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Abstract
Recent years have witnessed an explosive 

growth of online shopping, which has posted 
unprecedented pressure on the logistics indus-
try, especially the last mile parcel delivery. Exist-
ing solutions mostly rely on dedicated couriers, 
which suffer from high cost and low elasticity 
when dealing with a massive amount of local 
addresses. Advances in the Internet of Things, 
however, have enabled vehicle information to be 
readily accessible anytime anywhere, forming an 
Internet of Vehicles (IoV), which further enables 
intelligent vehicle scheduling and management. 
New opportunities therefore arise toward effi-
cient and elastic last mile delivery for smart cit-
ies. In this article, we seek novel solutions to 
improve the last mile parcel delivery with crowd 
intelligence. We first review the existing and 
emerging solutions for last mile parcel delivery. 
We then discuss the advances of the ride-shar-
ing-based delivery mechanism, identifying the 
unique opportunities and challenges therein. We 
further present Car4Pac, an IoV-enabled intelli-
gent ride-sharing-based delivery system for smart 
cities, and demonstrate its superiority with real 
trace-driven evaluations.

Introduction
During the past decade, online shopping has dra-
matically changed people's lifestyles. Its explosive 
growth heavily relies on the underlying support 
of the logistics and transportation industries. In 
the whole logistics chain, the citywide last mile 
parcel delivery (namely, from distribution centers 
or substations to individual addresses) is often 
the bottleneck and the most expensive segment, 
consuming 13 percent to even 75 percent of the 
entire delivery cost [1]. Also, the last mile parcel 
delivery can occupy a copious amount of trans-
portation resources, which can exacerbate urban 
environment pollution and traffic congestion.

The key problem lies in the mismatch between 
the limited delivery efficiency and the ever 
increasing parcel delivery demand. Tradition-
al logistics providers usually maintain dedicated 
couriers, while the fixed delivery capacity can 
fail to catch the varying delivery demand. During 
popular online shopping festivals, they can hard-
ly meet the promised delivery deadlines due to 
the sudden boost in parcel amount. The uncer-
tain delivery time causes a high missing reception 
rate, which seriously undermines the quality of 
experience for online shopping [2]. Some service 

providers (e.g., Amazon Flex1) try to leverage 
part-time couriers for last mile delivery to improve 
cost effectiveness and elasticity. However, this 
approach is still far from cost-efficient, and the 
corresponding delivery traffic also contributes to 
citywide pollution and traffic congestion.

In recent years, unmanned-vehicle-based solu-
tions are also emerging for last mile parcel deliv-
ery. While they can significantly reduce or even 
eliminate the expensive manpower cost, they are 
mostly explored as individual entities; for example, 
existing unmanned carriers are only experimented 
on in very specific environments with point-to-
point delivery. There is still a long way to go to 
deploy them in scale and explore their collective 
capabilities in the complex real environment to 
achieve a smart city.

In fact, the hidden delivery capability within 
an urban environment is enormous, not to men-
tion that with unmanned vehicles. As one of the 
most promising networking paradigms, the Inter-
net of Things (IoT) bridges the gap between the 
cyber world and the physical world, enabling the 
pervasive end devices to achieve collaborative 
sensing, processing, and computing [5]. In partic-
ular, the citywide vehicle resources can be con-
nected and associated together as an intelligent 
transportation system through the well-established 
networks (e.g., fourth/fifth generation, 4G/5G 
[6], and vehicular networks [7]) for many appli-
cations (e.g., navigation [8]), which is referred to 
as the Internet of Vehicles (IoV). Our analysis on 
real vehicle trajectories in several major cities has 
shown strong evidence that everyday car trips are 
rich enough to cover every area in these cities. 
This opens the opportunity toward a new gen-
eration of last mile delivery that explores crowd 
intelligence. In particular, citywide car trips are a 
rich set of resources to share, with parcels being 
hitchhiked, as illustrated in Fig. 1.

In this article, we first provide an overview of 
the present and emerging solutions for last mile 
parcel delivery. We then demystify the advances 
of IoV-enabled crowd intelligence in parcel deliv-
ery, examining the unique opportunities and chal-
lenges therein. We further present Car4Pac [9], 
a novel last mile parcel delivery system for smart 
cities through intelligent car trip sharing. Our real 
trace-driven evaluations demonstrate the supe-
riority of Car4Pac, which can accurately predict 
the extra delivery cost with only about 15 percent 
error ratio and complete up to 25 percent more 
delivery tasks than the baseline approaches. To 
the best of our knowledge, Car4Pac is the first to 
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explore the opportunities of having parcels hitch-
hiking private car trips with accurate cost predic-
tion and eff ective delivery task assignment, which 
not only achieves time-precise delivery and cost 
effi  ciency, but also reduces traffi  c congestion and 
carbon emission.

lAst mIle PArcel delIvery:
Present And emergIng solutIons
lAst mIle PArcel delIvery: the Present

Traditional logistics service providers (e.g., Cana-
da Post2) mostly rely on dedicated couriers and 
vehicles for parcel delivery. However, there are 
also some key problems associated with last mile 
parcel delivery.

First, it is diffi  cult to achieve time-precise deliv-
ery. Users always prefer more convenient and 
secure delivery service [2] such as home delivery 
with a signature of reception rather than dropping 
off  parcels at the door. If no specifi c time window 
is allowed, the missing reception rate can be high 
since recipients are not likely to wait at home all 
day. A hard pre-arranged short delivery window 
specified by users can guarantee one-time suc-
cessful delivery. But such restrictions will inevita-
bly compromise the delivery efficiency because 
the carrier may have to come to similar locations 
during diff erent pre-arranged time windows, and 
the delivery route will become more back and 
forth.

Second, the lack of elasticity is also a crucial 
issue. Large online shopping festivals (e.g., Black 
Friday in the United States) usually see a very high 
amount of parcels for delivery within a short time 
period. When the promotion period ends, the 
delivery demand quickly drops to the normal level 
or even much lower than average. Maintaining 
dedicated couriers is infl exible to keep pace with 
the fl uctuation of delivery demand.

Furthermore, the delivery cost effi  ciency heavi-
ly relies on the density of delivery addresses [10]. 
Without adequate market density and penetra-
tion, the delivery addresses can be quite sparse, 
so a courier is likely to drive tens of miles for just 
a single parcel delivery. Such circumstances fur-

ther reduce the cost effi  ciency and lead to a high 
average delivery cost.

Some service providers (e.g., Amazon Flex) 
try to hire part-time couriers for parcel delivery. 
Compared to employing dedicated couriers, the 
improvements lie in the ability to flexibly adjust 
the transport capacity to accommodate the ever 
changing delivery demand and the reduction of 
the infrastructure maintenance cost. While largely 
improving the elasticity, this approach still cannot 
guarantee highly time-precise delivery since the 
drivers will not promise to deliver parcels exactly 
during a short time slot.

unmAnned delIvery wIth Iot: emergIng solutIons
In order to combat the existing problems, a series 
of new unmanned delivery approaches for last 
mile delivery have emerged. We elaborate on 
them as follows.

Autonomous vehicles. In recent years, auton-
omous vehicles (AVs) have seen great potential 
in bridging the last mile in open outdoor environ-
ments due to the fast development of self-driving 
and smart vehicle-related technologies [3]. DHL3

began testing self-driving trucks in the second half 
of 2018. Yu et al. [4] proposed a novel AV logis-
tics system and focused on determining the opti-
mal routes for the governed AVs. The advantages 
of AVs lie in many aspects, such as increasing 
delivery efficiency and liberating human forces. 
However, current unmanned driving technology 
is still far from mature, which largely limits its wide 
deployment.

Unmanned aerial vehicles. Unmanned aeri-
al vehicles (UAVs) or drones are promising in 
relieving congestion in urban areas and improving 
accessibility in rural areas, moving the delivery off  
the road and into the air. The industry is actively 
trying parcel delivery using UAVs (e.g., Amazon's 
PrimeAir4 and Google's Wing5), aiming to deliver 
parcels within a very short time period. Despite 
its high efficiency and convenience, UAVs also 
face severe challenges (e.g., restricted applicable 
regions, limited coverage, and high device costs), 
which remain to be solved in the future.

Intelligent robots. As a lightweight carrier, 
intelligent robots are also applied well in the logis-
tics fi eld, especially in particular delivery environ-
ments, such as well controlled communities and 
complicated indoor environments. China's B2C 
e-commerce giant JD6 has planned to replace 
humans with intelligent robots for on-campus 
parcel delivery. Even with great convenience and 
advances in particular environments, intelligent 
robots are usually used as secondary delivery car-
riers given the limited capacity and delivery cov-
erage.

These aforementioned emerging delivery 
approaches reveal their respective potentials in 
improving last mile parcel delivery. They either 
seek a more advanced driver-based approach or 
embrace the rising unmanned driving technolo-
gies to achieve high individual intelligence, name-
ly, making each individual vehicle more intelligent 
for delivery. Even so, they are still insufficient to 
make an all-around solution to achieve time-pre-
cise, elastic, and cost-effi  cient delivery with large 
coverage, as illustrated in Table 1. The citywide 
collective capacities of vehicle resources are still 
far from being explored.

FIGURE 1. The architecture of IoV-enabled ride-sharing-based last mile parcel 
delivery. A driver is planning to travel from the source to the destination 
through the dashed route. Assume that a parcel is scheduled to be deliv-
ered from a shop to a house, where the shop is close to the source and the 
house is close to the destination. Then the driver can deliver this parcel inci-
dentally during the trip through the alternate route shown by the solid line.

Source

Pick up location Drop off location

Destination

Platform

BS

BS

Logistics service 
provider

Vehicles

Package 
Delivery Tasks

2 https://www.canadapost.ca/

3 http://money.cnn.
com/2017/10/11/technolo-
gy/future/dhl-autonomous-de-
livery-truck/index.html

4 http://www:amazon.com/
primeair

5 https://x.company/wing/

6 http://www.chinadaily.com.
cn/business/tech/2017-11/07/
content_34228952.htm

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:41:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • March/April 2019 25

Ride-Sharing-Based Delivery: From Individual 
Intelligence to Crowd Intelligence

IoV connects citywide vehicles toward an intel-
ligent transportation system. The crowd intel-
ligence therein has great potential to explore 
beyond those from individual entities; in partic-
ular, it casts light on ride-sharing-based delivery, 
which fully integrates the ubiquitous citywide 
transportation resources with the massive parcel 
delivery demands. The basic idea is sharing exist-
ing car trips to incidentally deliver parcels with a 
proper reward.

The foundation of ride-sharing-based crowd 
delivery relies on the rich car trip resources in a 
citywide range. To verify this, we collaborate with 
Mojio,7 a leading open platform for connected 
vehicles, and collect a dataset of car trajectories 
and driving records in three cities (i.e., Vancou-
ver, Houston, and Miami) from 9 June to 30 June 
2016. This dataset includes more than 12 million 
data entries of 1275 vehicles, recording the time-
stamp, GPS information, remaining fuel level, and 
so on. We examine the citywide car trip trajectory 
coverage and find that the car trip trajectories 
cover almost all areas of these cities, indicating 
abundant car trip resources for ride-sharing-based 
delivery.

Ride-sharing-based crowd delivery reveals 
many unique advantages. From the drivers’ per-
spective, the additional parcel delivery tasks 
exert only marginal impacts on the driver since 
the drive routes with and without parcel delivery 
tasks do not change much. But the task comple-
tion rewards can be very attractive, compensating 
the cost of the trip. From the service provider’s 
perspective, the sharing-based approach is high-
ly flexible and thus has great potential for elastic 
and time-precise deliveries. The cost is also lower 
than sending dedicated couriers for parcel deliv-
ery. From the city’s perspective, ridesharing can 
effectively reduce traffic congestion and carbon 
emissions, increasing the transportation resource 
utilization. Therefore, ride-sharing-based last mile 
parcel delivery is a trilateral win-win solution for 
all parties.

Although desirable, it is still challenging to turn 
this idea into a practical system. We next discuss 
the main challenges therein from a research per-
spective as follows.

Travel time estimation. An accurate travel time 
estimation is a prerequisite for time-precise parcel 
delivery. Different from hiring specialized couriers 
with well-controlled delivery, ride-sharing-based 
delivery relies on various car trips, which have 
huge diversities in delivery time due to time-vary-
ing traffic conditions, drivers’ different driving 

behaviors, and so on. Hence, how to achieve 
accurate delivery time estimation for diverse car 
trips remains a research challenge.

Delivery task assignment. Given a particular 
delivery task, there may be many feasible assign-
ments. Different car trips can have different extra 
costs (e.g., extra time and fuel) when performing 
the same delivery task. How to conduct an opti-
mized assignment is challenging, especially when 
there are large amounts of car trips and delivery 
tasks, and each car trip is allowed to take multiple 
delivery tasks.

Incentive mechanism design. Drivers will 
not deliver parcels for free, which means that 
an attractive incentive (e.g., a monetary reward) 
needs to be offered for the delivery tasks. Design-
ing a proper incentive mechanism is a crucial 
problem for service providers. Furthermore, deliv-
ery tasks with diverse destination addresses can 
require different rewards, making this problem 
even more challenging.

Car4Pac: A Case of Crowd Delivery
We propose Car4Pac, a novel citywide parcel 
delivery system to demonstrate how ride-shar-
ing-based crowd delivery can be implemented. 
We assume that a driver is willing to take parcel 
delivery tasks as long as the incentive rewards are 
higher than the extra time and fuel cost for taking 
the tasks. The framework of Car4Pac consists of 
three components, namely, triple-dependent trav-
el cost analysis, trip cost estimation, and delivery 
task assignment, as illustrated in Fig. 2.

Triple-Dependent Landmark Graph Construction
We start by constructing a routable graph called a 
landmark graph from the collected massive histor-
ical car trip trajectories to represent the complex 
citywide road network. When two trajectories 
intersect, we identify the point of intersection 
as a landmark, indicating a vertex in our graph. 
We first consider calculating the weight (i.e., the 
time and fuel cost) for each edge. With the GPS 
points, timestamps, fuel level, and so on, we can 
easily get all the time cost and fuel consumption 
for each car trip that goes through a particular 
edge.

The time and fuel costs of traversing an edge 
highly depend on the traffic conditions, which are 
closely related to different departure times. A typ-
ical example is that in rush hours, traffic is more 
crowded than at other times, leading to more fuel 
consumption and longer travel time on the same 
road. Car4Pac adopts a fine-grained two-level 
method to accurately capture the time-dependent 
features of travel time cost and fuel cost on each 
edge. The first level is day-level partition, which 
divides a workday into rush hours Wr, daytime 

TABLE 1. A summary of present and emerging solutions for last mile parcel delivery.

Approaches Categories Researches and Solutions Time-precision Elasticity Cost Efficiency Coverage

Dedicated couriers Driver based delivery Canada Post2 Low Low Low Large

Part-time couriers Driver based delivery Amazon Flex1 Medium High Medium Large

Autonomous vehicles Unmanned delivery DHL,3 Lam et al. [3], Yu et al. [4] Low Low Medium Medium

Unmanned aerial vehicle Unmanned delivery PrimeAir,4 Google Wing5 Low Medium Medium Medium

Intelligent robot Unmanned delivery JD on-campus robot6 Low Low Medium Small

7 https://www.moj.io/
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hours Wd, nighttime hours Wn, and divides the 
rest of the day into daytime Rd and nighttime Rn. 
The second level is the minute level, dividing a 
day into

L = 24 *60
α

⎡

⎣⎢
⎤

⎦⎥

time slots, where  indicates the interval minutes 
between the beginning of two consecutive slots 
(e.g., 15 minutes).

Besides the time-dependent traffi  c conditions, 
people’s different driving skills also impose an 
obvious impact on the cost of travel time for a 
particular edge (e.g., skilled drivers tend to drive 
faster than learners). We define the Driving Skill 
Index DSu of a driver u as the mean ratio between 
his/her travel time through every road and all driv-
ers’ average travel time through the same road. 
Through examining all the trip records in our data-
set, we identify diff erent drivers of each trip and 
calculate their individual driving skill index accord-
ingly. We then calibrate the travel time cost for a 
road at a given time period by dividing each cost 
by the corresponding DSu. Similarly, car trips with 
diff erent vehicle types usually have diff erent fuel 
effi  ciency, causing diverse fuel consumptions. We 
defi ne the Fuel Effi  ciency Index FEv of a particular 
vehicle type v as the ratio between its fuel effi-
ciency and the baseline fuel effi  ciency of a given 
benchmark vehicle type. We then calibrate the 
fuel consumption cost by dividing each cost by 
the corresponding FEv.

We consider the costs of each edge in each 
time slot as random variables and learn them via 
the Gaussian mixture model (GMM) due to two 
reasons. First, it is able to approximate any com-
plex probability distributions, which outperforms 
other simple methods such as exponential distri-
bution functions. Second, GMM achieves rela-
tively good performance given the limited data 
support, while other advanced prediction meth-
ods such as long short-term memory (LSTM) only 
yield good performance with massive and fine-
grained data. The expectations of corresponding 
random variables are then calculated as the esti-
mated benchmark cost.

trIP cost estImAtIon
We next consider how to select the optimal rout-
ing path for a particular trip and achieve a per-
sonalized trip cost estimation. Diff erent from the 
traditional static shortest path problem, the travel 
time and the corresponding cost of each path are 
uncertain given that the cost of each edge in the 
landmark graph is time-dependent, driver-depen-
dent, and vehicle-dependent. Thus this problem 
is actually fi nding the shortest path in a dynamic 
weighted graph, where we consider finding an 
optimal path to minimize the travel time for a 
given trip.

The problem can be divided into two situa-
tions. First, if a travel trip is very short and the 
entire time period falls in one time slot, we can 
simply use a traditional shortest path fi nding algo-
rithm such as Dijkstra’s algorithm [11] to fi nd the 
travel path with the least travel time cost since the 
graph is actually static in this situation. Second, 
if a trip will travel through several time slots, we 
extend the algorithm to solve this dynamic short-
est path problem in multiple stages, where a stage 
corresponds to one time slot, and we begin the 
path search in the next stage based on the tempo-
rary results of the previous stage. After obtaining 
the benchmark cost values, we then re-calibrate 
each personalized cost via multiplying the bench-
mark cost by the corresponding driving skill index 
and fuel effi  ciency index.

delIvery tAsk AssIgnment
The objective of this component is to assign deliv-
ery tasks to the most appropriate car trips so that 
the social welfare can be maximized. This prob-
lem is actually equivalent to finding the optimal 
task-trip matching so that the total time and fuel 
cost is minimized.

A successful task-trip matching must satisfy two 
basic requirements. First, the assigned parcel must 
be delivered precisely within the given time win-
dow. Second, since different drivers may have 
different extra cost to take the same parcel, the 
reward for task completion should be higher than 
the extra cost of the assigned driver (i.e., the util-
ity of that driver must be positive). We filter out 

FIGURE 2. The Car4Pac framework of IoV enabled last mile parcel delivery for smart cities.
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unqualifi ed trips for each delivery task based on 
the two requirements, and then develop a two-
stage algorithm toward the parcel delivery task 
assignment, namely, one-to-one matching and 
many-to-one matching.

In one-to-one matching, we allow each car trip 
to take at most one parcel. Given the certain cal-
culated trip routes in the routing graph, the arrival 
time of a parcel and the extra cost of this trip can 
be determined. In this way, this task assignment 
problem can be abstracted as a weighted match-
ing problem in a bipartite graph. We next convert 
the graph into a balanced completed bipartite 
graph by adding dummy nodes and virtual edges 
with zero weight. Then we can solve the mini-
mum weighted bipartite perfect matching by the 
Hungarian algorithm [12] and further obtain the 
task allocation results.

In many-to-one matching, a car trip can take 
multiple parcels (within a limitation) for deliv-
ery, which further increases the transportation 
resource utilization. However, this many-to-one 
optimization problem is NP-complete since the 
extra cost of taking one more parcel is not linearly 
additive, and the search space grows exponential-
ly with the number of parcels a driver is allowed 
to take. We propose a car-trip-aware heuristic 
algorithm based on the one-to-one assignment 
result to address this problem in an iterative way. 
In particular, in each iteration, we select an avail-
able assignment with the largest utility gain and 
update the new trip routes. We repeat this pro-
cess until no task can be assigned anymore. The 
system workfl ow of Car4Pac is illustrated in Fig. 3

evAluAtIon
We have conducted extensive real-world 
trace-driven experiments to study the perfor-
mance of Car4Pac, particularly with Mojio's car 
trip data in the city of Vancouver with more than 
12 million data records. We split the entire data-
set into a training set and a testing set for the 
personalized trip cost estimation. We empirically 
generate parcel delivery task data for evaluation 
as follows. The delivery time window is randomly 

generated from 9 a.m. to 7 p.m. considering the 
practical situation. Also, the source and destina-
tion locations for each task are randomly speci-
fi ed with an equal probability.

We start from examining the average predic-
tion error ratio of travel time (ERT) and fuel con-
sumption (ERF). Figures 4a and 4b illustrate the 
impact of different time slot granularities on the 
prediction error ratio. We can fi nd that when the 
time slot setting is  = 15 minutes, the error ratio 
of time cost and fuel consumption are minimal 
compared to other settings. This is because when 
 = 5, the time slot interval is so small that many 
roads lack enough data records, making the travel 
time cost calibration less eff ective. On the other 
hand, if we set  = 30 or  = 60, the road condi-
tions during a time slot can vary a lot due to the 
coarse-grained time slot partition, also leading to 
a larger error ratio. Therefore, we choose  = 15 
as the default setting for our experiments.

Figures 4c and 4d further investigate how the 
calibration of driving skill index and fuel effi  ciency 
index would affect the prediction errors of both 
travel time and fuel cost. It is clear that with both 
calibrations, the error ratios are remarkably lower 
than those without such calibrations, with an aver-
age of about 20 percent error ratio reduction. 
This result demonstrates the eff ectiveness of our 
personalized estimation that considers the diver-
sity in driving behaviors and vehicle fuel effi  cien-
cies.

To better evaluate the performance of our task 
delivery algorithm, we implement two baseline 
methods for comparison, namely, Closest Dead-
line First (CDF) and Shortest Distance First (SDF). 
For CDF, each time we consider the task with the 
closest deadline and assign it to the fi rst available 
trip with the earliest departure time. For SDF, we 
prefer selecting the task-trip match with the short-
est extra driving distance rather than considering 
the maximum utility. Figure 5a shows the impact 
of diff erent lengths of user-specifi ed delivery win-
dow on the task completion rate. We can observe 
that as the delivery window becomes relaxed, the 
task completion rate increases accordingly for 

FIGURE 3. The system workfl ow of Car4Pac.
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every method. For a typical delivery window of 
2 hours, Car4Pac remarkably outperforms SDF 
and CDF by 21 and 75 percent, respectively, indi-
cating that Car4Pac is more capable of achieving 
time-precise delivery.

Figure 5b shows the ratio of completed parcels 
to trips (CPTR) when generating tasks by different 
ratios of parcels to trips (PTR). We can find that 
when PTR is small (e.g., less than 0.2), most tasks 
can be completed as the ratio of CPTR to PTR is 
close to 1. As the PTR increases and reaches 0.4, 
the CPTR begins to increase very slowly, which 
indicates that the tasks have already exceeded the 
delivery capacity of car trips. On the other hand, 
the CPTR of Car4Pac is 10 percent higher than 
that of SDF and achieves about 25 percent higher 
than that of CDF. This result shows Car4Pac is 
more capable of handling the massive delivery 
tasks effectively.

In the practical deployment, Car4Pac only 
needs to update edge cost once every time slot, 
and the delivery task assignment is an offline pro-
cess with polynomial complexity. Thus, Car4Pac is 
able to achieve real-time processing.

Further Discussion
Ride-sharing-based parcel delivery has attracted 
research in recent years due to its unique advan-
tages nowadays. Existing research studies such as 
Crowdphysics [13] and Crowddeliver [14] mostly 
focused on exploring the relays of multiple inde-
pendent deliveries by humans or vehicles until 
parcels reach the final destination. These mecha-
nisms require close collaborative efforts of many 
participants and temporary parcel storage, which 
raises uncertainty in the delivery process and 
makes it hard to achieve time-precise delivery. In 
contrast, Car4Pac solves the last mile parcel deliv-

ery through IoV-enabled intelligent ride sharing 
with accurate cost prediction and effective task 
assignment. Car4Pac is also robust against various 
stochastic and extreme situations such as no avail-
able trips, where dedicated couriers will handle 
the delivery tasks left.

Ride-sharing-based delivery also faces challeng-
es from the social aspect. Among them, the most 
significant concern is the privacy issue, given the 
nature of the open access and resource sharing 
of connected vehicles [15]. The trip information 
for each vehicle owner should be well protect-
ed against privacy leakage. Beside, given that the 
parcel “couriers” in the ride sharing context are 
massive numbers of normal drivers rather than 
professional delivery people, the security of the 
parcels and recipients is another key concern in 
this smart city scenario. Thieves and criminals may 
pretend to be drivers to steal parcels of high value 
or even rob recipients. Thus, an effective rating 
system with real-name certification for drivers is 
necessary to establish a complete trustworthy sys-
tem.

In the near future, unmanned delivery 
approaches can supplement or even replace the 
ride-sharing-based approaches for the last mile 
parcel delivery. Compared to ride-sharing-based 
approaches, unmanned delivery approaches have 
no pre-defined driving routes, and different vehi-
cles can be applied well in different scenarios so 
that operators can flexibly schedule the delivery 
strategy and path. For example, autonomous vehi-
cles can move freely in a city carrying a batch of 
parcels, and UAVs are used to deliver parcels for 
the last short distance. Thus, how to collaborative-
ly schedule the unmanned delivery approaches to 
achieve cost efficiency and fast delivery is also a 
promising research direction.

Conclusion
In this article, we study the ride-sharing-based last 
mile parcel delivery in the era of connected and 
smart vehicles. A review of existing problems in 
last mile parcel delivery is presented, followed 
by a discussion of emerging solutions. We then 
discuss crowd intelligence in ride-sharing-based 
parcel delivery, identifying the unique opportuni-
ties and challenges therein. With a case study of 
Car4Pac, we further demonstrate the superior-
ity of this ride-sharing-based delivery approach. 
Given the remarkable potential of crowd intelli-
gence with ride sharing, we believe this is a prom-
ising IoV-enabled solution for smart cities toward 
time-precise, elastic, and cost-efficient last mile 
parcel delivery.

FIGURE 4. The evaluations on the prediction of travel time cost and fuel consumption: a) error ratio of travel time with various time slot 
settings; b) error ratio of fuel consumption with various time slot settings; c) error ratio of travel time with driver-dependent calibra-
tion and without this calibration; d) error ratio of fuel consumption with vehicle-dependent calibration and without this calibration.
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FIGURE 5. Evaluation on delivery task assignment: a) evaluation of task comple-
tion rate under different user-specified delivery time windows; b) the value 
of CPTR when setting different PTR.
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