontal line of the virtual planar rectangle;
the consumer follows the sequence of ID to the boundary
surface and retrieves the data along the vertical line. Such a
cut-graph based scheme in [28], [29] is retrieval-guaranteed yet
load-imbalanced and distance-insensitive: as the double ruling
mainly applies on the boundary surface, the boundary nodes
are supposed to be overloaded, and when the producer and
consumer are nearby (e.g., on opposite sides of the line-like
skeleton), the retrieval path can be arbitrarily long.

VI. CONCLUSIONS

In this paper, we study the problem of information storage and
retrieval for 3D sensor networks, and proposed two novel Reeb
graph based schemes, named NREEDS and REEDS, without
reliance on the geographic location or boundary information.
These two schemes are both distance-sensitive and load-bal-
anced while they provide a tradeoff between the length ratio
(thus the time cost) and the storage overhead. NREEDS pro-
duces a shorter retrieval path yet heavier (and slightly less bal-
anced than REEDS) storage load, and REEDS yields a slightly
longer retrieval path but the storage load will be much smaller
and more balanced than NREEDS.
In future, we would like to explore more applications based

on the Reeb graph of 3D sensor networks such as network seg-
mentation [8], [9], -area coverage problem [13], [14], and path
planing for mobile sinks [27], etc.

REFERENCES

[1] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic
sensor networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3,
pp. 257–279, 2005.

[2] S. Basagni et al., “Maximizing the value of sensed information in un-
derwater wireless sensor networks via an autonomous underwater ve-
hicle,” in Proc. IEEE INFOCOM, 2014, pp. 988–996.

[3] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, “Reeb graphs
for shape analysis and applications,” Theor. Comput. Sci., vol. 392, no.
1–3, pp. 5–22, 2008.

[4] D. Dong, Y. Liu, and X. Liao, “Fine-grained boundary recognition in
wireless ad hoc and sensor networks by topological methods,” in Proc.
ACM MobiHoc, 2009, pp. 135–144.

[5] Q. Fang, J. Gao, and L. J. Guibas, “Landmark- based information
storage and retrieval in sensor networks,” in Proc. IEEE INFOCOM,
2006, pp. 1–12.

[6] S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang, “Distance-sensitive
information brokerage in sensor networks,” in Distributed Computing
in Sensor Systems. Berlin, Germany: Springer, 2006, vol. 4026, Lec-
ture Notes in Computer Science, pp. 234–251.

[7] M. Hassouna and A. Farag, “Robust centerline extraction framework
using level sets,” in Proc. IEEE CVPR, 2005, pp. 458–465.

[8] H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang, “CONSEL: Connec-
tivity-based segmentation in large-scale 2D/3D sensor networks,” in
Proc. IEEE INFOCOM, 2012, pp. 2086–2094.

[9] H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang, “Connectivity-based
segmentation in large-scale 2D/3D sensor networks: Algorithm and ap-
plications,” IEEE/ACM Trans. Netw., vol. 23, no. 1, pp. 15–27, Feb.
2015.

[10] H. Jiang, S. Zhang, G. Tan, and C.Wang, “CABET: Connectivity-based
boundary extraction of large-scale 3D sensor networks,” in Proc. IEEE
INFOCOM, 2011, pp. 784–792.

[11] H. Jiang, S. Zhang, G. Tan, and C. Wang, “Connectivity-based
boundary extraction of large-scale 3D sensor networks: Algorithm
and applications,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 4,
pp. 908–918, Apr. 2014.

[12] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, 2000, pp. 243–254.

[13] F. Li, J. Luo, W. Wang, and Y. He, “Autonomous deployment for load
balancing k-surface coverage in sensor networks,” IEEE Trans. Wire-
less Commun., vol. 14, no. 1, pp. 279–293, Jan. 2015.

[14] F. Li, J. Luo, S. Xin, W.Wang, and Y. He, “LAACAD: Load balancing
k-area coverage through autonomous deployment in wireless sensor
networks,” in Proc. IEEE ICDCS, 2012, pp. 566–575.

[15] M. Li and Y. Liu, “Underground coal mine monitoring with wireless
sensor networks,”ACMTrans. Sensor Netw., vol. 5, no. 2, pp. 528–539,
2009.

[16] W. Liu, H. Jiang, Y. Yang, and Z. Jin, “A unified framework for line-
like skeleton extraction in 2D/3D sensor networks,” in Proc. IEEE
ICNP, 2013, pp. 1–10.

[17] W. Liu et al., “A unified framework for line-like skeleton extraction
in 2D/3D sensor networks,” IEEE Trans. Comput., vol. 64, no. 5, pp.
1323–1335, May 2015.

[18] W. Liu et al., “Surface skeleton extraction and its application for data
storage in 3D sensor networks,” in Proc. ACM MobiHoc, 2014, pp.
337–346.

[19] J. Luo, F. Li, and Y. He, “3DQS: Distributed data access in 3D wireless
sensor networks,” in Proc. IEEE ICC, 2011, pp. 1–5.

[20] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Ro-
bust on-line computation of Reeb graphs: Simplicity and speed,” ACM
Trans. Graphics, vol. 26, no. 3, pp. 58:1–58:9, 2007.

[21] S. Ratnasamy et al., “Data-centric storage in sensornets with ght, a
geographic hash table,”Mobile Netw. Appl., vol. 8, no. 4, pp. 427–442,
2003.

[22] S. Ratnasamy et al., “GHT: A geographic hash table for data-centric
storage in sensornets,” in Proc. Int. Workshop Wireless Sensor Netw.
Appl., 2002, pp. 78–87.

[23] R. Sarkar, X. Zhu, and J. Gao, “Double rulings for information
brokerage in sensor networks,” in Proc. ACM MobiCom, 2006, pp.
286–297.

[24] R. Sarkar, X. Zhu, and J. Gao, “Double rulings for information bro-
kerage in sensor networks,” IEEE/ACM Trans. Netw., vol. 17, no. 6,
pp. 1902–1915, Dec. 2009.

[25] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
centric storage in sensornets,” Comput. Commun. Rev., vol. 33, no. 1,
pp. 137–142, 2003.



LIU et al.: DISTANCE-SENSITIVE AND LOAD-BALANCED INFORMATION STORAGE AND RETRIEVAL FOR 3D SENSOR NETWORKS 3449

[26] M. Stoer and F. Wagner, “A simple min-cut algorithm,” J. ACM, vol.
44, no. 4, pp. 585–591, 1997.

[27] R. Sugihara and R. K. Gupta, “Path planning of data mules in sensor
networks,” ACM Trans. Sensor Netw., vol. 8, no. 1, pp. 1:1–1:27, 2011.

[28] Y. Yang, M. Jin, Y. Zhao, and H. Wu, “Cut graph based information
storage and retrieval in 3D sensor networks with general topology,” in
Proc. IEEE INFOCOM, 2013, pp. 465–469.

[29] Y. Yang, M. Jin, Y. Zhao, and H. Wu, “Distributed information
storage and retrieval in 3D sensor networks with general topologies,”
IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1149–1162, Aug. 2015.

[30] C. Zhang et al., “Harmonic quorum systems: Data management in
2D/3D wireless sensor networks with holes,” in Proc IEEE SECON,
2012, pp. 1–9.

[31] H. Zhou, N. Ding, M. Jin, S. Xia, and H. Wu, “Distributed algorithms
for bottleneck identification and segmentation in 3D wireless sensor
networks,” in Proc. IEEE SECON, 2011, pp. 494–502.

[32] H. Zhou, H. Wu, and M. Jin, “A robust boundary detection algorithm
based on connectivity only for 3D wireless sensor networks,” in Proc.
IEEE INFOCOM, 2012, pp. 1602–1610.

[33] H. Zhou, S. Xia, M. Jin, and H. Wu, “Localized and precise boundary
detection in 3-D wireless sensor networks,” IEEE/ACM Trans. Netw.,
vol. 23, no. 6, pp. 1742–1754, Dec. 2015.

Wenping Liu is currently an Associate Professor
with Hubei University of Economics, Wuhan, China.
He received the Ph.D. degree from Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2012. His research interests include topological
recognition and its applications in sensor networks.
He is a member of the IEEE.

Hongbo Jiang received the B.S. and M.S. degrees
from Huazhong University of Science and Tech-
nology, Wuhan, China. He received the Ph.D. degree
from Case Western Reserve University, Cleveland,
OH, USA, in 2008. After that, he joined the faculty
of Huazhong University of Science and Technology,
where he is now a Full Professor. His research con-
cerns computer networking, especially algorithms
and protocols for wireless sensor networks and
mobile computing. He is a Senior Member of the
IEEE.

Jiangchuan Liu received the B.Eng. degree from
Tsinghua University, Beijing, China, in 1999, and
the Ph.D. degree from The Hong Kong University of
Science and Technology, Hong Kong, in 2003. He
is a co-recipient of the Best Student Paper Award of
IWQoS2008 and the Multimedia Communications
Best Paper Award from the IEEE Communications
Society. He is currently an Associate Professor with
Simon Fraser University, Vancouver, BC, Canada,
and was an Assistant Professor with The Chinese
University of Hong Kong, Hong Kong, from 2003

to 2004. His research interests include cloud computing, peer-to-peer systems,
multimedia communications, and wireless networking. He is an Associate
Editor of the IEEE TRANSACTIONS ON MULTIMEDIA and an editor of IEEE
Communications Surveys and Tutorials. He is a Senior Member of the IEEE.

Xiaofei Liao received the Ph.D. degree in computer
science and engineering from Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 2005. He is now a Professor with the School
of Computer Science and Engineering, HUST. He
has served as a reviewer for many conferences and
journal papers. His research interests are in the areas
of system software, P2P system, cluster computing,
and streaming services. He is a member of the IEEE
and the IEEE Computer Society.

Hongzhi Lin received the B.S., M.S., and Ph.D.
degrees from Huazhong University of Science and
Technology, Wuhan, China, in 2000, 2003, and 2008,
respectively. He is now an Assistant Professor with
Huazhong University of Science and Technology.
His current research interests are in the areas of
wireless networking and digital signal processing.

Tianping Deng received the B.S. degree from Nan-
jing University of Science and Technology, Nanjing,
China, in 1998, and the M.S. and Ph.D. degrees from
Huazhong University of Science and Technology,
Wuhan, China, in 2003 and 2007, respectively. He
then joined the faculty of Huazhong University of
Science and Technology as an Assistant Professor.
His research interests include computer networking
and wireless communication. He is a member of the
IEEE.


