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Deep Neural Network for Resource Management in
NOMA Networks
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Abstract—Resource management plays a crucial role in improv-
ing sum rate of non-orthogonal multiple access (NOMA) networks.
However, the traditional resource management methods have con-
siderable complexity, creating a huge challenge in computational
efficiency. To handle this challenge, a resource management method
is proposed based on a deep neural network (DNN). The key advan-
tage of the method is that the DNN can perform in almost real-time
resource allocation because it requires a very simple operation. In
this paper, the resource management problem of the NOMA system
adopting imperfect successive interference cancellation (SIC) tech-
nology at the receivers is studied, including the power allocation
stage and the user scheduling stage. For power allocation stage,
the generic fully-connected DNN is trained to approximate the
power allocation of interior point method (IPM), which not only
greatly improves the computational efficiency but also increases
the sum rate of the system. Based on the allocated power, the user
scheduling algorithm is performed to further increase the system
sum rate. Finally, simulation results verify some performances of
the proposed algorithms.

Index Terms—Deep neural network (DNN), non-orthogonal
multiple access (NOMA), resource management.

I. INTRODUCTION

A S THE demand for traffic increases rapidly, the research
and development of resource management has received

much attention [1]–[4]. Resource management has a critical
effect on promoting the sum rate, such as user admission con-
trol [5], channel assignment [6], and transmit power control [7].
However, there are still some problems on data transfer rate,
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network latency, computational efficiency, etc., which call for
efficient resource allocation and management technologies.

As a promising network to improve data rate, energy effi-
ciency, capacity and network coverage, non-orthogonal multiple
access (NOMA) technology has been widely used in wireless
networks [8]–[10]. By employing multiple users in the same
subchannel, the energy efficiency and spectral efficiency can be
significantly improved in wireless networks [11]–[14].

Meanwhile, in academia, there are many ways to increase
system transfer rate and reduce latency, such as optimization
theory and machine learning. Optimization-based algorithms
have been studied for resource management including gradient
descent, heuristic optimization, Lagrangian multiplier and al-
ternating direction method of multipliers (ADMM). A descent
method was investigated to achieve an equilibrium between the
convergence rate and step size of gradient descent [15]. A profit
aggregator-based demand response scheme was utilized to solve
the problem of intelligent community resource allocation, which
used a novel heuristic framework and executed in the form of
the genetic algorithm [16]. The Lagrangian method was used to
solve the optimal resources allocation in wireless communica-
tion, such as subchannels, radios and time slots [17]. Based on
previous ADMM algorithms, a new distributed algorithm was
developed that achieved faster convergence and overcame the
shortcomings of dual decomposition [18]. In addition, machine
learning is known as the driving force of the future technological
revolution. It can solve the regression problem at the receiver
because of the super nonlinear modeling ability. The stronger
computing rate and lower price of deep neural network (DNN)
make its more practical in wider scenarios, and there are plenty
of works that use DNN to handle various communication in
recent years. For example, [19]–[22] investigated promising per-
formance of applying DNN in several tasks, such as, decoding,
anomaly detection, signal recovery and resource management.

Although several researches have been investigated for wire-
less resource management in the NOMA systems [23]–[26],
most papers focused on data sum rate of resource allocation
in the wireless network. However, the computational efficiency
of wireless resource allocation has not been well researched.
The artificial intelligence-based algorithms can reduce compu-
tational cost and improve the speed of resource allocation. There-
fore, we adopt machine learning approach that trains the DNN
model to approximate the power allocation of IPM algorithm
in the NOMA system, which greatly improves computational
efficiency.
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Fig. 1. System model.

The innovation of this paper mainly has the following aspects:
� The resource management is investigated in the NOMA

system, including power allocation and user scheduling.
� For the power allocation stage, we use the IPM algorithm

to generate the optimal power allocation that can be regard
as the set of the label powers. Then the DNN model
is trained to approximate the label powers. The trained
adaptive model can directly perform power allocation, so
the computational efficiency of DNN is much higher than
that of traditional algorithms. In addition, the DNN-based
power allocation algorithm also improves the sum rate of
the NOMA system.

� Based on the power optimization scheme, the user schedul-
ing scheme is treated as a many-to-many two-side matching
game problem between the users and the subchannels.
The user scheduling algorithm is performed to explore the
preferred matching subchannel that further increases the
sum rate.

The rest of this paper is organized as follows. The system
model of NOMA is discussed in Section II. Section III describes
power allocation with DNN for the NOMA system. Section IV
describes the user scheduling algorithm for the NOMA system.
The simulation results are presented in Section V, and finally
the paper is concluded in Section VI.

II. PROBLEM FORMULATION

A. System Model

We investigate a resource management mechanism of the
downlink NOMA system and the system model includes a base
station (BS), multiple subchannnels and multiple users. The sys-
tem model is presented in Fig. 1 and the resource management
mechanism is shown in Fig. 2. The set of users represented as
M = {1, 2, . . .,M} and the bandwidth is divided to the set of
subchannels, represented as N = {1, 2, . . ., N}. The user j and
the user k are multiplexed in the same subchannel i. The BS

transmits two signals in the subchannel i with different powers.
The user k is chosen to perform imperfect SIC, while user j is
not selected.

Assuming that each user can obtain complete channel state
information (CSI). Therefore, the SINR in subchannel i for
user j is

SINRij =
pijcij |gij |2
Iij+σ2

0
, (1)

The channel gain in subchannel i for user j is gij and |gij |2 is
the square of the absolute value of gij . The power in subchannel
i for user j to transmission signal is pij , and i ∈ N , j ∈ M. We
introduce an N ×M user-channel matrix c where the binary
element cij denotes whether user j is allocated to subchannel
i. The number of rows and columns corresponds to the number
of subchannels and the number of users, respectively. The noise
variance of the system is σ2

0.
Orthogonal frequency division multiple access (OFDMA)

technology allows each subchannel to access only one user,
whereas in the NOMA system each subchannel can be assigned
to multiple users. The imperfect SIC technology is performed
that causes considerable complexityO(H3) [27] at the receivers.
Therefore, assume that each user can share at most V = 4
channels, and each channel can be occupied by at most H = 3
users. The key method of imperfect SIC technology is to reduce
the interferences caused by the superimposed signals of multiple
users. At the receivers, the channel gains are sorted in descending
order in subchannel i for all users, which are shown as

gi1 ≥ gi2 ≥ gi3 ≥ · · · ≥ gik ≥ · · · ≥ gij ≥ · · · ≥ giM , (2)

If gik ≥ gij , user k can remove the interference signal from user
j and successfully decode with imperfect SIC technology. How-
ever, the user j cannot be decoded the interference signal from
user k, which regarded as noise. The interference in subchannel
i for user j is given by

Iij =

M∑

l=j+1,l �=j

εilpilcil|gil|2 +
j−1∑

k=1,k �=j

pikcik|gik|2, (3)

where k ∈ M, gik is the channel gain in subchannel i for user
k and |gik|2 are the square of the absolute value of gik. εil is the
imperfect SIC long-term statistics obtained by user j decoding
user l, gil ≤ gij in subchannel i. pik is the transmission power
from the BS to userk in subchannel i. The sum rate in subchannel
i for user j is given by

Rij = log2

⎛

⎜⎜⎜⎜⎝
1 +

pijcij |gij |2∑M
l=j+1,l �=j εilpilcil|gil|2
+
∑j−1

k=1,k �=j pikcik|gik|2 + σ2
0

⎞

⎟⎟⎟⎟⎠
. (4)

Assuming there are two users in the channel i, the sum rate
in the channel i is

Ri = log2

(
1 +

pi1ci1|gi1|2
εi2pi2ci2|gi2|2 + σ2

0

)

+ log2

(
1 +

pi2ci2|gi2|2
pi1ci1|gi1|2 + σ2

0

)
. (5)
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Fig. 2. Resource management mechanism.

where ci1 = 1, ci2 = 1 and gi1 > gi2. Assuming there are three
users in the channel i, the sum rate in the channel i is

Ri = log2

(
1 +

pi1ci1|gi1|2
εi2pi2ci2|gi2|2 + εi3pi3ci3|gi3|2 + σ2

0

)

+ log2

(
1 +

pi2ci2|gi2|2
pi1ci1|gi1|2 + εi3pi3ci3|gi3|2 + σ2

0

)

+ log2

(
1 +

pi3ci3|gi3|2
pi1ci1|gi1|2 + pi2ci2|gi2|2 + σ2

0

)
(6)

where ci1 = 1, ci2 = 1, ci3 = 1 and gi1 > gi2 > gi3. Therefore,
the total sum rate with imperfect SIC technology in the NOMA
system is

Rtotal

=
N∑

i=1

M∑

j=1

log2

⎛

⎜⎜⎜⎜⎝
1+

pijcij |gij |2∑M
l=j+1,l �=j εilpilcil|gil|2
+
∑j−1

k=1,k �=j pikcik|gik|2 + σ2
0

⎞

⎟⎟⎟⎟⎠
(7)

B. Problem Formulation

Our goal is to improve the total sum rate and computational
efficiency of the system. The complete optimization problem is
given by:

Rtotal

=

N∑

i=1

M∑

j=1

log2

⎛

⎜⎜⎜⎝1 +
pijcij |gij |2∑M

l=j+1,l �=j εilpilcil|gil|2
+
∑j−1

k=1,k �=j pikcik|gik|2 + σ2
0

⎞

⎟⎟⎟⎠,

(8)

subject to C1 :

N∑

i=1

cij ≤ H, ∀j ∈ M,

C2 :
M∑

j=1

cij ≤ V, ∀i ∈ N ,

C3 : cij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ M,

C4 : Rij ≥ Rmin, ∀i ∈ N , ∀j ∈ M,

C5 :
N∑

i=1

M∑

j=1

pij = Pc, ∀i ∈ N , ∀j ∈ M, (9)

where H , V and Rmin are given constants. The power of BS
is Pc. The set of power allocation for all users is p, p =
{p11, p12, . . ., pNM}.

Constraints (C1)–(C2) represent that each user only occu-
pies at most H subchannels and at most V users can share
one same subchannel respectively; Constraints C3 means that
user scheduling variables are binary; Constraint C4 ensures the
minimum QoS requirements for users, where the date rate of
any user needs to be larger than the minimum sum rate Rmin;
Constraint C5 restricts that the powers are supposed to satisfy
transmission power of the BS.

The resource management is divided into two stages: power
allocation and user scheduling, which is shown in Fig. 2. The
starting of the resource management is power allocation, where
the aim is to improve computing performance and total sum
rate of the NOMA network. The objective function of power
allocation in the first stage can be obtained as follow

min
p

−Rtotal, (10)

subject to C1 : Rij ≥ Rmin, ∀i ∈ N , ∀j ∈ M,

C2 :

N∑

i=1

M∑

j=1

pij = Pc, ∀i ∈ N , ∀j ∈ M, (11)
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Fig. 3. The training and testing stage of DNN.

where cij and cik are given constants, whilepij andpik are power
variables. Constraint C1 ensures the minimum date rate for users,
which needs to be larger than the minimum sum rate Rmin;
Constraint C2 ensures that the powers should satisfy transmit
power of the BS.

Next, a DNN is trained to approximate the power allocation
using the IPM algorithm. The loss function is shown as

min
p̂

||p̂− argmax
p

Rtotal||2, (12)

where p̂ is the set of the output powers of DNN. p is the set of
the label powers, which is calculated by the IPM algorithm.

In the second stage, the total sum rate of the NOMA network
is further improved by user scheduling algorithm. The objective
function of user scheduling is expressed as

max
c

Rtotal, (13)

subject to C1 :

N∑

i=1

cij ≤ H, ∀j ∈ M,

C2 :
M∑

j=1

cij ≤ V, ∀i ∈ N ,

C3 : cij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ M, (14)

wherepij andpik are given constants, and gij and gik are channel
gain variables.

III. DNN-BASED POWER ALLOCATION

The IPM [35] has the advantages in terms of convergence
and calculation speed. we use the IPM algorithm to generate the
optimal power allocation that can be regard as the set of the label
powers. Then the DNN model is trained to approximate the label
powers. The trained adaptive model can directly perform power
allocation. Therefore, the computing performance of power
allocation rate far exceeds traditional algorithms.

A. Deep Neural Network

Deep learning [29]–[31] is a method based on representational
learning of data in machine learning. The deep learning structure
has multi-layer perceptrons which means it has multiple hidden
layers. In this paper, a deep learning scheme is shown in Fig. 3,
which consists of the training stage and the testing stage.

Network Structure. The network contains one input layer,
three hidden layers and one output layer. The input is the set
of channel gains and the output is the set of power allocation,
the dimension of which depend on the number of users and the
number of subchannels. The three hidden layers have 200, 80
and 80 neurons, and the neuron receives information from the
neuron of the previous layer is described as follow.

p(l+1)
u =

L∑

v=1

w(l)
uvx

(l)
v + b(l)u , (15)

the weights of the neuron is w(l)
uv , which reflects the relationship

between the uth neuron in lth layer and vth neuron in the (l +

1)th layer, where l = 1, 2, . . ., L. The bias of the neuron is b(l)u ,
which associates with the uth neuron in the (l + 1)th layer. In
the lth layer, the number of neurons is L.

Activation functions, such as ReLU function, are used in each
hidden layer and it can preserve and map the features of the
activated neurons. The ReLU function can mitigate gradient
dispersion, which is denoted as

ReLU(s) =

{
s s > 0
0 s ≤ 0.

(16)

Data generation stage. The input data of the network is
generated according to the following manners. The channel
gains gtij are generated by a standard normal distribution, where t
represents tth training sample. The optimized power allocations
ptij is generated by using IPM for each tuple (gtij) with the
total sum rate of the systemRnew −Rold < 10−5 or the number
of iteration > 1000 as termination conditions. The ith training
sample is the tuple (gtij , p

t
ij). We then execute the these process

many times to generate the validation set and the training set.
The number of the validation set is smaller than the training set.

Training stage. The training process is the process of con-
tinuously optimizing the weight of the DNN. In the process, we
use RMSprop algorithm and the decay rate is fixed to 0.9. The
batch size and learning rate are selected using cross-validation.
The goal is to minimize the loss function which reflects square
error (MSE) between the label power and the network output
power. The training and testing stage are shown in Fig. 3.

Testing stage. The robustness of the trained network is ver-
ified. Firstly, the IPM algorithm to generate the optimal power
allocation that can be regard as the set of the label powers. we
pass the validation set to the network and then we get the output
powers of the DNN model. Then, the sum rate of the system
using the label powers and the output powers are calculated.
Finally, the sum rates of the two algorithms are compared.

B. Approximating Power of IPM by DNN

Suppose channel assignment is fixed, i.e., user-channel matrix
c. The IPM is used to allocate power for the NOMA system.
The characteristic of the IPM is that it always iterates inside
the feasible region and tends to the optimal solution. The IPM
method can solve the objective function (10). Proof: Please refer
to Appendix
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Next, the set of label power is p, which is obtained by using
IPM. The set of the network output powers of the tth iteration
and (t+ 1)th iteration are p̂t and p̂(t+1), respectively. The
relationship between p̂t and p̂(t+1) can be shown as

p̂(t+1) = ξt(p̂t,p). (17)

The number of iteration is t, and ξt is a mapping.
Proposition 3: (Universal approximation proposition for it-

erative algorithm) The mapping from the label power p and
initialization p̂0 to final output p̂t.

p̂t = f t(f t−1(· · ·f 1(f 0(p̂0,p),p). . .,p),p), (18)

be accurately approximated by activation function, which can
be expressed as

max |p̂t−p|2 ≤ δ, (19)

where δ is a very small value.
The algorithm behavior is learned by taking advantage of a

trained DNN. The problem of power allocation is nonconvex
that may result in the algorithm converges to multiple isolated
solutions. Thus, the initialization as input feature of DNN to de-
fine the p̂t is necessary. In summary, each iteration of IPM shows
continuous mapping that IPM can be approximated arbitrarily
well.

The main steps of the approximation algorithm is summarized
as bellow: 1) Construct DNN that consists of activation function
of ReLU function, normalization to approximate division and
multiplication operations; 2) Select a reasonable parameter for
the DNN to approximate the power allocation of IPM; 3) Uti-
lize the DNN to approximate the power allocation of IPM by
bounding the error propagated.

The DNN power allocation algorithm is formulated that can
closely approximate the power allocation of the IPM algorithm
for power allocation. The algorithm is described in detail in
Algorithm 1.

IV. USER SCHEDULING ALGORITHM

Each user has different transmission quality on the different
subchannels since the multipath fading of the channel. Based
on the allocated powers by DNN, the BS uses user scheduling
algorithm to select preferred matching subchannel for the users
with high channel gain. The user scheduling algorithm can
reduce the impact of multipath fading on data sum rate in the
NOMA system.

A. User Scheduling Problem

The proposed user scheduling solution is expressed as an
optimization problem (13) and solved by maximizing the total
sum rate in the NOMA system.

To describe the dynamic scheduling, we first initialize the
user-channel matrix c and the channel gain g, and they both
have the same dimension. If user j is assigned to subchannel
i, cij = 1, otherwise cij = 0. Given any two users j1, j2, any
two subchannels i1, i2, and two matchings X,X ′, as well as two
function values corresponding to two matching schemes, i.e.,
F

i1,j2
i2,j1

(X ′), F i1,j1
i2,j2

(X). If F i1,j2
i2,j1

(X ′) > F
i1,j1
i2,j2

(X), the user j2 is

Algorithm 1: DNN-Based Power Allocation.
Stage I: Data Generation

1: Initialization of the user-channel matrix c for all the
SCs ∀i ∈ {1, 2, . . ., N} and all the users
∀j ∈ {1, 2, . . .,M} with H = 3 and V = 4.

2: Initialize the same power for each user in the different
subchannels.

3: Initialize the maximum tolerance ε, the maximum
number of iteration Lm and the number of iterations �.

4: while |Fl+1(p)− Fl(p)| > ε or � ≤ Lm do
5: Update pij according to solve the objective function

(10) using IPM.
6: � = �+ 1.
7: end while
Stage II: DNN approaching IPM power allocation
1: Initialize DNN structure, the weights w and bias b.
2: for m = 1 to training epoch do
3: for n = 1 to num batch do
4: DNN model training: DNN approaching IPM

power allocation by minimizing loss function (12).
5: end for
6: end for
7: DNN data testing: Normalized network output power

pij with pij ∈ p and then Pc ∗ pij .

Algorithm 2: Power Allocation and User Scheduling
Algorithm.

1: repeat
2: In the first stage: DNN power allocation
3: Update power allocation using a DNN-based power

allocation method.
4: In the second stage: User scheduling
5: for i = 1 to N do
6: for j = 1 to M do
7: Select two users (j1, j2) and two subchannels

(i1, i2), where i1 ∈ X(j1), i2 ∈ X(j2),
i1 /∈ X(j2), i2 /∈ X(j1).

8: while F
i1,j2
i2,j1

(X ′) > F
i1,j1
i2,j2

(X) do
9: Update user-channel matrix c.

10: end while
11: end for
12: end for
13: until Convergence

scheduled to subchannel i1 and user j1 should be assigned to
subchannel i2.

B. User Scheduling Algorithm

Based on the DNN power optimization, the user scheduling
algorithm is performed by the BS to explore the preferred
matching subchannel for the users.

The proposed power allocation and user scheduling (PAUS)
algorithm is shown in Algorithm 2. In the first stage, the power
allocation for each user in different subchannels is updated by us-
ing a DNN-based power allocation method. In the second stage,
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Fig. 4. MSE vs. epoch for different batch sizes.

Fig. 5. MSE vs. epoch for different learning rates.

the user is scheduled to the corresponding subchannel according
to the preferred matching, and then the user-channel matrix c
is updated. When user scheduling happens, the user-channel
matrix will change. The scheduling process will terminate when
there is no user scheduling to increase the total sum rate. After
some iterations, the total sum rate of Algorithm 2 no longer
grows and converges to a fixed value [33]. The convergence of
the proposed Algorithm 2 is verified in the next subsection.

C. Convergence Analysis

The convergence performance of Algorithm 2 depends on
DNN-based power allocation (which is Algorithm 1) and user
scheduling [34].

1) The convergence performance of the DNN-based power
allocation
It can be seen from Fig. 4 and Fig. 5 in Section V that
after reaching a certain number of iterations, the MSE
tends to be flat, and the DNN power allocation algorithm
finally converges to a fixed value. The convergence of the
proposed Algorithm 1 is proved.

2) The convergence performance of user scheduling.
After multiple user scheduling operations, the structure of the

preferred matching changes is represented as

F0 → F1 → F2 → · · ·. (20)

We ensure that the sum rate of subchannel i1 and subchannel i2

are supposed to satisfy F
i1,j2
i1,j2

(X ′) > F
i1,j1
i2,j2

(X) after executing

preferred matching for each user. The total sum rate of the system
increases after each match operation �.

Δl
l−1 = Rtotal(Fl)−Rtotal(Fl−1)

=
∑

i∈N
Rtotal(Fl)−

∑

i∈N
Rtotal(Fl−1) > 0 (21)

The number of potential scheduling user is limited in the
many-to-many game. In addition, the total sum rate has an
upper bound in the NOMA system since spectrum resources are
limited. Hence, the total sum rate convergence after a preferred
matching. In summary, the both Algorithm 1 and Algorithm 2
have convergence.

D. Complexity Analysis

1) The Complexity Analysis of Algorithm 1: The complexity
performance of Algorithm 1 depends on the DNN-based power
allocation. In general, the floating-point operations (FLOPs) can
be used to present the time complexity of the DNN. For each fully
connected layer of DNN without bias, the number of FLOPs is
given by:

FLOPs = (2Il−1)Ol. (22)

where l is the index of the network layer, Il is the input dimension
of the lth layer and Ol is the output dimension of the lth layer.
For each fully connected layer of DNN with bias, the number of
FLOPs is represented as:

FLOPs = 2IlOl. (23)

Therefore, for all fully connected layers of DNN in our model,
the number of FLOPs is:

FLOPs = 2
L+1∑

l=1

IlOl

= 2(TNMh1 + h1h2 + h2h3 + h3TNM) (24)

where L is the number of network layers and the T is the
number of validation samples. The input layer and output layer
dimensions of the network are both N ∗M . h1, h2, and h3 are
the number of neurons in the three hidden layers.

The complexity performance of IPM is discussed in [36]. Any
method of solving an equation requires a precision of O(L′)
bits for each arithmetic operation, e.g., Ax = b if det(A) =
O(2L′

). The IPM needs O((n)3.5L′) arithmetic operations on
O(L′) bit numbers, where n is the dimension of power variable
n = NM , L′ is the encoding size of the matrix(E,Pc) and
L′ is not lager than n. All elements in a matrix E are 1,
becauseE is a coefficient matrix with IPM inequality constraints
(
∑N

i=1

∑M
j=1 pij = Pc). The complexity comparison between

DNN-based power allocation and IPM power allocation is as
follows:

O(2(TNMh1 + h1h2 + h2h3 + h3TNM))

< O((NM)3.5L′) (25)

Therefore, the proposed DNN model has very low algorithm
complexity than IPM.
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2) The Complexity Performance of Algorithm 2: The com-
plexity performance of the PAUS algorithm isO(2

∑L+1
l=1 IlOl +

SMVH(N −H)). The number of user and the number of sub-
channel areM andN , respectively. Besides, at mostH subchan-
nels can be occupied for each user and at most V users can share
one same subchannel. If MH = NV , each player keeps fully
matched after every user scheduling. The matching F

i1,j1
i2,j2

has
two users and two subchannels. For user i1, there exists H(N −
H) possible combinations of j1 and j2 inF i1,j1

i2,j2
. For the subchan-

nel j1, the preferred matching F
i1,j1
i2,j2

with i1 has V H(N −H)
possible combinations. There are 1

2MVH(N −H) preferred
matchings for i1 user in each user scheduling. The number of
user scheduling is S. The complexity performance of PAUS is
expressed by O(2

∑L+1
l=1 IlOl + SMVH(N −H)).

E. Deployment Analysis

Deep learning deployment is becoming essential for the
wireless resource management. The DNN provides excellent
accuracy, but it also brings heavy computing and storage burden
to the system. When deploying deep learning models on network
systems, researchers face the following challenges: 1) Due to
the communication bandwidth limitation of mobile terminals,
downloading large DNN models is still challenging, and even
offline downloading of DNNs is difficult to achieve. 2) The large
model of DL also imposes strict requirements on the memory
size and the computing resources of network system.

Driven by these challenges, there has been a preliminary
exploration of DL deployment [30], [31]. The fast fourier trans-
form (FFT)-based DNN was proposed for the training model
which can lower asymptotic complexity for computing and
storing [38]. The greedy two-dimensional partition was studied,
and the workload was allocated to heterogeneous mobile devices
to achieve maximum execution parallelism. A pruning scheme
with a specific set of lasso normalization was also proposed,
which allowed DNN to be deployed more efficiently and com-
pactly on the mobile network [39].

V. SIMULATION RESULTS

A. Simulation Setup

In this section, simulations have been executed to evaluate
the performance of the PAUS algorithm and the DNN-based
power allocation scheme with IPM applied, by comparing their
performance with pure IPM, maximum power allocation (Max
scheme), and random power allocation scheme (Rand scheme).
The power of the BS is equally distributed to users and randomly
assigned to users in Max scheme and Rand scheme, respectively.
For the simulation, the peak power Pc of BS is 43 dbm. We
set the minimum QoS of users to 0.01 bps/Hz, the number of
subchannels to 10 and the number of users to 10 if there are no
special instructions. There exists a Rayleigh fading in the model
and the channel gains satisfy the standard normal distribution of
zero mean and unit variance. The parameters of DNN are set as
shown in Table I. The validation set is utilized to measure the
computing performance and sum rate performance of DNN and
the training set is used for model training.

TABLE I
SUMMARY OF SYMBOLS AND NOTATION

The proposed scheme is performed in Python 3.5 with Tensor-
Flow 1.8.0 with Intel(R) Core(TM)i7-7700@3.6 GHz, NVIDIA
GeForce GTX 1050. It is worth noting that the IPM uses the
MATLAB, DNN and PAUS use the Python in the paper.

B. Parameter Selection

The learning rate and batch size of the DNN is selected in this
section. When MSE tends to 0, it is hard to distinguish them in
the real domain. The MSE performance is shown in logarithmic
domain. Fig. 4 shows the MSE of the system vs. the number of
iterations with different batch sizes for the DNN to convergence.
The batch size is adopted 20, 50, 100 and 200 on the validation set
to evaluate the MSE performance. The proposed DNN converges
within 200 iteration operations. Note that larger batch size makes
the convergence rate become slower on the validation set. The
smallest MSE achieves with batch size 50 for the validation set.
Therefore, the batch size 50 is chosen in this DNN model.

Fig. 5 demonstrates the MSE of the system on the training
set and the validation set vs. the number of iterations with
different learning rates for the DNN to convergence. The MSE
performance is shown in logarithmic domain. The learning rate
affects the convergence speed of the model. Normally the higher
the learning rate becomes, the faster the neural network learns.
When the learning rate is very small, the network may fall into
a local optimum. However, the loss will stop falling and it will
oscillate repeatedly at a certain position when it is too large
and exceeds the extreme value. From Fig. 5, when the number
of iterations exceeds 200, the MSE is close to a steady level.
when the learning rate is 0.001, the MSE becomes the smallest.
Therefore, the learning rate 0.001 is adopted in the model.

C. Computing Performance

The computing performance of the DNN scheme are inves-
tigated with 5000 validation samples in the testing stage and
the batch size is 100. The average sum rate for each validation
sample for DNN and IPM algorithm are shown in the Table II and
the Table III. The operation time of DNN on CPU and GPU is
calculated for all validation samples because when the validation
samples are large enough, the network input dimension has
impact on the operation time. However, the operation time of
the IPM algorithm in table is just for one sample since we only
need to calculate the power allocation of the current scene in
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TABLE II
COMPUTATIONAL PERFORMANCE AND SUM RATE FOR DIFFERENT NUMBERS OF USERS

TABLE III
COMPUTATIONAL PERFORMANCE AND SUM RATE FOR DIFFERENT NUMBERS OF SUBCHANNELS

TABLE IV
COMPUTATIONAL PERFORMANCE FOR DIFFERENT VARIABLES

practice. The operation time of DNN on CPU and GPU grows
with an increase of the number of users and the number of
subchannels. When the batch size bigger enough, the GPU has
better performance than the CPU in the operation time. As
expected, the GPU has higher computational efficiency than
CPU. It is especially worth noting that the DNN achieves a
higher computational efficiency and approximation accuracy.
For example, the DNN achieves 89.67% sum rate compares with
the IPM algorithm with M = 30 and N = 10 in the Table II,
while obtaining more than one hundred times for computational
efficiency. The DNN has reached 90.15%, the total sum rate of
IPM algorithm with M = 20 and N = 25, which only takes up
three-thousandth of the IPM operation time on GPU.

In this model, the training of DNN is performed offline. The
Table IV shows that total training time of DNN is related to the
number of users and subchannel, the number of training samples
and batch size. The network training time rises with the grow
of the number of users or channels and the number of training
samples. As the batch size increases, the training time declines.

D. Sum Rate Performance

The impact of the minimum QoS of users Rmin is demon-
strated with different subchannels and users in the IPM

Fig. 6. The sum rate vs. The value of Rmin.

Fig. 7. The sum rate vs. The value of Rmin.

algorithm. From Fig. 6 and Fig. 7, the value of Rmin is set from
0 bps/Hz to 0.06 bps/Hz. The total sum rate drops sharply with
a grow of the minimum QoS of users Rmin since the users with
poor channel conditions need the BS to send more power to meet
the minimum QoS requirement.

Fig. 8 shows the total sum rate vs. the number of users
with different algorithms. The total sum rate of the PAUS and
DNN-based methods is evaluated that compared to the following
schemes: 1) the IPM; 2) the Max scheme; 3) the Rand scheme.
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Fig. 8. The sum rate vs. the number of users.

Fig. 9. The sum rate vs. the number of subchannels.

As observed in Fig. 8, The PAUS scheme achieves higher sum
rate than that of DNN scheme as well as the three comparison
schemes. Besides, DNN has a high approximation proportion
for IPM, and it takes much less time than IPM. Fig. 9 shows
the total sum rate vs. the number of subchannels with different
algorithms. In Fig. 9 that the larger the number of subchannels
in the network is, the higher the total sum rate can be obtained.
The main reason is that, as the number of subchannels increases,
more users can be assigned to achieve more diversity channel
gains in subchannels.

VI. CONCLUSION

In this work, a framework with DNN for downlink resource
management in NOMA system was studied and the imperfect
SIC technology was adopted at the receivers. The advantage of
the proposed DNN-based power allocation and PUSA algorithm
is to improve the system sum rate and computing performance.
The BS performed power allocation first. To guarantee the higher
computational efficiency, DNN was trained to well-approximate
the IPM algorithm for power allocation. Based on the issued
power, the user scheduling was performed to improve the total
sum rate of the system. However, there are many significant
issues that need to be handled, which are listed as follows:

1) Exploring unsupervised learning resource management
methods for scenarios in which the number of users dy-
namically changes in real time.

2) How to cache network structure parameters for distributed
computing and parallel computing, reducing computation
time?

APPENDIX

Proof: The objective function (10) can be solved by utilizing
IPM. The IPM can solve the convex optimization function with
inequality constraints and/or equality constraints. The objec-
tive and constraint functions need to satisfy twice differen-
tiable [37]. �

The first order partial derivative of Rij for power pik is

∂Rij

∂pik
=

cik|gik|2
ln(2)

.

∑j−1
k=1,k �=j pikcik|gik|2 + σ2

0

pijcij |gij |2 +
∑j−1

k=1,k �=j pikcik|gik|2 + σ2
0

,

(26)
The second order partial derivative of Rij for power pik and
power pij is given by.

∂2Rij

∂pik∂pij

=
−cikcij |gik|2|gij |2

(∑j−1
k=1,k �=j pikcik|gik|2 + σ2

0

)

ln(2)
(
pijcij |gij |2 +

∑j−1
k=1,k �=j pikcik|gik|2 + σ2

0

)2 < 0,

(27)

where

∂2(Rij)

∂pik∂pij
< 0. (28)

Therefore,

W
∂2(−Rtotal)

∂pik∂pij
> 0. (29)

The objective (10) and constraint functionC1 in (11) are second-
order continuous derivable convex functions. The objective
function (10) can be solved by utilizing IPM.
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