
On Design and Performance of Cloud-Based

Distributed Interactive Applications

Haiyang Wang∗, Ryan Shea†, Xiaoqiang Ma†, Feng Wang§ and Jiangchuan Liu†

∗ University of Minnesota Duluth, † Simon Fraser University § University of Mississippi
∗ haiyang@d.umn.edu, † {rws1,xma10,jcliu}@cs.sfu.ca § fwang@cs.olemiss.edu

Abstract—Distributed interactive applications (DIAs) such as
online gaming have attracted a vast number of users over the
Internet. It is however known that the deployment of DIA
systems comes with peculiar hardware/software requirements on
the users’ consoles. Recently, such industrial pioneers as Gaikai,
Onlive and Ciinow have offered a new generation of cloud-
based distributed interactive applications (CDIAs), which shift the
necessary computing loads to cloud platforms and largely relieve
the pressure on individual user consoles.

In this paper, we take a first step towards understanding
the CDIA framework and highlight its design challenges. Our
measurement reveals the inside structure as well as the operations
of real CDIA systems and identifies the critical role of the cloud
proxies. While this design makes effective use of cloud resources
to mitigate the clients’ workloads, it can also significantly increase
the interaction latency among clients if not carefully handled.
Besides the extra network latency due to the involvement of cloud
proxies, we find that the computation-intensive tasks (e.g., game
rendering) and bandwidth-intensive tasks (e.g., streaming the
game screen to the clients) together create a severe bottleneck in
CDIA. Our experiment indicates that when the cloud proxies are
virtual machines (VMs) in the cloud, the computation-intensive
and bandwidth-intensive tasks will seriously interfere with each
other if not handled carefully. We accordingly capture this feature
in our model and present an interference-aware solution. This
approach not only smartly allocates the workloads but also
dynamically assigns the capacities across VMs.

I. INTRODUCTION

Distributed interactive applications (DIAs) have become

increasingly popular in recent years. By providing diverse

interactions among the users, such applications as massive

multiplayer online gaming, live messaging, and shared white-

board have attracted a vast number of users over the Internet.

Taking online gaming as an example, it is reported in [1]

that nowadays each US household on average owns at least

one dedicated game console or PC for game playing, where

62% of them have played interactive games with others.

The global markets of these DIA systems will also expand

from 58.7 billion in 2011 to 83 billion in 2016, growing
at a 7.2 percent compound annual rate [2]. Yet, to support

superior interactions, the DIAs often have peculiar demands

on the users’ consoles. The specialized consoles with high-

performance hardware unavoidably increase users’ cost and

greatly limit the penetration of DIAs to ubiquitous end users.

To realize true play-as-you-go, industrial pioneers like

Gaikai [3], Onlive [4], Ciinow [5], etc have suggested a

new generation of DIAs based on cloud computing platforms.

This cloud-based distributed interactive application (CDIA)

effectively shifts the hardware/software requirements as well

as the necessary computing loads to cloud proxies, and thus

has attracted an increasing amount of attention form both

service providers and end users. In particular, Sony Computer

Entertainment (SCE) just acquired Gaikai for 380 million USD
on July 2, 2012, putting Gaikai as a key function in its next

generation game console, PlayStation 4 [6]. Its competitor,

Microsoft, also announced that the Gaikai-like CDIA functions

will also play a major role in their new game console Xbox

One [7]. Moreover, such industry leaders as AMD and Nvidia

are also entering the market of CDIA services [8]. AMD’s

investment in CiiNow gives it a means of competing with

rival Nvidia’s GeForce Grid cloud gaming platform.

Today, CDIA remains in its infancy with plenty of unknown

issues. In this paper, we take a first step towards understanding

the CDIA framework and highlight its design challenges.

Our measurement reveals the inside structure as well as the

operations of real CDIA systems and identifies the critical role

of the cloud proxies. While this design makes effective use

of cloud resources to mitigate the clients’ workloads, it also

significantly increases the interaction latency among clients

if not carefully handled. In both DIA and CDIA systems,

the interaction latency is the most essential problem even

when there are no limitations on the availability of server

capacities [9] [10]. The increasing latency will unavoidably

reduce the applicability of the CDIA systems.

In detail, our analysis reveals that the deployment of cloud

proxies adds extra communication hops between clients. To

make the matter worse, the processing latency at the cloud

proxy is also surprisingly high. While the use of the high-

performance cloud platforms is expected to be highly effi-

cient, we find that the computation-intensive tasks (e.g., game

rendering) and the bandwidth-intensive tasks (e.g., streaming

the game screen to the clients) together create a severe

bottleneck in CDIAs. Our experiment indicates that when

the cloud proxies are virtual machines (VMs) in the cloud,

the computation-intensive and bandwidth-intensive tasks will

seriously interfere with each other if not handled carefully.

An increase of traffic load will greatly slow down the CPU

benchmark of cloud VMs. In the case of CDIA, when the

cloud proxies are used to stream the game screen to the users,

the computation-intensive operations, such as game processing

and message forwarding, will also be invoked and prolong the

interaction latency. The large number of CDIA users further

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.25

37

aggravates this issue with mutual-interference, leading to poor

user experiences. For example, Diablo 2 in USEast realm

had over 5 million users across 20 servers. The maximum

acceptable latencies of this Role Playing Games (RPG) are

from 100 to 500 ms [11]. However, when we deploy these

systems on CDIA, their latency can easily exceed 600 ms

even when we assume that the network latency is as small as

zero.

Such interference however does not exist in conventional

physical machines or to a much lower degree. Therefore, the

existing load assignment solutions in the DIA system have

mainly focused on the optimization of stand-alone workloads,

without considering their interference in the VM environment.

To address this problem, we provide a model and consider an

interference-aware solution that not only smartly allocates the

workloads but also dynamically assigns the capacities across

different VMs.

The rest of this paper is organized as follows: In Section II,

we present the related work. Based on the measurement

of Section III, we examine the latency issues in CDIA in

Section IV. Section V reveals the task interference on the

cloud proxies and Section VI provides a model to minimize the

interaction latency. Our solution is then extensively evaluated

in Section VII. Section VIII further discusses several practical

issues and concludes the paper.

II. RELATED WORK

The origins of Distributed Interactive Applications (DIAs)

can be traced back to 1983 when a United States research

program initiated the SIMNET project [12] to train soldiers

in battlefield tactics. Since then, an increasing number of

academic, military and commercial DIA systems have been

developed and documented. Nowadays, despite the increase of

processing powers at participating clients and the availability

of greater communication bandwidth, minimizing the interac-

tion latency remains one of the most fundamental challenges

in the DIA framework. Many studies have shown that the

latency is particularly problematic when the network delays are

comparable to the interaction time or speed [13]. Such studies

suggested that the interaction latency should be bounded for

real-world DIAs [14]. For example, the typical latency values

to maintain real-time interaction fall between 40 and 300
ms [15]. Gutwin [16] investigated the effects of latency on

two types of user interactions: prediction of movement and

moving a shared object. This study showed that both gaming

performance and user strategy will be greatly affected by

interaction latencies higher than the expected range.

To minimize the interaction latency in DIAs, Webb et
al. [17] proposed a nearest server assignment to reduce the

client-server latency. Ta et al. [18] proposed a two-phase

solution for large-scale DIAs. The study by Cronin et al. [19]
further discussed the server placement problem to enhance

users’ interactivity. Vik et al. [20] explored the spanning

tree problems in DIAs for latency reduction. A recent study

from Zhang et al. [10] revisited the problem and proposed

��������� 	�
��

���� ������� ���� �������

��� 	�
��

���� ������
��������� ���!��" #��$� ��%�

&'�(
	���)�'

*+��
'�(,�('

��
�� -(
./

�
+�01+�+)	�('

2 3 4

5

6

7

8

9:;<2= 9;>;?: @ A@B; @CD E;CD F;GH;E: :I JK3 LME
9:;<3= N;>OP;F :Q; R@OS@O A@B; ?>O;C: :I :Q; HE;F
9:;<4= N;>OP;F :Q; TU >OE: IV ?>IHD <FIWO;E :I :Q; HE;F
9:;<5= 9;>;?: IC; XOB;>OAQ: LM @E :Q; ?>IHD <FIWY
9:;<8= R@B; ?ICEI>; @?:OP@:;D @CD E;CD DOE<>@Y :I ;C?ID;F
9:;<6= JC?ID;F E:F;@B :Q; A@B; E?F;;C :I :Q; HE;F
9:;<7= ZIF[@FD HE;F I<;F@:OIC\OCVIFB@:OIC :I I:Q;F HE;FE

Fig. 1: Basic Framework of Gaikai

c] c^ c_

l] l^

s] s^

c` ca

l` l_

s` s_

bcdefghdijc kgdl ic mbn

bcdefghdijc kgdl ic ombn

Fig. 2: Path of client interaction

a distributed-modify-assignment approach to adapt to the

dynamics of client participation and network conditions.

For cloud computing, there have been a series of works

measuring the performance of public or private cloud services

from diverse aspects, including computation, storage, and net-

working services [21]. There are also many studies addressing

application designs that leverage cloud resources [22]. For

example, Wu et al. [23] explored the use of cloud for Video-

on-Demand applications. Huang et al. [24] provided an open-
source cloud gaming system GamingAnywhere. The authors

also deployed their system on Android OS and performed

extensive experiments to understand the video quality for

both the mobile and desktop clients. However, the deployment

of enterprise cloud-based distributed interactive applications,

which have emerged very recently, remain a mystery to

the general public. Our study takes an initial step towards

understanding this new generation of DIAs, in terms of its

design, performance, and potential challenges.

III. CLOUD-BASED DIA: BACKGROUND AND

FRAMEWORK

From the perspective of industry, CDIAs can bring immense

benefits by expanding the user base to the vast number of less-

powerful devices that support thin clients only, particularly

smartphones and tablets. As an example, the recommended

system configuration for Battlefield 3, a highly popular first-

person shooter game, is a quad-core CPU, 4 GB RAM, 20 GB
storage space, and a graphics card with at least 1GB RAM

38

(e.g., NVIDIA GEFORCE GTX 560 or ATI RADEON 6950),
which alone costs more than $500 USD. The newest tablets

(e.g., Apple’s iPad with Retina display and Google’s Nexus

10) cannot even meet the minimum system requirements that

need a dual-core CPU over 2.4 GHz, 2 GB RAM, and a

graphics card with 512MB RAM, not to mention smartphones

of which the hardware is limited by their smaller size and

thermal control. Furthermore, mobile terminals have different

hardware/software architecture from PCs, e.g., ARM rather

than x86 for CPU, lower memory frequency and bandwidth,

power limitations, and distinct operating systems. Therefore,

the traditional console game model is not feasible for these

devices, which in turn become targets for such CDIA systems

as Gaikai and Onlive. Different from existing DIAs, CDIAs

utilize the powerful and elastic service capacity offered by

cloud computing to mitigate the hardware/software require-

ments on the user consoles. In particular, Gaikai and Onlive

deploy the game clients/consoles on cloud platforms and only

stream the game screen/interactions to end users.

To understand how CDIAs work in detail, we focus on

Gaikai as a case study. Since 2011, it has emerged as one

of the most popular cloud-based online gaming systems with

over 100 million subscribers. It not only provides free PC

game demos but also powers high quality gaming experiences

onto smartphones, tablets and Internet TVs [25].

Our experiments have conducted traffic measurement and

analysis from the edge of four networks, which are located

in four different countries (United States, Canada, China and

Japan) in two distinct continents. We used traffic analysis,

shared library and system call interception techniques to

analyze various aspects of the Gaikai protocol. We also applies

a packet level analysis to understand the communications

between our clients and the cloud proxies. In particular, we

monitor Gaikai’s online gaming service with the clients from

different network locations and capture their traffic from/to

the Gaikai servers. We first examine the details in the control

messages, look into the packet payloads and identify the

information, such as the domain names, of Gaikai’s basic

components. After that, we carefully analyze the data traffic

to further understand the functions of these components. To

avoid possible bias, we apply classic analysis tools (e.g.,

ISP lookup) that were widely adopted in the existing reverse

engineering studies [26]. Note that some online games are

designed to utilize one of the user clients as the server to

enable interactions. We therefore take advantage of this feature

and capture the server-side traffic to better understand the

related protocols.

From analyzing the captured traffic, we illustrate Gaikai’s

basic framework/protocol in Figure 1. We can see that there

are two major components on the server side of Gaikai

(marked as grey boxes in the figure). The first part is Amazon

EC2-based [27] load-balancers1, and the second part is the

Limelight-based game proxy servers [28]. Both Amazon and

1Based on our measurement, they also have other functions beside load-
balancing. We call them load-balancers because Gaikai marks them with ”LB”
in their domain names.

Limelight are leading cloud service providers with Xen virtu-

alization [29]. Gaikai applies both platforms to accomplish dif-

ferent functionalities and utilizes their widely geo-distributed

instances to push these functions closer to the users.

When a user selects a game on Gaikai (Step1 in Figure 1),

an EC2 virtual machine (VM) will first deliver the Gaikai

game client to the user (in Step2). After that, it forwards the
IP addresses of the available Limelight game proxies to the

users (in Step3). The user will then use one game proxy to

run the game (in Step4). To ensure smooth game playing, this
selected game proxy uses a packet train measurement [30]

to estimate the available bandwidth to the users. This is

identified by our packet-level analysis, which shows that the

game proxy sends back-to-back packets with empty payload to

test the available bandwidth. Note that the game proxy starts

the game only when the available bandwidth can well-support

an FPS (frames per second) around 60 for video streaming.

After that, the game proxy starts to run the game and the

game screen will be streamed back to the user via UDP (in

Step5 and Step6). For multiplayer online games, these game

proxies will also forward user operations to the game servers

(mostly deployed by the game developers) and send the related

information/reactions back to the users (in Step7). It is easy
to see that such a CDIA system can remarkably relieve the

hardware/software requirements on the user side, given that

now the games are running on the cloud platforms. This

change enables users to play hard-core games over much less

powerful devices, e.g., over smartphone, tablets, or even digital

TVs, as long as they are multimedia- and network-ready.

We have also measured other CDIA platforms, and have

found that Gaikai’s framework is representative, which is

not surprising given it as a very natural extension to the

conventional DIA with cloud assistance.

IV. INTERACTION LATENCY OF CDIA: ISSUES AND

CHALLENGES

The CDIA framework offers great opportunities for both

users and service providers. Similar to the conventional DIA

systems, its service performance is highly depending on users’

interaction latency [10]. In particular, the CDIA systems, such

as the online cloud gaming applications, need to collect users’

actions, transmit them to the cloud proxy, process the action,

render the results, encode/compress the resulting changes to

the game-world, and stream the video (game scenes) back to

the player. To ensure interactivity, all of these serial operations

must happen in the order of milliseconds. The interaction

latency is thus essential even when there are no limitations

on the availability of server capacities [9].

Figure 2 illustrates the interaction pathes in both DIA and

CDIA frameworks, where L is the set of clients, S is the set

of servers, and C is the set of cloud-based proxies. To better

compare the performance of DIA and CIDA design, we will

first focus on the latency between clients and servers (e.g.,

between l1 and s1). It is easy to see that such a latency consist

of two parts in the CDIA systems: First, the network latency

between clients and servers; Second, the processing latency

39

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT (ms)

C
D

F

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Client−server RTT
of CDIA (best case)

Client−server RTT
of CDIA (worst case)

Client−server RTT
of DIA

Fig. 3: Time cost between user and

server (DIA v.s. CDIA)

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Rank of clients (sorted by RTT)

R
T

T
 (

m
s
)

Average client−server
RTT in CDIA

Fig. 4: Average user-server latency in

CDIA

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Experiment index

L
a

te
n

c
y
 (

m
s
)

Average latency of
user action (Gaikai)

RTT between user
and cloud proxy

Running on
local console

Processing time
on cloud proxy

Fig. 5: Average latency of user’s action

on cloud proxies. We will provide a step-by-step discussion

to understand these two parts in the following subsections.

A. Analysis of Network Latency

To clarify the extra network latency in CDIA design, we

carry out a real-word experiment from Planet-lab. We use a

server in our campus to emulate the game server in CDIA2.

We select 588 Planet-lab nodes (the maximum number of

nodes that we can access) to run as CDIA clients and emulate

the CDIA framework by using the server and these clients

to connect Gaikai’s cloud proxies. We have found 28 cloud

proxies during the measurement of Gaikai3, and therefore

use the IP addresses of these proxies in this experiment. We

first measure the RTTs between 588 Planet-lab clients and 28
Gaikai cloud proxies and then the RTTs between the server

and these cloud proxies. The sum of these two latencies can be

used to calculate the client-server RTTs in this CDIA system.

To provide a fair comparison, we also measure the direct RTTs

between the server and the Planet-lab clients as the baseline

(the case of conventional DIA).

Figure 3 compares the client-server RTT in both DIA and

CDIA. We can see that most (over 80%) users in DIA have

quite low client-server latency (less than 60 ms), while the

average latency is much worse if we put them into CDIA, as

shown in Figure 4. The worst case in Figure 4 shows 90%
users have an interaction latency over 200ms. This is hardly
acceptable for smooth interaction because the processing laten-

cies are not yet considered in this experiment. It is known that

adding extra nodes in any overlay network is not necessarily

leading to longer path length given that triangle inequality does

not hold in the Internet [31]. Hence, there is indeed space to

reduce the latency beyond naive proxy deployment4.

2We have observed similar results over 50 servers that are located in
different places.

3The total number of Gaikai’s cloud proxy is unknown to the general public.
These sampled cloud proxies are used to estimate the network latency in such
a system.

4The 588 PlanetLab nodes are applied in both DIA and CDIA experiments
to provide fair comparison. Since some real-world interactive applications,
such as Diablo 2, may divide their users into realms, we also investigated the
case using a subset of PlanetLab nodes from one realm (e.g., USEast). The
results remain consistent to Figure 3.

Example Game Type Perspective Delay Threshold

First Person Shooter (FPS) First Person 100 ms
Role Playing Game (RPG) Third-Person 500 ms
Real Time Strategy (RTS) Omnipresent 1000 ms

TABLE I: Delay Tolerance in Traditional Gaming

B. Analysis of Processing Latency

So far, we have only considered the network latency in

CDIA framework. It is easy to see that the cloud proxies will

also bring extra processing latency to the interaction. We now

closely examine this latency and identify its impacts.

To focus exactly on the interaction between clients and

cloud proxies, we select a single player game where a player

(client) does not need to communicate with the game server

and other players. The player simply sends the operations to

the cloud proxy and the proxy then streams the responding

game screen back to the player. Since the RTT between the

player and the cloud proxy can be directly measured, we only

need to obtain the response time5, which, after subtracting
the RTT, gives the processing latency at the cloud proxy. The

detail of this experiment is as follows.

We first select an action button in the game The Witcher 2:
Assassins of Kings; in particular, the “map” button. We click

this button and start to record the game screen at 100 FPS

(frames per second). This sampling rate already exceeds the

normal game play which is around 60 to 70 FPS. We then

check the video file frame-by-frame until we find the frame

where the map is displayed. We run this experiment multiple

times under different RTTs. These RTTs are controlled by

the traffic shaping tool TC [32]. To better understand the

processing overhead at the cloud proxy, we also record the

response time on a local game console. We use the same

game on both Gaikai and the local console to provide a fair

comparison.

As we can see from Figure 5, the local console general

needs 80 ms to open the map for the players with very small

standard deviation. Note that the RTT is zero in this case

because the game is locally rendered. When we run this game

5The response time is the latency that the player waits until the result of
her/his operations is returned. For example, if the player clicks the button
“option” at time ti and the option menu displays at time tj , the response
time can be calculated as tj − ti.

40

remotely on Gaikai, the response time elevates to more than

300 ms. The overhead (in terms of the processing latency)

on the Gaikai proxy is thus approximately 220 ms6. When

we consider the interactive latency between different users,

there will be, unfortunately, two proxies in their interactive

path. This means the interactive latency can easily exceed

600 ms. It is worth noting that the studies on traditional

gaming systems have found that different styles of games

have different thresholds for maximum tolerable delay [11].

However, this high latency will not be acceptable for most

online gaming applications as shown in Table I.

V. INTERFERENCES BETWEEN COMPUTATION-INTENSIVE

AND BANDWIDTH-INTENSIVE TASKS

It is surprising to see that the cloud proxies can introduce

such a high processing latency in CDIA. This is unlikely due

only to video encoding because many CDIA service providers

have claimed that their video encoding latency is indeed very

small within 10 ms. We therefore further explore its underlying

reasons in this subsection.

The cloud proxy on Gaikai is different from a local

game console. It is a virtual machine (VM) running both

computation-intensive tasks (for example, rendering the game)

and bandwidth-intensive tasks (for example, streaming the

game screen to the players) at the same time. Since these

tasks cannot be decoupled into different VMs, it is necessary

to see if they introduce extra overheads on the cloud proxy.

Since the Limelight platform can hardly be tested by in-

dividual users, we run the standard CPU benchmark on EC2

instances (their cloud platforms are quite similar in terms of

Xen-based cloud virtualization). We adjust the traffic load on

the instance and check the time cost of running the benchmark.

To provide a fair comparison, we also do the experiment on

local servers (non-virtualized servers) as a baseline. Figure 6

shows a comparison between a EC2 small instance and our

local server. In this experiment, the EC2 small instance has 1.7
GB memory, 1 EC2 compute unit (1 virtual core with 1 EC2

compute unit), 160 GB instance storage with 32-bit platform.
Our local server also has similar hardware configuration that

is comparable to the EC2 small instance. From this figure, we

can see that the traffic load on the non-virtualized server only

slightly increases the running time of the CPU benchmark,

e.g., 250 Mbps traffic load will only increase the running time

by 20%. However, for the virtualized EC2 small instance,

this traffic load will double the running time of the CPU

benchmark with very small standard deviation (the detailed

data can be found in Table II). We have also tested this on

EC2 large instances with multiple cores. The large instance

has 7.5 GB memory, 4 EC2 computation units (2 virtual cores
and each with 2 EC2 computation units), 850 GB instance

storage with 64-bit platform and very high I/O performance.

Our local server, on the other hand, has weaker hardware

configuration, particularly the CPU capacity. As shown in

6To avoid measurement bias, we also test actions that make different
changes to the in game world, for example, small character movements. The
results remain consistent with Figure 5.

0 100 200 300 400 450
0

10

20

30

40

50

60

70

80

90

100

Traffic load (Mbps)

In
c
re

a
s
e
 i
n
 C

P
U

 b
e
n
c
h
m

a
rk

 r
u
n
n
in

g
 t
im

e
 (

p
e
rc

e
n
ta

g
e
) Virtualized EC2

server (small)

Base line of
non−virtualized
server

Fig. 6: Increasing of CPU benchmark running time (on EC2

small instance)

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Traffic load (Mbps)

In
c
re

a
s
e
 i
n
 C

P
U

 b
e
n
c
h
m

a
rk

 r
u
n
n
in

g
 t
im

e
 (

p
e
rc

e
n
ta

g
e
)

Virtualized EC2
server (large)

Base line of
non−virtualized
server

Fig. 7: Increasing of CPU benchmark running time (on EC2

large instance)

Figure 7, we can see that the traffic load on large instances

still brings remarkable overheads to the system. Although

the result is better than that of small instances, the traffic

load will still remarkably slow down the running time of the

CPU benchmark especially when comparing with the non-

virtualized baseline.

It is easy to see that the CDIA cloud proxies are indeed in

the same situation as these EC2 instances. The traffic load can

significantly slow down the game running and unavoidably

leads to a high processing latency. Yet, such a problem is

rarely seen on the non-virtualized local game consoles or cloud

proxies, or to a much lower degree.

TABLE II: CPU benchmark running time under different

traffic loads on virtualized EC2 small instance

Load
Run1 Run2 Run3 Run4 Avg

Running time of CPU benchmark(ms)

1Mbps 37.17 36.71 36.75 36.64 36.82

5Mbps 36.92 37.06 37.07 37.07 37.03

10Mbps 37.41 37.51 37.36 37.42 37.42

22Mbps 38.21 38.49 38.75 38.30 38.44

34Mbps 39.03 39.13 39.06 39.13 39.09

40Mbps 40.33 40.59 40.39 40.20 40.38

55Mbps 41.28 41.22 41.06 41.67 41.31

75Mbps 43.20 43.21 43.14 43.69 43.31

140Mbps 49.00 48.84 50.06 48.13 49.01

190Mbps 56.28 56.26 55.60 55.96 56.02

230Mbps 71.50 70.67 69.06 73.01 71.06

41

VI. LATENCY MINIMIZATION IN CDIA

Given the importance of latency for interaction, there have

been significant studies on latency minimization for conven-

tional DIAs, mostly focusing on latency directly between client

pairs [19] [20] [10]. Unfortunately, the existence of cloud

proxies prevents them from being used in the CDIAs, not

to menton the task interference on the cloud proxies. In this

section, we will revisit the latency modeling problem in these

new contexts. We first consider a basic model to optimize the

network latency. After that, this model will be further enhanced

to capture the task interference on the cloud VMs.

A. Basic Model of CDIA Latency
To ensure responsive interactions, previous studies have

suggested that reducing the average latency is not enough,

because any fast users would suffer when they interact with

long latency users [16] [33]. Our objective is thus to minimize

the maximum latency between all client pairs that are bridged

by cloud proxies. We focus on network latency here, and will

address processing latency in the next two sections.

We use S = {s1, s2, ..., sm} to denote the set of m servers

and L = {l1, l2, ..., ln} to denote the set of n user clients. Let

C = {c1, c2, ..., co} be the set of o cloud proxies. Each client
in L will be assigned to a cloud proxy and a server in order

to send operations and receive updates from other clients. An

assignment A is a mapping from L to C and S, where for

each client l ∈ L, we use cA(l) ∈ C to denote the assigned

cloud proxy of client l and sA(l) ∈ S to denote the assigned

server of client l.

For two clients li and lj to interact, the communication

should go through their assigned cloud proxies and servers in

CDIA. Specifically, if li issues an operation to lj , the following

steps have to be taken so that lj can see the effect of this

operation: First, li sends the operation to its assigned cloud

proxy cA(li). cA(li) will then forward this operation to the

server sA(li) that is also assigned to li; After that, if lj is

assigned to a different server sA(lj), server sA(li) should

forward the operation to server sA(lj); Then sA(lj) executes
the operation and delivers the resultant state update to lj’s

cloud proxy cA(lj); Finally, cA(lj) will generate the game

screen and stream the display to client lj . Let D(u, v) be the
path latency between two nodes that are not directly connected

and d(u, v) be the link latency between two neighbor nodes. To
be consistent with the existing DIA models [10], we assume

that D(u, v) = D(v, u) and d(u, v) = d(v, u). The latency

between client li to its server sA(li) can be calculated as:

D
(
li, sA(li)

)
= d

(
li, cA(li)

)
+ d

(
cA(li), sA(li)

)
(1)

We can therefore obtain the total interaction latency between

li and lj as follows:

D(li, lj) = D
(
li, sA(li)

)
+D

(
lj , sA(lj)

)

+d
(
sA(li), sA(lj)

)
· I[

sA(li) �=sA(lj)
] (2)

where d
(
sA(li), sA(lj)

)
denotes the latency between server

sA(li) and sA(lj), and I[·] indicates whether li and lj are as-

signed to different servers (1: yes; 0: no). Given the interaction

latency between li and lj , our objective is to find an assignment

A to minimize U(A), the maximum interaction latency among

all client pairs:

minimize U(A) = max
li,lj∈L

{
D(li, lj)

}
(3)

This min-max latency can be optimally found when we

convert it into a longest path problem in directed acyclic graph

(DAG). The details are presented in Appendix A.

B. Enhanced Model to Capture Task Interference

In this part, we will further extend our model to consider

the impact of traffic load on different cloud proxies. It is

worth noting that CDIA offers elastic service capacity at

cloud proxies. The capacities of the cloud proxies can be

dynamically adjusted to meet user demands. Therefore, we

use set P to denote the capacities of cloud proxies where

P = {p1, p2, ..., po}; pi ∈ P refers to the amount of resource

that is assigned to cloud proxy ci (bandwidth capacity in this

case). Based on our measurement, we find that the NPV (Net

Present Value) function [34] can be borrowed to capture the

relationship between virtualization latency (processing latency
that due to the traffic load on VMs) and traffic load7, we

therefore compute the virtualization latency of cloud ci as:

r(pi) =
a

bpi−qA(ci)
(4)

where a indicates the latency when the cloud proxy is fully

loaded (with no remaining bandwidth). Parameter b controls

the skewness of the relationship between load and latency

where b ∈ (1,+∞). Note that different VMs may have

different a and b. For example, in Figure II, a is around 105
and b is around 1.04.

Given a load assignment A and a user li, we use pA(li)
to denote the resource that has been assigned to cloud proxy

cA(li). For a given set of servers, S = {s1, s2, ..., sm} and

clients l = {l1, l2, ..., ln}, the problem becomes how to use

a set of cloud proxies C = {c1, c2, ..., co} to connect these

clients and servers, with load assignment A and resource

assignment P , to minimize the maximum interaction latency

between all client pairs:

minimize U(A,P) = Max
li,lj∈L

{
D(li, lj)

+r(pA(li)) + r(pA(lj))
} (5)

7This function has been widely used to quantify the relationship between
cash and price/cost, which resembles our case when we try to purchase more
cloud resources to reduce the virtualization cost on the VMs.

42

s.t. ∀i = 1, 2, ..., o, qA(ci) ≤ pi (6)
o∑

i=1

pi ∗ Cost(ci) ≤ K (7)

where K refers to the total budget, which we assume can at

least serve all the clients in the system.

It is easy to see that the virtualization latency makes the

problem harder. If we assign client li to cA(li), it will not only
assign traffic load to cA(li) but also affect the performance of
other clients who have also been assigned to this cloud proxy.

Assuming that the capacities of the cloud proxies are given,

this client assignment problem can therefore be transformed

into a 0 − 1 Multiple Knapsack problem with a non-linear

objective function, which is known to be NP-hard [35].

x

l�

l�

c�'

c�'

r(p�)

r(p�)

c�''

c�''

s�

s�

�

Fig. 8: Transform G into G∗
A

By exhaustively searching along all the possible combi-

nations of A and P , the optimal solution can be achieved.

However, the practical usefulness of this search is limited

considering the real-time user demands in CDIA systems. We

thus propose a bi-level heuristic, which divides the optimiza-

tion problem into two stages: load assignment and resource

assignment. In the load assignment stage, we assume that all

the cloud proxies are fully loaded (the virtualization latency is

therefore equal to a in Equation 4) and find the optimal load

assignment A by Algorithm 1 (in Appendix A). After that, we
construct a subgraph GA based on the existing graph G and

assignment A. As shown in Figure 8, we then split the node

ci to two virtual nodes (c′i and c′′i), and use their link weight

to refer the virtualization cost on ci. We use G∗
A to denote the

resulting graph. We further apply a greedy algorithm to find

the resource assignment P in G∗
A. As shown in Algorithm 3,

this greedy algorithm iteratively assign resource to the cloud

proxies on the longest path. The algorithm stops when the

remaining budget is not enough. In the next section, we

will show that this bi-level heuristic achieves near-optimal

performance in practical settings.

VII. PERFORMANCE EVALUATION

We now evaluate the performance of our solution via

extensive trace-based simulations in MATLAB. The network

latency (measured in Section IV) and the processing delay

(measured in Section VI) will both serve as the inputs of our

evaluation. We first examine the performance of our optimal

client assignment when there is no task interference8. After

8This will be the case when the system is deployed on non-virtualized cloud
platforms.

Algorithm 3 ResourceProvisioning()

1: Get G∗
A from A;

2: R← K − C;

3: while true,

4: path∗ = LongestPath(G∗
A);

5: Get ci, cj from path∗;

6: if R ≥ max(Cost(ci), Cost(cj)),

7: if
r(pi)−r(pi+1)

Cost(ci)
≥

r(pj)−r(pj+1)
Cost(cj)

,

8: R← R− Cost(ci);
9: pi ← pi + 1;
10: else

11: R← R− Cost(cj);
12: pj ← pj + 1;
13: else if R ≥ min(Cost(ci), Cost(cj)),
14: if Cost(ci) ≤ Cost(cj),
15: w← i;

16: else

17: w← j;

18: R← R− Cost(cw);
19: p(cw)← p(cw) + 1;
20: end if

21: else

22: break;

23: end if

24: end while

Fig. 9: Algorithm to compute the resource provisioning.

that, we investigate the performance of the interference-aware

client assignment algorithm in the virtualized environment.

We start with a CDIA system that consists of 20 clients, 5
cloud proxies and 5 servers. The renting cost of cloud proxies
are referenced from the instance price list of Amazon’s On
Demand instances [27]. Figure 10 presents the performance of
our optimal client assignment when there is no task interfer-

ence (the processing latency is a default value of 80 ms at the
cloud proxies). It is easy to see that the smart client assignment

greatly reduces the interaction latency. Without optimization,

the maximum client interaction latency can be as high as 700
ms. Our approach, on the other hand, can reduce the maximum

latency to less than 500 ms. It is also worth noting that the

renting price is linearly related to the client population. This

indicates a good scalability of our approach.

It is not surprising to see that the optimal client assign-

ment can achieve such a significant gain when there is no

task interference. Figure 11 further explores the case when

the optimal assignment can hardly be archived in the task

interference environment. We can see that the optimization of

task interference is very critical for CDIAs. The maximum

interaction latency can be larger than 580 ms if we only

focus on the optimization of network latency. Fortunately, our

interference-aware algorithm can achieve a near-optimal (with

the difference within 5 ms) latency that greatly reduces the

interaction latency9. It is worth noting that the interaction

9The optimal base-line is obtained by brute-force searching.

43

0 10 20 30 40 50 60
100

200

300

400

500

600

700

800

of CDIA clients

M
a

x
im

a
l
in

te
ra

c
ti
o

n
 l
a

te
n

c
y
 (

m
s
)

Base line of the worst case

Optimal client assignment

Lease cost
5.356 USD/hour

Lease cost
5.356 USD/hour

Lease cost
4.004 USD/hour

Lease cost
2.754 USD/hour

Lease cost
1.462 USD/hour

Fig. 10: Optimal client assignment only

consider the networking latency

5 10 15 20 25
400

420

440

460

480

500

520

540

560

580

600

Total budget (USD per hour)

M
a

x
im

a
l
in

te
ra

c
ti
o

n
 l
a

te
n

c
y
 (

m
s
)

Interference−aware
client assignment

Optimal baseline

Not aware of interference

of servers: 5
of cloud
proxies: 5
of clients: 20
a = 105; b = 1.04

Fig. 11: Interference-aware client as-

signment

300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interaction latency between client pairs (ms)

C
D

F

Budget = 5 USD/hour

Budget = 10 USD/hour

Budget = 15 USD/hour

of servers: 5
of cloud proxies: 5
of clients: 20
a = 105; b = 1.04

Fig. 12: Interaction latency across

client pairs (different budget)

200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interaction latency between client pairs (ms)

C
D

F

10 clients

20 clients

30 clients

of servers: 5
of cloud proxies: 5
Total budget = 15
a = 105; b = 1.04

Fig. 13: Interaction latency across

client pairs (different # of clients)

80 90 100 110 120 130
435

440

445

450

455

460

465

470

Parameter a in eq.5

M
a
x
im

a
l
in

te
ra

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Interaction latency
b = 1.04
of servers: 5
of clients: 20
Total budget: 15 USD/hour

Fig. 14: Adjusting parameter a (VM’s

maximum processing latency)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
370

380

390

400

410

420

430

440

450

460

Parameter b in eq.5

M
a
x
im

a
l
in

te
ra

c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Interaction latency
a = 105
of servers: 5
of cloud proxies: 5
of clients: 20
Total Budget: 15 USD/hour

Fig. 15: Adjusting parameter b (skew-

ness of the relationship)

latency can be further reduced and become closer to the

optimal results when we have more budget to purchase more

capacities at the cloud proxies.

Figure 12 takes a closer look at the interaction latency

between individual clients. We can see that all clients can

benefit from the total budget increase. To be more specific,

when the budget is equal to 5 USD/hour, less than 30%
clients can have an interaction latency less than 400 ms. If we
increase the budget to 15 USD/hour, more than 95% clients

can interact with each other with a latency below 400 ms. The
difference between the fastest and the slowest clients are also

quite small, around 150 ms. Figure 13 further shows the cases
with different number of CDIA clients. We can see that for

a given budget, our algorithm scales well with an increasing

number of clients. Note that the total budget also bounds the

total capacity of the cloud proxies. We thus cannot add more

clients in Figure 13.

To understand the virtualization latency on different types of

VMs, we investigate the case with different parameter inputs

in Equation 5. Figure 14 presents the case when the maximum

processing latency (parameter a for the cloud proxies) is

changed from 85 ms to 125 ms. We can see that the interaction

latency increases linearly with a. On the other hand, Figure 15

presents the case when the virtualization latency and traffic

load have more skewed relationships10. Based on these two

figures, we can find that a good VM should have a small a

10Note that different a, b pairs in these two figures can be used to present
different cloud instances. For example, we use a = 105 and b = 1.04 to
capture the features of EC2 large instances in our simulation.

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Client pair latency (ms)

C
D

F

200 clients

588 clients

of servers: 5
of cloud proxies: 5
Total budget : 100
a = 105; b = 1.04

Fig. 16: Interaction latency across 200 and 588 clients

and a large b. The maximum processing latency should be

small when the VM is fully loaded (small a). In other words,

adding idle resources on the VM should be able to significantly

reduce such a processing latency (large b).

Figure 16 further presents the CDF of the interaction latency

across 200 random selected clients and all the 588 clients11

in our measurement, respectively. It is easy to see that 80%
clients can achieve the interaction latency within 300 ms.

The interaction latencies between most (70%) client pairs are
between 200 ms and 250 ms. It is also worth noting that the

total budget in this case is relatively high with 100 USD

per hour. This is because we are using the pricing list of

Amazon’s On Demand instances. Choosing other types of

platforms/instances, such as the Reserved instance may further
reduce this cost.

11All clients that we have used in our measurement in Section IV.

44

VIII. CONCLUSION AND FURTHER DISCUSSION

In this paper, we examined the framework design and

latency optimization in cloud-based distributed interactive ap-

plications through real system measurement and analysis. Our

study identified the unique features as well as the fundamental

design challenges in the CDIA. There are still many open

issues that can be further explored in this new-born system.

First, to better mitigate the interference between the

computation-intensive and bandwidth-intensive tasks, we are

working on the analysis of TCP/UDP flows on different types

of VMs. Our preliminary result shows that VMs’ hypervisors
(also known as virtual machine managers such as Xen, KVM
and VMware) and VMs’ total capacities play important roles

for the interference.

Second, we are currently investigating the efficiency of

directly migrating some DIA protocols/optimizations into the

CDIA framework. This analysis can help us better enjoy the

benefits of cloud computing while minimize the corresponding

overheads. These investigations are not limited to improve the

overall performance of CDIA framework, it can also help us

better understand the development of many other cloud-based

systems with similar design frameworks.

ACKNOWLEDGMENT

H. Wang’s work was supported by Chancellors Small Grant

and a Start-up Grant and from the University of Minnesota at

Duluth. J. Liu’s work was supported by a Canada NSERC

Discovery Grant, an NSERC Strategic Project Grant, and

a China NSFC Major Program of International Cooperation

Grant (61120106008).

REFERENCES

[1] Essential Facts about the Computer and Video Game Industry 2012.
[Online]. Available: http://www.theesa.com/facts/pdfs/ESA EF 2012.
pdf

[2] Entertainment Business. [Online]. Available: http:
//www.entertainmentbusiness.nl/sites/default/files/documents/2012/
Videogames.pdf

[3] Gaikai. [Online]. Available: http://www.gaikai.com//
[4] Onlove. [Online]. Available: http://www.onlive.com//
[5] Ciinow, http://www.ciinow.com/.
[6] Gaikai in PlayStation4. [Online]. Avail-

able: http://www.theverge.com/2013/2/20/4010420/
sonys-playstation-4-will-use-gaikai-game-streaming-technology

[7] Cloud-based gaming planned for Microsoft Xbox
720. [Online]. Available: http://sonyps4playstation.com/
cloud-based-gaming-planned-for-microsoft-xbox-720/

[8] AMD Invests Into Ciinow, http://www.ubergizmo.com/2012/09/amd-
invests-into-ciinow/.

[9] F. Safaei, P. Boustead, C. Nguyen, J. Brun, and M. Dowlatshahi,
“Latency-driven distribution: Infrastructure needs of participatory en-
tertainment applications,” IEEE Commun. Mag, 43(5), 106-112, 2005.

[10] L. Zhang and X. Tang, “Optimizing Client Assignment for Enhancing
Interactivity in Distributed Interactive Applications,” IEEE/ACM Trans-
actions on Networking, 20(6), 1707-1720, 2012.

[11] M. Claypool and K. Claypool, “Latency and Player Actions in Online
Games,” Communications of the ACM, 49(11), 40-45, 2006.

[12] SIMNET. [Online]. Available: http://en.wikipedia.org/wiki/SIMNET/
[13] P. M. Sharkey, M. D. Ryan, and D. J. Roberts, “A Local perception

filter for distributed Virtual Environments,” Virtual Reality Annual
International Symposium, 242-249, 1998.

[14] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Locallag and Timewarp:
Providing Consistency for Replicated Continuous Applications ,” IEEE
Transactions on Multimedia, 6(1), 47-57, 2002.

Algorithm 1 OptimalLoadAssignment()

1: while IsConnected(L,G) == true,

2: path∗ = LongestPath(G);
3: Remove(path∗, G);
4: end while

5: Recover(path∗, G);
6: Return any viable A from G;

Fig. 18: Optimal Load Assignment Algorithm

[15] C. Diot and L. Gautier, “A Distributed Architecture for Multiplayer
Interactive Applications on the Internet,” IEEE Network, 13(4), 6?5,
1999.

[16] C. Gutwin, “ The Effects of Network Delays on Group Work in Real-
Time Groupware,” in Proc. Seventh European Conference on Computer-
Supported Cooperative Work (ECSCW), 2011.

[17] S.Webb, S. Soh, and W. Lau, “Enhanced Mirrored Servers for Network
Games,” in Proc. ACM SIGCOMM NetGames, 2007.

[18] D. Ta and S. Zhou, “A Two-phase Approach to Interactivity En-
hancement for Large-scale Distributed Virtual Environments,” Computer
Networks, 51(14), 4131?152, 2007.

[19] E. Cronin, S. Jamin, C. Jin, A. Kurc, D. Raza, and Y. Shavitt, “Con-
strained Mirror Placement on the Internet,” IEEE Journal on Selected
Areas in Communications (JSAC), 20(7), 1369?382, 2002.

[20] P. H. K. Vik and C. Griwodz, “Multicast Tree Diameter for Dynamic
Distributed Interactive Applications,” in Proc. IEEE International Con-
ference on Computer Communications (INFOCOM), 2008.

[21] S. Garfinkel, “An Evaluation of Amazon s Grid Computing Services :
EC2 , S3 and SQS,” Harvard University Tech, Rep., 2008.

[22] Y. Seung, T. Lam, L. E. Li, and T. Woo, “Seamless Scaling of Enterprise
Applications into The Cloud,” in Proc. IEEE INFOCOM, 2011.

[23] Y. Wu, C. Wu, B. Li, X. Qiu, and F. Lau, “CloudMedia: When Cloud
On Demand Meets Video On Demand,” in Proc. IEEE ICDCS, 2011.

[24] C. Huang, C. Hsu, Y. Chang, and K. Chen, “Gaminganywhere: an open
cloud gaming system,” in Proceedings of ACM MMSys, 2013.

[25] Gaikai Powered Cloud-based Gaming on Samsung Smart
TVs. [Online]. Available: http://www.engadget.com/2012/06/05/
gaikai-powered-cloud-gaming-coming-to-samsung-smart-tvs/

[26] S. A. Baset and H. G. Schulzrinne, “An Analysis of the Skype Peer-to-
Peer Internet Telephony Protocol,” in Proc. IEEE International Confer-
ence on Computer Communications (INFOCOM), 2006.

[27] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/
[28] Limelight Networks. [Online]. Available: http://www.limelight.com/
[29] K. Buytaert, R. Dittner, and D. R. Jr, “The Best Damn Server Virtual-

ization Book Period,” Syngress, 10(2), 422, 2007.
[30] R. Jain, “Packet Trains: Measurements and a New Model for Computer

Network Traffic,” IEEE Journal on Selected Areas in Communications
(JSAC), 4(6), 986-995 , 1986.

[31] R. Kawahara, E. K. Lua, M. Uchida, S. Kamei, and H. Yoshino, “On
the Quality of Triangle Inequality Violation Aware Routing Overlay
Architecture,” in Proc. IEEE International Conference on Computer
Communications (INFOCOM), 2009.

[32] Networking and Traffic Control On Linux. [Online]. Available:
http://tcng.sourceforge.net/

[33] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proc. ACMSIGMM conference
on Multimedia systems (MMSys), 2010.

[34] S. A. Ross, “Uses Abuses and Alternatives to the Net-present-value
Rule,” Financial Management, 2(4), 96-102, 1995.

[35] C. Cotta and J. Troya, “A Hybrid Genetic Algorithm for the 0-1 Multiple
Knapsack problem,” Artificial Neural Nets and Genetic Algorithm 3,
250-254, 1994.

[36] I. Katriel, L. Michel, and P. Hentenryck, “Maintaining Longest Paths
Incrementally,” Constraints, 10(2), 159-183, 2005.

APPENDIX A

To solve the assignment problem, we convert it into a

directed acyclic graph (DAG) G(V,E) with virtual source x

and sink y (Figure 17. This is because the longest path (the

slowest interaction path) can be found with worst-case running

45

c�l�

c�

c�

c�l�

c� l�

c�

c�

c� l�

s�

s�

s�

s�

s�

s�

s�

s�

yx

c�l�

c�

c�

c�l�

c� l�

c�

c�

c� l�

s�

s�s�

s�

yx

(a) (b)

s�

s�

s�

s�

Fig. 17: Finding Optimal Assignment in converted DAG

Algorithm 2 AccommodateLeaseCost()

1: Sort C by ascendant order of Cost(ci);
2: for i = 1 to n,

3: cA(li)← c1;

4: sA(li)← s1;

5: end for

6: i← 1;
7: while i <= n,

8: for j = 1 to i− 1,
9: if PathExisted(x, li, cA(li), sA(li),

sA(lj), cA(lj), lj , y, G) == false,

10: break;

11: end if

12: end for

13: if j == i− 1,
14: i← i+ 1;
15: else

16: if Next(sA(li), S)! = null,

17: sA(li)← Next(sA(li), S);
18: else if Next(cA(li), C)! = null,

19: cA(li)← Next(cA(li), C);
20: sA(li)← s1;

21: else

22: i← i− 1;
23: end if

24: end if

25: end while

26: Return A;

Fig. 19: Algorithm to accommodate the lease cost

time of O(|V | + |E|) [36] in a DAG G(V,E). As illustrated
in Figure 17(a) (which shows an example with 2 clients, 1
server and 2 cloud proxies), each path from x to y refers

to one possible path between two clients in L. We first find

the path with highest latency. For example, in Figure 17(a),

the longest paths are shown in the dark lines (there will be

2 longest paths in each round since they are symmetric). We

then try to remove the edges between servers (dotted lines

in Figure 17(a)) only when all client pairs are still connected

after this removal. This step is repeated until no edge can

be further removed from the graph. At last, we find A, the

assignment of cloud proxy and server for each client in the

remaining graph so that all the client pairs can be connected.

The optimal algorithm is given in Algorithm 1. The proof of

its optimality can be found in Appendix B.

Although the maximum interaction latency is bounded by

the longest path, the optimal assignment A is not unique in

Algorithm 1. This allows us to further improve other metrics,

for example, the lease cost for cloud proxies. Note that the

proposed optimal model assumes that the costs for all the cloud

proxies are homogeneous. While this is partly valid for CDIAs

that rely on their own cloud platform, e.g., Onlive, it is not the

case for those using public clouds (e.g., Amazon EC2) with

varying costs depending on such factors as location, time, and

capacities. An extension of our model with heterogenous lease

costs can be found in Appendix C.

APPENDIX B

Theorem 1:Assignment A is an optimal assignment that

minimizes the maximum interaction latency in Equation. 3.

Proof: Suppose that A′ is another assignment in which the

maximum interaction latency is smaller than A. Since A′ and

A can be both used to connect all client pairs in L, the longest

path in A (path∗) can be replaced by a shorter path (say path′)

that exists in A′, andA can still make all clients in L connected

after this replacement. Since path′ is shorter than the longest

path in A, path′ also exists (is not removed) in A’s residual
graph (the graph after the longest path removal at Algorithm 1

step 4). This implies that there are two paths (path∗ and path′)

in A’s residual graph connecting identical client pairs with

different latencies. This leads to a contradiction because the

longest path in A can be safely removed without affecting the

connectivity among clients.

Hence, the optimality of A is proved. �

APPENDIX C

For cloud proxies with heterogenous lease costs, we assume

that the unit cost of a cloud proxy ci (providing service to one

client) is Cost(ci). For a given assignment A, we use qA(ci)
to refer the number of clients that are assigned to ci. The

overall lease cost C is therefore:

C =
∑
ci∈C

Cost(ci) · qA(ci) (8)

It is easy to see that the minimum cost can be found

by searching all the assignments. This could be very time-

consuming in real practice. We therefore design a heuristic

(Algorithm 2) to replace the last step in Algorithm 1 to obtain

an economical assignment.

46

