
1

DeepCast: Towards Personalized QoE for
Edge-Assisted Crowdcast with Deep Reinforcement

Learning
Fangxin Wang, Student Member, IEEE, Cong Zhang, Member, IEEE, Feng Wang, Senior Member, IEEE,

Jiangchuan Liu, Fellow, IEEE, Yifei Zhu, Student Member, IEEE, Haitian Pang, Student Member, IEEE, and
Lifeng Sun, Senior Member, IEEE

Abstract—Today’s anywhere and anytime broadband connec-
tion and audio/video capture have boosted the deployment of
crowdsourced livecast services (or crowdcast). Bridging a massive
amount of geo-distributed broadcasters and their fellow viewers,
such representatives as Twitch.tv, Youtube Gaming, and Inke.tv,
have greatly changed the generation and distribution landscape
of streaming content. They also enable rich online interactions
among the crowd, and strive to offer personalized Quality-of-
Experience (QoE) for individual viewers. Given the ultra-large
scale and the dynamics of the crowd, personalizing QoE however
is much more challenging than in early generation streaming
services. The rich interactions among the broadcasters, viewers,
and the network system, on the other hand, also offer invaluable
data that could be utilized towards informed management. This
paper presents DeepCast, an edge-assisted crowdcast framework
that explores the sheer amount of viewing data towards intelligent
decisions for personalized QoE demands. DeepCast seamlessly
integrates cloud, CDN, and edge servers for crowdcast content
distribution, and advocates a data-driven design that extracts
the hidden information from the complex interactions among the
system components. Through deep reinforcement learning (DRL),
it automatically identifies the most suitable strategies for viewer
assignment and transcoding at edges. We collect multiple real-
world datasets and evaluate the performance of DeepCast with
trace-driven experiments. The results demonstrate its flexibility
and effectiveness towards better personalized QoE and lower cost
for crowdcast systems.

Index Terms—Crowdsourced livecast, Edge computing, Per-
sonalized QoE, Deep reinforcement learning.

I. INTRODUCTION

Interactive crowdsourced livecast (or crowdcast) has be-
come increasingly popular and seen great success in the past
few years. In a crowdcast service, numerous broadcasters can
stream their own contents to the viewers in their channels
through such crowdcast platforms as Twitch.tv1, Youtube

Fangxin Wang, Jiangchuan Liu and Yifei Zhu are with School of Comput-
ing Science, Simon Fraser University, Canada. E-mail: {fangxinw, yza323,
jcliu}@sfu.ca.
Cong Zhang is with School of Computer Science, University of Science and
Technology, China. Email: congz@ustc.edu.cn.
Feng Wang is with Department of Computer and Information Science, The
University of Mississippi, USA. E-mail: fwang@cs.olemiss.edu.
Haitian Pang is with Department of Computer Science and Technology,
Tsinghua University, China. E-mail: pht14@mails.tsinghua.edu.cn.
Lifeng Sun is with Department of Computer Science and Technology, Ts-
inghua University, China. E-mail: sunlf@tsinghua.edu.cn.
A preliminary version of this work appeared in IEEE INFOCOM 2019.
Corresponding author: Jiangchuan Liu.

1https://www.twitch.tv/

Gaming2, and Inke.tv3, to name a few. And the massive
amount of viewers can both watch the live video contents
and interact with the broadcaster and other viewers within the
same channel. The crowdcast market is estimated to grow from
30.29 billion in 2016 to more than 70 billion by 2021, and it is
reported that 36% of the global Internet users had watched live
video as of November 2016 [1]; in Facebook, people spend
3x longer time watching live streaming compared to content
that is no longer live [2].

In a livecast service, the source streaming will first need
to be transcoded to different bitrates and then be delivered
to viewers. Compared to traditional livecast services where
professional video producers (e.g., TV channels and Netflix)
broadcast well-planned content to viewers at specified time
periods, there exist three unique features in a crowdcast
service. First, crowdcast platforms are having an increasingly
large scale due to the myriad broadcasters and viewers. For
example, the monthly unique broadcaster number reached
more than 2 million and the daily unique viewers were more
than 15 million in Twitch.tv in 2017 [3]. The myriad video
contents generated at the broadcaster side require massive
resource for video transcoding and delivery, which brings
heavy burdens and cost to crowdcast platforms. Second, the
content preferences on the viewer side are highly diversi-
fied and heterogeneous. Most viewers can be attracted by a
very small proportion of broadcasters and the total viewer
number at peak time and off-peak time can vary by orders
of magnitude [4]. Such a highly skewed viewing patterns
and dynamic resource demands make effective viewer and
resource management very complicated. Third, given the rich
interactions between viewers and broadcasters as well as the
diversified watching environments/preferences, viewers have
personalized quality of experience (QoE) demands (such as
various preferences for streaming delays, channel switching
latencies and bitrates), which, if not carefully handled, can be
hard to satisfy. For example, the communicative viewers that
enjoy interacting with broadcasters can be more sensitive to
the streaming latency, while those channel skimmers who only
browse each channel for a while usually prefer a low channel
switching latency, even sacrificing the bitrate and the absolute
streaming latency.

2https://gaming.youtube.com/
3http://www.inke.cn/

2

The unique features in crowdcast impose an unprecedented
key challenge on how to flexibly and cost-effectively accom-
modate the heterogeneous and personalized QoE demands for
a large crowd of viewers. Traditional approaches for live-
cast services rely on cloud-CDN architectures for streaming
transcoding and delivery. Yet such dedicated architectures
cannot well satisfy viewers’ diversified personalized QoE
demands since all the QoE metrics are usually optimized in
a monolithic approach. As a new emerging paradigm, edge
computing [5], brings more flexibility to livecast services, and
has been used to optimize 4K live streaming [6], reduce the
first mile delivery latency [7], accommodate flash crowds for
popular contents [8], etc. These existing edge-based works,
however, are still not able to fully address the unique challenge
in effectively accommodating viewers’ diverse QoE demands.

In this paper, we propose DeepCast [9], an intelligent edge-
assisted crowdcast framework that accommodates personalized
QoE with minimized system cost. In DeepCast, distributed
edge servers fetch high bitrate from CDN servers and then
downsample (or transcode) to multiple bitrates as requested
by viewers. Edge servers work collaboratively to assign viewer
loads to proper servers based on viewers’ personalized QoE
demands and the instantaneous system resource distribution.

It is extremely complex to achieve the optimal viewer as-
signment and transcoding selection due to the numerous video
contents, diverse QoE demands and uncertain online watching
behaviors. Yet, the rich interactions among the broadcasters,
viewers, and the network system also offer invaluable data
that could be utilized towards informed management. We
argue that the recent advances in DRL apply well in this
context. We propose a data-driven DRL-based approach that
can automatically learn from the network and viewer infor-
mation to make intelligent decisions without any predefined
rules. Specifically, the edge system maintains a learning agent
that gradually learns to optimize the viewer assignment and
transcoding policy based on the resulting performance of the
past assignment. DeepCast uses state-of-the-art asynchronous
advantage actor-critic network model (A3C) [10] to train
the deep neural network, which extracts the edge resource
distribution and the viewer request as a state and selects an
optimal action through the network. To our best knowledge,
DeepCast is the first edge-assisted framework that applies DRL
for personalized QoE optimization in crowdcast services.

We collect three real-world datasets, including a livecast
viewing trace and real edge trace in a major city of China as
well as a public viewer bandwidth trace in US, to evaluate
the performance of DeepCast. The results demonstrate that
DeepCast can effectively improve the average personalized
QoE by 54.6% than the cloud-CDN approach and by 50.9%
than the state-of-the-art edge-based approach. DeepCast also
reduces the system cost by 36% and 16.7%, respectively.

The rest of this paper is organized as follows. Section II
introduces the background and motivation of our work with
data-driven analysis. Section III describes our edge-assisted
crowdcast framework followed by a problem formulation.
Section IV describes deep reinforcement learning and re-
lated applications, and introduces the design of our DRL-
based approach in detail. Section V evaluates the performance

of DeepCast, as compared with state-of-the-art approaches
through trace-driven experiments. We further discuss our work
in section VI and conclude it in section VII.

II. BACKGROUND AND MOTIVATION

A. Crowdsourced Livecast

Crowdsourced livecast (or crowdcast) has become increas-
ingly popular in recent years in both industry and academia.
Many previous efforts have been made to improve the QoE
and reduce the cost in crowdcast services. Wang et al. [11]
considered the video transcoding and viewer delivery in a
cloud-CDN architecture. They separated the viewer assign-
ment and content transcoding and solved each with a heuristic
algorithm. Yan et al. [8] proposed a transparent network
service called LiveJack to seamlessly integrate edge clouds for
live broadcast with a focus on system implementation rather
than optimizing QoE. Pang et al. [7] used edge servers as
relays to reduce the loss rate and latency of the first mile video
transmission in crowdcast. Ge et al. [6] proposed an edge-
based system to achieve 4K live streaming across the global
Internet. These pioneer works either focused on reducing the
cache cost or improving a dedicated QoE target. We however
argue that different crowdcast viewers can have quite different
QoE preferences. A dedicated viewer serving strategy may
discriminate the personalized QoEs for certain viewers and
increase the service cost for crowdcast platforms. We next use
a trace-driven data analysis to better understand the diversity
of personalized QoE demands in a crowdcast service.

B. Data Driven Analysis

We first collected a dataset of users’ watching records from
Inke.tv (one of the largest crowdcast platforms in China) for 11
days in 2016, with about 7.3 million viewing sessions on each
day. Each record contains a viewer ID, channel ID, network
type, location, start time and end time. We extract the viewing
information in the Beijing area (one of the most active areas)
as a case study. To investigate how active viewers behave in
different channels, we also collected the viewer interaction
information of 300 popular channels of Twitch.tv (the leading
crowdcast platforms in US) for two months using the Twitch
API [12]. This data trace includes the viewers’ arriving and
leaving logs, chatting messages, broadcasters’ channel content
and so on.

We start from analyzing the viewing information from
the Inke.tv dataset. Fig. 1 analyzes the accessed network
type of different viewers and presents the number of con-
current viewers through different access approaches for all
the channels in a typical day. We find that about 10% of
viewers use 3G/4G cellular networks for the crowdcast service.
Considering the expensive pricing rate for cellular data and the
huge traffic amount for videos, such viewers may not have
a strong favor in high bitrate. Instead, they sometimes are
willing to sacrifice the bitrate for a relatively lower streaming
delay but smooth watching experience. Besides, the number
of concurrent viewers in the evening peak time is 4 to 5
times higher than others, which also brings high burden to

3

0

1

2

3

4

5

00:00 04:00 08:00 12:00 16:00 20:00 24:00

x103
C

on
cu

rr
en

t V
ie

w
er

 N
um

be
r

Hour in a day

WiFi Access
3G/4G Access

Fig. 1. The number of concurrent viewers in
different time periods of a typical day.

0

0.2

0.4

0.6

0.8

1.0

10-2 10-1 100 101 102 103 104

C
D

F

Time duration (min)

ave viewing duration per channel
ave. viewing duration per viewer

Fig. 2. The CDF plot of average viewing duration
for every channel and average viewing duration for
every viewer.

0

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104

C
D

F

Time duration (min)

viewer numbers per channel
watched channel numbers per viewer

Fig. 3. The CDF plot of viewer numbers in dif-
ferent live channels and watched channel numbers
for every viewer during a day.

0

0.5

1.0

1.5

2.0

0 1.0 2.0 3.0

x104

x104

M
es

sa
ge

 N
um

be
rs

Viewer Numbers

CS:GO
LOL

FIFA15

Fig. 4. The distribution of viewer numbers and
interaction message numbers of channels in three
games.

0

1.0

2.0

00 02 04 06 08 10 12 14 16 18 20 22

x103

LO
L

Viewers Messages

0

0.5

1.0

1.5

00 02 04 06 08 10 12 14 16 18 20 22

x104

F
IF

A

Hour in a day

Viewers Messages

Fig. 5. The average viewing and interaction situa-
tions of different time periods in a day for channels
of two games.

0.85

0.9

0.95

1.0

100 101 102 103 104

C
D

F

Message Numbers

Music
LOL

Talk show
FIFA

Fig. 6. The CDF plot of interactive message
numbers of each session in different channels.

the platform’s bandwidth supply if all viewers were served
with very high bitrates.

We also investigate the average viewing time duration for
each channel and viewer, as illustrated in Fig. 2. We observe
that there are about 35% of viewers watching a channel for less
than one minute. For these viewers, the most obvious impact
on viewing experience is the channel switching latency since
they browse many channels frequently. They tend to care more
about the channel switching latency rather than the absolute
streaming delay and bitrate. As a comparison, there are about
15% of viewers watching a channel for more than one hour.
These viewers, being loyal to their favorite channels, have a
much higher tolerance for the channel switching latency.

Fig. 3 plots the CDF plot of the number of total viewers
for every channel and the total watched channels for every
viewer. The viewer distribution follows a typical long-tailed
distribution, where only 2% channels have more than 100
viewers. These channels however attract the majority of the
viewers, indicating a strongly unbalanced viewer distribution.
Besides, there are more than 20% viewers watching more
than 10 channels every day, suggesting a highly heterogeneous
channel viewing preference for different viewers.

We next study the viewer interactions from the Twitch
dataset. We select three games for comparison, i.e., CS:GO,
League of Legends (LOL), and FIFA, which are all pop-
ular games of different types. Fig. 4 compares the daily
average viewer numbers and interaction message numbers
of channels for these three games. We define IA-ratio as
of ave. interactions

of ave. viewers and we can observe that IA-ratio of
FIFA is much larger than that of CS:GO. This indicates

viewers of FIFA channels are more active and interact more
frequently.

We select two typical channels from LOL and FIFA and plot
the average viewing and interaction situations of different time
periods in a day as illustrated in Fig. 5. It clearly shows that
the viewer and interaction numbers are relatively stable for
the LOL channel, which become higher at evening peak time
and much lower at midnight. In contrast, the FIFA channel
gathers a large number of viewers with animated interaction
in the prime time; yet there are almost no viewers in other
time. These results show that people’s watching preferences
vary with different time periods for different channels.

We randomly select four popular channels and extract the
interaction message numbers of each session (a session means
the watching process from a viewer coming to the viewer
leaving). As shown in Fig. 6, the number of interaction mes-
sages distribution is highly skewed, with 87% sessions never
generating messages and more than 5% sessions having fre-
quent messages (more than 10 messages per viewing). Those
communicative viewers with frequent interactions would pre-
fer low streaming delay since highly delayed messages hurt
the interaction between the viewer and the broadcaster, further
undermining the QoE of all the parties. In contrast, those
silent viewers who barely involve in any interactions are not so
sensitive to streaming delay, as long as the video and messages
are synchronized [13].

The above data analysis indicates that different viewers
can have heterogeneous and personalized demands for various
QoE metrics, such as streaming delay, channel switching
latency and bitrate, which however are not systematically con-

4

Transcode

Edge
Server

Bitrates

CDN

Live Source
1080p,

high latency

720P

360P,
low latency

Viewers

Network
condition:

raw

Live Source

Cloud &
CDN server

Cloud &
CDN server

Live Source

HD loverSkimmer

High
bitrate

Low
delay

Silent viewer
Viewers:

Interactor

Edge
Servers:

h1v2 h1v3

h2v2 h3v2

h4v1
Downsample

h4v2

Downsample

Channel,
version:

Fig. 7. The edge-assisted crowdcast framework. Edge servers can get channel
content of different bitrates from the CDN server and can downsample from
high bitrate to low bitrate to serve viewers with various bandwidth situations.
Viewers can be served by different servers (edges or the CDN) to optimize
their personalized QoE demands.

sidered and satisfied in existing livecast solutions. We therefore
propose an intelligent edge-assisted crowdcast framework to
address this problem, as discussed in the next section.

III. EDGE-ASSISTED CROWDCAST

A. Framework

Fig. 7 illustrates our edge-assisted crowdcast framework. A
broadcaster in a channel first builds up a connection with the
platform’s service center (e.g., usually the cloud) and transmits
the raw streaming. The original streaming is then encoded
and compressed into streams with multiple bitrates, which are
pushed to CDN servers. Given the tight latency demand in
such interactive applications as personal livecast and AR/VR
streaming, the service providers usually use WebRTC or their
proprietary protocol for multimedia streaming [14].

In a citywide area, edge servers are distributed much closer
to the viewers and each edge server will serve crowdcast
viewing requests within its proximity. The CDN usually only
needs to deliver the channel content of high quality versions
to the edge servers through HTTP. Then edge servers can
transcode (or downsample) the high quality versions to low
quality versions to serve viewers with different bitrate requests.
A viewer may request a channel content with a specific version
based on his/her own bandwidth condition. Given viewers’
personalized QoE demands and the available resources, the
regional edge can serve the viewer itself or redirect the request
to another edge (or the CDN), so as to optimize the viewers’
personalized QoE and minimize the system cost. For example
in Fig. 7, the requests of a channel skimmer (a viewer who
quickly browses many channels) is redirected to the nearest
available edge server rather than the CDN, so as to achieve a
low channel switching latency.

B. QoE and Cost Aware Optimization

To better understand the challenges of implementing the
online viewer assignment and transcoding selection, we start
from analyzing a simpler offline batch arrival scenario, where
the viewer requests and resource situations are known in
advance. We assume that in a city-level region the crowdcast
service provider has one CDN server c and a set of edge
servers, E = {1, 2, ..., E}, at fixed locations. All of them
are connected via the backhaul network. The CDN is capable
of having all the streaming channels H = {1, 2, ...,H} and
different versions V = {1, 2, ..., V }, where a channel of a
particular version is denoted as (h, v). We assume that U
viewers, U = {1, 2, ..., U}, have viewing requests for different
channels and versions. Based on each viewer’s watching pref-
erence and individual bandwidth condition, the target version
of viewer u is denoted as φ(u) = v′. We use a binary
variable X to denote the viewer assignment, where X(u,j)

(h,v) = 1

(j ∈ {E∪c}) (resp. 0) indicates user u is (resp. is not) assigned
to j for (h, v). And variable Y (e)

(h,v) = 1 (resp. 0) denotes that
(h, v) is (resp. is not) at edge e.

We consider three QoE metrics, i.e., streaming delay, chan-
nel switching latency and bitrate mismatch level, where the
bitrate mismatch level is defined as a function of the difference
between the target version of a viewer and the actual assigned
version. Then we can calculate the streaming delay D(u) of
viewer u as follows:

D(u) =
∑
h,v

∑
e

X
(u,e)
(h,v)

(
l(u,e) + T

(e)
R(h,v∗,v) + l(e,c)

)
+
∑
h,v

X
(u,c)
(h,v)l

(u,c)
(1)

where l(u,e) (or l(u,c)) indicates the latency between user u
and edge e (or the CDN c). T (e)

R(h,v∗,v) denotes the latency
introduced by transcoding or downsampling from a high
bitrate version to a lower version. For each edge e, it can
already have the resource for a channel since other viewers
may also connect to this server for the same channel. We
represent the highest version existing at the edge as v∗. If v∗

is higher than v, the server only needs to transcode from the
higher version v∗ to the target version v. There is no need
to transcode if v∗ = v (i.e., T (e)

R(h,v∗,v) = 0) because the edge
receives this version from the CDN server. The first part of the
equation represents the latency if the viewer is assigned to an
edge server, while the second part means the viewer is directly
assigned to the CDN server. Similarly, the channel switching
latency L(u) can be calculated as:

L(u) =
∑
h,v

∑
j∈{E∪c}

X
(u,j)
(h,v)l

(u,j) (2)

In practice, the actual assigned version of a channel for a
viewer can be different from the target version. For example,
the crowdcast system may assign a lower version channel
content to a viewer if no enough system resource, or to satisfy
the viewer’s other preference, such as low streaming delay.

5

There is then a bitrate mismatch that affects the QoE. We can
calculate the mismatch level B(u) as follows:

B(u) =
∑
h,v

∑
j∈{E∪c}

X
(u,j)
(h,v)M(φ(u), v) (3)

where M(φ(u), v) is a predefined bitrate mismatch utility
function. Existing research mostly has suggested three rep-
resentative penalty functions, e.g., linear function [15], log-
arithmic function [16] and HD-preferred function [17]. The
linear function directly uses the linear difference between the
two versions as the mismatch, while the logarithmic function
uses the logarithm of the ratio of these two values to decrease
a marginal quality improvement. In a HD-preferred function,
a tabular mapping is used for different bitrates and higher
bitrates are assigned with much higher utility. If φ(u) equals
v, the provided bitrate version for viewer u is exactly the same
as the requested one, and so, there is no bitrate mismatch.

Besides the personalized QoE, we also consider the cost
for system resource usage, i.e., the computation cost and the
bandwidth cost. The total computation resource cost (for the
transcoding at edges) CT can be calculated as follows:

CT =
∑
e

∑
(h,v)6=(h,v∗)e

Y
(e)
(h,v)IT (h,v∗,v) · P

(e)
T (4)

where (h, v∗)e indicates the highest version of channel h in
edge e, IT (h,v∗,v) is the computation resource consumption
for transcoding from (h, v∗) to (h, v), and P

(e)
T is the unit

computation resource price at edge e. Similarly, we can also
calculate the total bandwidth cost CB as:

CB =
∑
e

∑
u

∑
h,v

X
(u,e)
(h,v)IB(h,v)P

(e)
B

+
∑
h,v

∑
u

X
(u,c)
(h,v)IB(h,v)P

(c)
B +

∑
e

∑
h,v∗

Y
(e)
(h,v∗)IB(h,v∗)P

(c)
B

(5)
where IB(h,v) is the resource consumption for serving (h, v),
P

(e)
B and P

(c)
B is the unit bandwidth price for different edge

servers and the CDN server, respectively. The three parts in
(5) indicate the bandwidth cost from viewers to edges, viewers
to the CDN, and edges to the CDN, respectively.

Integrating the viewers’ personalized QoE demands (Eq. 1,
Eq. 2 and Eq. 3) and the system cost (Eq. 4 and Eq. 5)
together, we have the following optimization objective (Ω) that
minimizes the sum of overall penalty, include QoE (i.e., the
weighted sum of the streaming delay, channel switching la-
tency and bitrate mismatch) and system cost (i.e., the weighted
sum of the computation cost and the bandwidth cost):

Min :α
∑
u

(
α
(u)
1 D(u) + α

(u)
2 L(u) + α

(u)
3 B(u)

)
+ β (CT + CB)

(6)

s.t. ∑
h,v

∑
j∈{E∪c}

X
(u,j)
(h,v) = 1,∀u (7)

X
(u,j)
(h,v) ≤ Y

(j)
(h,v),∀(h, v), j ∈ {E ∪ c} (8)∑

h,v

Y
(e)
(h,v)IT (h,h∗,v) ≤W

(e)
T ,∀e (9)∑

h,v

∑
u

X
(u,e)
(h,v)IB(h,v) ≤W

(e)
B ,∀e (10)

where W
(e)
T and W

(e)
B are the computation and bandwidth

capacity of edge e, α and β are the weighted parameters to
tune the QoE penalty and system cost penalty, and α(u)

1 , α(u)
2 ,

α
(u)
3 are the personalized QoE preference factors for viewer
u, which can be either specified by viewers or derived from
viewers’ watching history. Eq. 7 guarantees that a viewer can
only connect to one edge or the CDN. Eq. 8 indicates that the
target server must have the corresponding channel of a suitable
version; Eq. 9 and Eq. 10 ensure that the resource usage does
not exceed the capacity.

C. Problem Hardness and Data Driven Approach

Theorem 1. The problem of viewer assignment and transcod-
ing selection such that the overall penalty can be minimized
is NP-hard.

The proof of this theorem is presented in the Appendix.
Though a simplified version of the problem can be trans-
formed into the MKP problem, which has some approximate
solutions [18], it is still difficult to achieve an efficient and
effective solution using traditional model-based approaches
considering the following three issues. First, the original
problem Ω is much more complex with more constraints (e.g.,
the computation capacity restriction), as described in Eq. 9.
The high complexity and large solution space bring great
challenges to achieve fast or even realtime decisions. Second,
in a practical crowdcast system, viewers are arriving and
leaving dynamically. A dedicated model-based solution cannot
take into account the historical features of viewer patterns to
optimize the assignment. For example, in Fig. 1, the concurrent
viewer number usually escalates during night time. Moreover,
different viewers can have various personalized QoE demands,
as discussed in section II-B. An accurate prediction of viewers’
personalized QoE demands is necessary for the subsequent
assignment.

On the other hand, we notice that the abundant network
and viewer pattern information, and the rich interactions
between viewers and broadcasters offer invaluable data that
could be utilized for a data-driven management. The data-
driven approach can not only well capture the implicit viewing
features from the historical patterns but also provide an inte-
grated solution from the preliminary prediction to the final
viewer assignment and transcoding selection. In particular,
the recent advance of the deep reinforcement learning (DRL)
has demonstrated great potentials in many fields and fits our
context well. To this end, we turn to the design of a DRL-
based model to solve the problem, as described in the next

6

Transcode

Edge
Server

Bitrates

CDN

Source 1080p,
high latency

720P

360P,
low latency

Viewers

Network
condition:

raw

viewer request

resource usage

QoE preference

Agent

State

Environment

policy
network

action
distribution

Action

Observe next state from environment

Reward

Fig. 8. The workflow of using deep reinforcement learning for crowdcast
viewer assignment.

section. It is worth noting that different from the offline batch
case described in this section, our DRL-based approach is
designed to well handle the online crowdcast scenario with
dynamic viewer arriving and leaving.

IV. DEEP REINFORCEMENT LEARNING MODEL DESIGN

In this section, we begin with a background introduction
of deep reinforcement learning and its applications in the
networking field. We next introduce the basic learning mecha-
nism of applying deep reinforcement learning (DRL) into the
assignment problem. We at last describe how we transform the
online viewer assignment and transcoding selection problem
into a learning task and design DeepCast, an intelligent
DRL-based edge-assisted crowdcast framework, to obtain an
effective solution.

A. Deep Reinforcement Learning

In recent years, deep reinforcement learning (DRL) has
shown great potentials in many fields, such as computer games,
chess and many real-world applications. Minh et al. [19]
proposed to use Deep Q-Network (DQN) to learn policies
from sensor input for decision making. Experience replay and
target network were introduced to improve the stability and the
performance. Double DQN [20] was next proposed to reduce
the observed overestimations. Wang et al. [21] proposed a
dueling network to represent two separate estimators: one
for the state value function and one for the state-dependent
action advantage function. This factoring generalizes learning
across actions without imposing any change to the underlying
algorithm. Lillicrap et al. [22] presented deep deterministic
policy gradient model (DDPG), an actor-critic and model-
free algorithm based on the deterministic policy gradient that
can operate over continuous action spaces. Mnih et al. [10]
developed A3C model, which allows parallel actor-learners to
work asynchronously with fast and stable results.

DRL also sheds a light on many problems in the networking
field, where viewer’s quality of experience has been the focus.
For example, Mao et al. [17] developed a practical rate
adaptation framework, Pensieve, which used A3C to select the
optimal bitrate for future video chunks. Huang et al. [23] con-
sidered the trade-off between the sending bitrate and the video
quality and developed a DRL-based algorithm to offer a higher

Viewer connection table

Inbound bandwidth usage

vk

bi
1 bi

2 bi
E...

Outbound bandwidth usage

bo
1 bo

2 bo
E... bo

E+1

Computation resource usage

c1 c2 cE...

h1 h2 hj
... ...

e1

e2...

ei...

Viewer request

loc h v

Personalized QoE demand

α1 α2 α3

F
C

F
C

Actor
network

Critic
network

π(at|st;θ)

Output policy

V(st;θv)

Output value

...

F
C

F
C

States

M
E
R
G
E

Fig. 9. The DeepCast framework that uses actor-critic model for policy
selection.

perceptual video quality with possibly lower sending rate
and transmission latency. Different from these aforementioned
works that focused on the client-side optimization for better
QoE, we consider the viewer assignment and transcoding
selection problem from the service providers’ perspective in
crowdcast services. To our best knowledge, DeepCast is the
first to provide a novel scheduling framework that considers
viewers personalized QoE in the edge-assisted crowdcast
scenario and applies DRL to cost-effectively accommodate
personalized QoE demands.

B. Basic Learning Mechanism

Unlike existing edge resource allocation approaches using
predefined rules or model-based heuristics, DeepCast strives to
learn a general action decision from the past experience based
on the current state and the given reward. In the workflow
of DeepCast, see Fig. 8, a learning agent interacts with
the environment in the DRL setting, where the agent is the
main component of assignment decision, and the environment
defines the rules, restrictions and reward mechanism. In each
time step t, the agent observes a state st and can choose an
action at. When this action is done, the current state will transit
to the next state st+1 and the agent will receive a reward rt. It
will get accumulated rewards after every action until done. The
objective of DRL is to find a best policy π mapping a state to
an action that maximizes the expected discounted accumulated
reward as E[

∑∞
t=t0

γtrt], where t0 is the current time and
γ ∈ (0, 1] is a factor to discount the future rewards.

C. Model Design

As shown in Fig. 9, DeepCast uses a state-of-the-art actor-
critic-based DRL model A3C [10]. We introduce the detailed
functionality design as follows.
State space. We consider a practical online scenario where
the viewers come and leave dynamically. Recall the problem

7

formulation in §III-B, the state space in the DRL formulation
consists of three components, including resource usage, viewer
assignment information, and current viewer request. We use
two vectors bi = {bi1, bi2, ..., biE} and bo = {bo1, bo2, ..., boE+1}
to record the inbound bandwidth and outbound bandwidth of
the edges and the CDN, respectively. Note that the vector
length of bo is E + 1 because viewers can also connect
to the CDN server. We use a vector c = {c1, c2, ..., cE}
to record the computation resource usage at each edge. In
practical situations, the computation resource of each edge can
be nonuniform. The computation resource usage is quantified
in units of the occupation of vCPU core numbers; the com-
putation cost can be thereby calculated.

In general, a viewer’s request should first be processed
by the regional edge. Based on the optimization policy, the
edge will decide to serve the viewer itself or redirect it to
other edges or the CDN. We use a viewer connection table
tab = (e, h, v) to record the viewer assignment information,
indicating how many viewers are served by edge e watching
channel h of version v.

Besides the current edge system information, the current
viewer request is also included in the state. The viewer
request consists of the viewer location loc, requested chan-
nel h of version v based on her/his bandwidth condition,
and the personalized QoE preference. In practice, a viewer’s
personalized QoE preference can be either directly set by
each viewer (who is familiar with the own preference), or
learned through analyzing each viewer’s watching history
(e.g., interaction frequency, channel switching frequency, av-
erage watching duration, etc.) by the service platform (who
has the complete watching history).4 Integrating all these
components together, the state input can be represented as
st = {bi,bo, c, tab, loc, h, v, α

(u)
1 , α

(u)
2 , α

(u)
3 }.

Policy. When receiving a state st, the learning agent of
DeepCast needs to take an action at for viewer assignment.
The action space can be represented as {1, 2, ..., E, c}, where
at = j means assigning the current viewer request to server
j (an edge or the CDN). Given the continuous values of the
edge resource usage, there are infinite {state, action} pairs
which cannot be stored in a tabular form and then solved
using traditional methods such as Q-learning and SARSA [24].
To address this issue, a neural network [25] can be used to
represent the policy π, where the adjustable parameters of the
neural network are referred to as the policy parameters θ. We
then represent our policy as π(at|st; θ) → [0, 1], indicating
the probability of taking the action at at current state st.

Once a viewer is assigned to an edge, the edge selects the
requested channel h and version v that leads to the maximal
reward to serve the viewer. If the edge does not have (h, v),
it will transcode to version v from available high versions or
directly request it from the CDN (when no available higher
version). Note that the computation and bandwidth resources
at each edge are limited. If the edge server’s resources are not
enough, the request will be redirected to the CDN for help. In
practical crowdcast scenarios, many viewers can come within

4A simple example of possible prediction methodologies will be discussed
in §V-A.

a short time period. If we allow the model to assign K viewers
at the same time, the action space can be (|E|+ 1)K , where
the model is very challenging especially when K is very large.
To this end, we divide the time into small slots so that, in each
slot, DeepCast only processes one viewer request.

Note that the total number of viewers is not fixed in our
model. When a viewer arrives or leaves, the crowdcast plat-
form occupies or releases the corresponding resource required
by this viewer and the learning system also updates the state
accordingly. As to the channels, since only a small portion
of channels are popular, we need to only select those popular
channels for edge-assisted learning-based scheduling.
Reward. When applying an action at to state st, the learning
agent will get a reward rt from the environment. Considering
the optimization objective Ω in §III-B, we craft the reward
to achieve the minimal overall penalty. Specifically, when we
assign a viewer request to an edge (or the CDN), the viewer
will have a personalized QoE and add an extra cost for the
system. We define reward rt as the opposite number of the
overall penalty for the coming viewer u:

rt = −α
(
α
(u)
1 D(u)(t) + α

(u)
2 L(u)(t) + α

(u)
3 B(u)(t)

)
− β

(
C(u)(t)T + C(u)(t)B

) (11)

where D(u)(t), L(u)(t), B(u)(t), C(u)(t)T , C(u)(t)B are the stream-
ing delay, switching latency, bitrate mismatch, transcoding
cost and bandwidth cost for assigning viewer u at time t,
respectively. It is worth noting that rt here is for one individual
viewer. Our learning model aims to maximize the accumulated
rewards for all viewers in order to achieve the maximal sum
of rewards.
A3C model. We choose to use the state-of-the-art asyn-
chronous advantage actor-critic (A3C) model [10] as the
learning model in DeepCast. The A3C model consists of an
actor network (i.e., the policy network) and a critic network
(i.e., the value network). The former network is trained to
make the proper viewer assignment choice based on the current
system state and viewer preference. Its output is the probability
distribution of assigning the current viewer to different edge
servers. For the inference stage, the selection (i.e., action) will
be the one with the largest probability. The latter network is
trained to learn an estimate of the expected total reward from
the empirically observed reward. Its output is the expected
reward of the current state. Note that the critic network only
involves in the training stage. In the inference stage, only the
actor network is required to make viewer assignment. We
choose the A3C model rather than RL-based models such
as DQN [19] and REINFORCE [26] due to its successful
application in many related problems [27], [28]. Besides, its
asynchronous architecture supports multiple learning agents
to train in parallel, which speeds up the training signifi-
cantly [10].
Training method. As illustrated in Fig. 9, DeepCast maintains
a policy π(at|st; θ) (the actor network) and an estimate of the
value function V (st; θv) (the critic network), where θ is the
policy parameter and θv is the value function parameter. The
actor network and the critic network share the previous part

8

of network architectures except for the last output layer. In
our model, the learning agent continues to take actions for the
coming viewer requests. The model updates both the policy
and the value function based on the returns of every tmax
actions or until done.

The training process of DeepCast adopts a policy gradient
method [26]. The key idea is to estimate the parameter gradient
direction towards the maximized total reward. The gradient of
the accumulated discounted reward regarding the parameter θ
can be represented as:

∇θEπθ [
∞∑
t=0

γtrt] = Eπθ [∇θlogπ(at|st; θ)Aπθ (st, at)] (12)

where Aπθ (st, at) is an estimate of the advantage function.
The empirically computed advantage A(st, at) can be calcu-
lated as:

A(st, at) = Q(st, at)− V (st; θv) (13)

where V (st; θv) is the output of the critic network. The Q
value, Q(st, at), reflects the effect of applying at to state st:

Q(st, at) = rt + γV (st+1; θv) (14)

With the policy gradient above, we are able to update the
actor network parameter θ. As stated in [10], however, an
entropy of policy π to the objective function is necessary
to discourage the convergence to a suboptimal policy. We
therefore add an entropy form and update θ as:

θ = θ + η
∑
t

∇θlogπ(at|st; θ)A(st, at) + δ∇θH(π(st; θ))

(15)
where H(·) is the entropy of the policy, η is the learning rate
for the actor network, and δ is also a hyper-parameter.

We train the critic network following the temporal difference
method [24] and update the critic network as

θv = θv − η′
∑
t

∇θv [rt + γV (st+1; θv)− V (st; θv)]
2 (16)

where η′ is the learning rate for the critic network. Once the
actor-critic network is trained, we select the viewer assignment
action based on the output of the actor network.

V. PERFORMANCE EVALUATION

In this section, we compare DeepCast with state-of-the-art
approaches and evaluate their performance with real trace-
driven experiments.

A. Experiment Setup

Data traces. To better evaluate DeepCast and other ap-
proaches, we adopt three real-world data traces and use them
together to reconstruct a practical evaluation environment:
• Trace for viewing information. We collect the crowdcast

viewing information from the network trace of Inke.tv for
11 days in December 2016, which has about 7.3 million
viewing sessions every day, including viewer ID, channel
ID, start time and end time.

• Trace for location information. We collect the viewer
location and edge location from a dataset of iQiYi for two

Fig. 10. A sample rectangular area of viewers and edge servers. The blue
dots represent the locations of viewers and red crosses indicate the locations
of edge servers.

weeks in 2015, which includes about 1.8 million viewer
locations and 1 million access point locations in the city
of Beijing. We uniformly sample a part of the access point
locations as the edge locations.

• Trace for bandwidth information. We collect the band-
width situation from a broadband dataset from FCC [29].
We extract the average bandwidth in this dataset as the
viewer bandwidth situation in our experiment.

Edge-assisted crowdcast measurement and setup. We use
the integrated trace for the training and evaluation of Deep-
Cast. Unless otherwise specified, the default parameters are
set as follows: We select a rectangular area in Beijing from
our location dataset as the target region (35 km × 21 km), as
shown in Fig. 10. The average session request number is 45
thousand every day and we select the top 50 channels with
the most viewers for evaluation. We evenly sample 10 access
points as the edge server locations.

We set the inbound and outbound bandwidth of each edge
server as 200 and 400 Mbps, respectively. The vCPU core
number is 36 based on Amazon AWS c4.8xlarge instance [30].
The CDN server can relay all the channels of different versions
and is capable of serving all the viewers. We measure the
bitrates and list the transcoding overhead of a 1-second stream
from the highest bitrate to lower bitrate versions in Tab. I. We
set the latency between edges and CDN randomly from 20 ms
to 100 ms considering the relatively good network condition
of edge servers. The latency between CDN and viewers is
randomly set from 100 ms to 700 ms, and the latency between
viewers and edges is proportional to their geo-distance [31],
with a maximum of 100 ms.
Training setup. We implement the DeepCast learning model
using tensorflow [32] and run the experiment on a desktop
with dual GTX 1080 Ti GPU cards, dual Intel I7 3.6 GHz CPU
cards and 32GB memory. The default parameters in the actor-
critic training phase is set as γ = 0.99, η = 5e−4, η′ = 1e−3,
and the default neuron numbers in the hidden layer is 4096
plus 2048. We train the network using the first 80% data of
the viewer watching information. Based on the settings above,
training the actor-critic network needs 4 hours to achieve a
stable result.
Personalized QoE metrics. We set the bitrate mismatch
function as M(R∗, R) = log(R∗/R) (presented in Eq. 3),
where R∗ is the target bitrate for a viewer based on the

9

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(a) fat-edge

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(b) mid-edge

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(c) thin-edge

Fig. 11. The CDF plot of overall penalty by different approaches under different edge settings.

TABLE I
MEASUREMENT RESULT OF BANDWIDTH, TRANSCODING RESOURCE

USAGE AND TRANSCODING LATENCY.

versions (p) 1440 1080 720 480 360 240

bitrate (Mbps) 4.3 2.85 1.85 1.2 0.75 0.3
transcoding (vCPU) NA 330% 142% 82% 51% 41%
transcoding time (s) NA 0.27 0.19 0.16 0.13 0.11

bandwidth and R is the allocated bitrate. This logarithmic
representation was used in many works, e.g., BOLA [16],
representing diminishing the marginal improvement of higher
bitrates. With the viewing information dataset, we use a simple
method to classify viewers into four QoE preference categories
based on their daily average watching channel numbers (n̄)
and watching durations (t̄). The categories include streaming
delay preferred (sd-pref), channel switching latency preferred
(csl-pref), bitrate preferred (br-pref) and others (normal), as
illustrated in Tab. II. We refer to Amazon AWS [30] for the
setting of bandwidth and transcoding cost, and set the edge
bandwidth price to 20% of the CDN bandwidth price. We
also adjust the system cost proportionally to balance the QoE
penalty and system cost penalty when α = β.
Comparison methods. We consider the following methods
as the baseline for comparison with DeepCast: 1) Traditional
Cloud-CDN architecture (cdn-only), which assigns all view-
ers to CDN instead of edges; 2) Edge-assisted conventional
livecast architecture (joint-online), which is derived from a
state-of-the-art approach proposed in [11] for assignment and
transcoding; specifically, the viewers are first assigned to
proper edges and the transcoding strategy is then selected
accordingly in a heuristic way; 3) Streaming delay only (sd-
only), which considers the video latency in the training pro-
cess; 4) Startup latency only (csl-only), which only considers
the channel switching latency in the training process; 5) Bitrate
only (br-only), which only considers the bitrate mismatch level
in the training process; 6) Cost only (cost-only), which only
considers the system cost in the training process.

We next evaluate the performance of DeepCast and analyze
the impact of different settings on the experiment results.

B. Impact of Edge Capacity

We first consider the impact of edge capacity on the
viewer assignment performance. We set three different edge

TABLE II
VIEWER CLASSIFICATION METHOD.

Categories Classification criteria QoE Metrics

sd-pref n̄ ≤ 2, t̄ ≥ 30min α1 = 2, α2 = 1.5, α3 = 2
csl-pref n̄ ≥ 5, t̄ ≤ 10min α1 = 0.5, α2 = 6, α3 = 2
br-pref n̄ ≥ 4, t̄ ≥ 30min α1 = 0.5, α2 = 1.5, α3 = 8
normal otherwise α1 = 1, α2 = 3, α3 = 4

TABLE III
DIFFERENT SETTINGS OF EDGE CAPACITY.

Edge setting bw in capacity bw out capacity compute capacity

fat-edge 400 Mbps 800 Mbps 64 vCPU
mid-edge 200 Mbps 400 Mbps 36 vCPU
thin-edge 100 Mbps 200 Mbps 16 vCPU

capacities, i.e., fat-edge, mid-edge and thin-edge, as presented
in Tab. III. We set the default QoE penalty factor α and the
system cost factor β both to 0.5. Fig. 11 shows the CDF
plot of the overall penalty of each viewer assignment under
different edge capacities. Fig. 12 provides the normalized
average overall penalty. For ease of comparison, we set cloud-
cdn as the baseline and the results of other methods for
comparison are normalized accordingly.

We have three key observations from this experiment. First,
DeepCast easily achieves much lower overall penalty than
others in all the edge capacity settings. Specifically, in the mid-
edge setting, DeepCast reduces an average of 45.9% overall
penalty than cloud-cdn and 41.6% overall penalty than joint-
online. This result indicates that DeepCast can effectively
utilize the edge servers to satisfy viewers’ personalized and
heterogeneous QoE demands and make intelligent viewer as-
signment, while cloud-cdn and joint-online cannot well assign
each viewer, thus incurring high overall penalties. DeepCast
performs even better when there is more available edge
capacity. From Fig. 12, the overall penalties of DeepCast are
0.7, 0.54 and 0.42 under the setting of thin-edge, mid-edge and
fat-edge, respectively. This indicates that more edge capacity
will empower DeepCast with more flexible choices, which
can further lead to a lower overall penalty. DeepCast also
outperforms other learning-based methods that only consider
part of the QoE metrics or the cost, such as sd-only by 41.4%,
csl-only by 30.5%, br-only by 40.7% and cost-only by 33.9%.
This is because DeepCast comprehensively considers all the
related metrics and makes proper assignment accordingly.

10

0

0.2

0.4

0.6

0.8

1.0

fat-edge mid-edge thin-edge

N
or

m
al

iz
ed

 O
ve

ra
ll

P
en

al
ty

Edge Settings

cloud-cdn
joint-online

sd-only
csl-only

br-only
cost-only

DeepCast

Fig. 12. The normalized overall penalty under different edge settings.

0

0.2

0.4

0.6

0.8

1.0

br mismatch sd csl cost

N
or

m
al

iz
ed

 O
ve

ra
ll

P
en

al
ty

Edge Settings

cloud-cdn
joint-online

sd-only
csl-only

br-only
cost-only

DeepCast

Fig. 13. The value of different QoE metrics under different edge capacity
settings.

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(a) α = 0.8, β = 0.2

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(b) α = 0.4, β = 0.6

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(c) α = 0.2, β = 0.8

Fig. 14. The CDF plot of overall penalty by different approaches with various ratios between QoE and cost.

Fig. 13 illustrates the detailed QoE metrics and system cost
under the mid-edge setting. We can see that DeepCast incurs
an average of 0.07 bitrate mismatch, which is 57.6% less than
cloud-cdn and 63.7% less than joint-online. This shows that
DeepCast can achieve better bitrate match given the edge-
assisted crowdcast architecture and the intelligent assignment.
For the channel switching latency, DeepCast only needs an
average of 0.05 s, reducing 75% time as compared to the
traditional cloud-cdn architecture. For the streaming delay,
DeepCast also reduces 38.3% time than joint-online that uses a
heuristic assignment strategy. Note that the streaming delay of
DeepCast is a bit higher than cloud-cdn due to the transcoding
delay on edge. However, this additional 0.06 s stream delay is
still well within human tolerance for interactions. Regarding
the system cost, DeepCast reduces the average cost penalty by
36% than cloud-cdn and by 16.7% than joint-online.

C. Impact of QC-ratio
Besides different edge settings, different ratios between QoE

penalty and system cost penalty (i.e., α/β, defined as QC-
ratio) can also affect the performance of DeepCast. Note that
if we set α+β = 1, then a higher α value means the crowdcast
platform is more aggressive, caring more about viewers’ QoE
experience, while a higher β means the crowdcast platform
is more economical, having a high priority for saving cost.
We focus on the fat-edge setting given it provides sufficient
edge capacity, and similar observations can be made in other
settings.

Fig. 14 shows the CDF plots of the overall penalty of
different approaches when we set different QC-ratios. It is easy

to find that the penalty distribution of assigning every viewer is
highly skewed when the crowdcast platform cares more about
QoE experience (e.g., α = 0.8). This is because aggressively
satisfying all the QoE demands will prioritize viewers’ QoE
demands regardless of the system resource usage at first, which
easily leads to excessive and unreasonable resource usage. The
imbalanced resource usage further results in the assignment of
the following viewers with high overall penalties. On the other
hand, if the platform cares more about cost (e.g., α = 0.2),
the penalty distribution of each assignment will be more
centralized.

Fig. 15 shows the overall penalty normalized by the cloud-
cdn baseline. We can observe that DeepCast can achieve more
intelligent viewer assignment from a holistic perspective over
all the settings, reducing the overall penalty by 30.8%, 41%,
23.1% than cloud-cdn when we set α as 0.8, 0.4 and 0.2,
respectively.

D. Comparison on Different Learning Model

In our design, DeepCast uses the asynchronous advantage
actor-critic (A3C) [10] as the learning model. Deep reinforce-
ment learning has many forms of learning models that can
apply well in our context. A well-known candidate is deep
Q-learning network (DQN) which has breakthrough contribu-
tion in achieving human-level control over many computer
games [19]. To better understand the compact of learning
models, we compared our proposed model to DQN, which
further can be divided into 1-step-DQN and n-step-DQN
according to the different training settings. The difference

11

0

0.2

0.4

0.6

0.8

1.0

a=0.8 a=0.4 a=0.2

N
or

m
al

iz
ed

 O
ve

ra
ll

P
en

al
ty

Edge Settings

cloud-cdn
joint-online

sd-only
csl-only

br-only
cost-only

DeepCast

Fig. 15. The normalized average overall penalty with different ratios between
QoE and cost.

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

DeepCast
n-step-DQN
1-step-DQN

Fig. 16. The CDF plot of overall penalty comparing DeepCast with n-step
DQN and 1-step DQN.

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

cloud-cdn
joint-online
online-heu
DeepCast

(a) fat-edge

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

cloud-cdn
joint-online
online-heu
DeepCast

(b) mid-edge

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

C
D

F

Overall Penalty

cloud-cdn
joint-online
online-heu
DeepCast

(c) thin-edge

Fig. 17. The CDF plot of overall penalty by different approaches under different edge settings. We train our model with synthetic data trace and test in with
real trace to show its generalization ability.

between 1-step-DQN and n-step-DQN is that the latter one
is updated towards every n-step with an accumulated reward.

Fig. 16 plots the CDF curve of the overall penalties for
different learning models. We can see that DeepCast has
a significant performance gain compared with 1-step-DQN,
where DeepCast has more than 85% viewers with the penalty
less than 1 and this metric is less than 60% for 1-step-
DQN. Similarly, n-step-DQN outperforms 1-step-DQN largely
in the overall penalty. This is because the n-step update is
much more efficient in reward propagating [33]. Even though,
DeepCast still outperforms n-step-DQN with about 5% penalty
reduction. Compared to Q-learning, actor-critic employs both
benefits from the actor and the critic, where the policy gradient
strategy enables a faster and more efficient learning process.
This comparison indicates that DeepCast is more capable
of capturing the intricacies in the viewer scheduling and
transcoding context so as to make more effective assignments.

E. Optimality Analysis

Since our target of the allocation problem is to achieve
the minimized penalty, it is important to understand how
our learning-based policy approaches the optimal solution.
We can hardly compute the optimal allocation in the online
crowdcast scenario directly; we then consider comparing our
model with the offline optimal solution (offline-opt) defined
from Eq. 6 to Eq. 10. In the offline scenario, viewers arrive
in batches and no viewers leave during its batch. The offline
approach tries to allocate these viewers to achieve minimum
penalty. The coming viewer numbers in a batch is set as

100. Besides offline-opt, we also compare our model with an
online heuristic (online-heu) approach, which greedily selects
the best server and bitrate for each coming viewer without
considering other viewers. Fig. 18 presents the average penalty
for these three approaches under different workloads using
thin-edge settings. Here the workload is defined as the ratio of
occupied bandwidth for all edge servers to the total bandwidth
capacity. From this result, we can see that DeepCast incurs
an average of 0.3, 0.52 and 1.09 penalty when the edge
workload is 20%, 50%, and 80%, respectively. The margins
of the penalties between online-heu and offline-opt are 0.191,
0.327, and 0.384, while those between DeepCast and offline-
opt are 0.129, 0.20, and 0.252 with different edge workloads,
respectively. This comparison indicates that DeepCast is able
to reduce the gap between the state-of-the-art approach and
the offline optimum by 35.3% on average.

F. Generalization Analysis

In the previous experiments, training is based on the data
collected from the same environment with that of the testing
process. Our model however can be applied in a new environ-
ment (e.g., the viewing patterns are different) with few data
or even no real data. We next conduct experiments to evaluate
the generalization ability of our DeepCast model.

To this end, we train our model with synthetic data and test
the performance with real trace collected from our dataset.
Specifically, we first extract a small portion of the data from
the whole dataset as a benchmark and obtain the boundary
of metrics therein, e.g., the viewer location, the viewing

12

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

20% 50% 80%

A
ve

ra
ge

 P
en

al
ty

Edge Workload

online-heu DeepCast offline-opt

Fig. 18. The comparison with online-heu and
offline-opt.

0

0.5

1

1 2 3 4 5

A
ve

ra
ge

 O
ve

ra
ll

P
en

al
ty

Number of hidden layers

Fig. 19. The average overall penalty with different
hidden layer numbers.

0

0.5

1

128 256 512 1024 2048

A
ve

ra
ge

 O
ve

ra
ll

P
en

al
ty

Number of neurons in each layer

Fig. 20. The average overall penalty with different
neuron numbers in each hidden layer.

time length, the bandwidth situations, etc. We then randomly
assemble these metrics to form complete viewing requests
based on the boundaries. For example, the viewing time length
is randomly determined between the longest and the shortest
viewing length from the benchmark. After training, we then
use the rest dataset to test the performance of our model.
It is worth noting that the testing set is different from the
benchmark set.

The evaluation results are illustrated in Figure. 17, where
each curve indicates the overall penalties of an approach with
different edge settings, trained with the synthetic data. Note
that we also use online-heu, which is irrelative to the training,
as a baseline for comparison. We can find that even with the
synthetic data, DeepCast still demonstrates good performance
in viewer assignment with low penalties compared with all
other approaches. Generally, online-heu performs very closely
to joint-online due to the similar heuristic strategy. Compared
with these two heuristics and the state-of-the-art approach,
DeepCast has an average of 5% to 10% penalty reduction,
not to mention even the 25% plus penalty reduction compared
to the traditional cloud-CDN approach. Note that even the
optimal solution will still incur penalty. Thus the actual penalty
reduction of Deepcast will be much higher (see §V-E for
more details). Similarly, DeepCast is able to achieve higher
performance gain with more available edge capacities due to
the flexible selection.

G. Robustness and Sensitivity Analysis

The robustness and sensitivity are also important indicators
for a learning system under different configurations. We next
conduct experiments to analyze how sensitive is our learn-
ing model to different learning architecture and parameters.
Specifically, we set a range of neuron numbers and network
hidden layer numbers to test the performance of DeepCast.
Hidden layers. To evaluate how sensitive our model is to
the hidden layers, we first fix the neuron numbers to 1024
per hidden layer and vary the hidden layer numbers. As
illustrated in Fig. 19, we can see that the derived average
overall penalties do not have a large difference when the
hidden layer number is between 1 and 3. This value achieves
0.626 with a standard deviation of 0.113 when the hidden layer
number is 3. When the network architecture has more hidden
layers (e.g., 5 layers), the performance only slightly degrades.
This is because a deeper network can cause overfitting more

TABLE IV
EVALUATION WITH DIFFERENT ENTROPY FACTOR SETTINGS.

Entropy factor settings Average Overall Penalty

dynamic 0.594 ± 0.148
δ=0.1 0.586 ± 0.132
δ=0.2 0.577 ± 0.165
δ=0.5 0.543 ± 0.173

easily and needs more parameter tuning. Even in this situation,
the average overall penalty increase introduced by adding
learning layers is only up to 0.08, which is within 11% of
the average penalty.
Neuron numbers. We next set the default network layer
number to 3 and vary the neuron numbers of each layer
to test the performance. The results are shown in Fig. 20.
Intuitively, more neurons in each layer will lead to a lower
average overall penalty. This trend however comes to a plateau
when the neuron number in each layer becomes 2048. This is
largely because too many neurons are no longer necessary for
improving the representation ability given the problem size.
When each layer has too few neurons (e.g., 128), the average
overall penalty is much larger, since such neuron size is not
sufficient for feature representation. Thus, in our design, we
use 1024 neurons per layer as the default setting. The result
further indicates that our learning policy is insensitive to the
neuron numbers as there are only less than 5% performance
difference when setting normal neuron numbers.
Entropy parameters. In our learning model, the entropy term
is introduced to encourage more exploration (see Eq. 15),
where δ is a hyperparameter to control the level of such
exploration. In our experiment setting, we set this parameter
as 1 at first and then decrease the term gradually to 0.1,
so as to emphasize improving rewards. We compare such
dynamic setting with different static settings as presented in
Tab. IV. The experiment shows that the dynamic settings
slightly outperform other static settings of 0.1, 0.2, and 0.5,
respectively. On the other hand, it also demonstrates that our
learning model is insensitive to such hyperparameter changes,
outputting relatively stable results.

VI. DISCUSSION

Model Updating and Scalability. It is worth noting that our
DeepCast can well support the online updating and scalable
scheduling. In practical viewer assignment, the well-trained

13

network can be deployed at each regional server. Once a
viewer is allocated, the target server will notify other servers
to update their states accordingly. The learning model needs
an update when two situations occur. The first one comes
from a major update of the edge resources, e.g., more edge
servers are introduced for viewer serving, in which a re-
training is required given the change of model state. However,
this situation only rarely happens and the re-training overhead
is little given the low updating frequency. The second one is
due to a major change in the viewer access patterns. Our model
supports online updating to better adapt to the viewer access
patterns. It can periodically updates the network using the past
experience. For example, the network can be updated at one
server in an hourly or daily basis and the trained network is
then distributed to each server.
Personalized QoE Prediction and Setting. The QoE prefer-
ence of a particular viewer represents one’s watching behavior,
which is likely a long-term habit rather than an one-time
action. Since viewers are familiar with their watching behavior,
they can determine the preference among these metrics. On
the other hand, viewers’ QoE preferences can also be learned
by service platforms. We have used a simple method to
classify viewers into categories with different QoE demands
for evaluation. In practice, however, a crowdcast platform
can have long-term watching history data for every viewer
and is able to leverage advanced data mining and learning
techniques [34] to derive more accurate personalized QoE
demands and preferences. It is worth noting that viewers’ QoE
preference can change over time. Our work is able to well
support such preference changes with timely updating.

VII. CONCLUSION

In this paper, we proposed DeepCast, an intelligent edge-
assisted crowdcast framework that applies deep reinforcement
learning to afford personalized QoE demands and accommo-
date cost-effectiveness. We first studied viewers’ diversified
QoE preferences through data-driven analysis and find that
it is complex to achieve the optimal viewer assignment and
transcoding selection due to the massive video contents, di-
verse QoE demands and uncertain online watching behaviors.
To better understand the challenges of implementing the
online viewer assignment and transcoding selection, we then
analyzed its offline scenario with known viewer requests and
resource situations. We then proposed DeepCast, an intelligent
edge-assisted crowdcast framework that incorporated advanced
deep reinforcement learning for dynamic viewer requests and
network conditions. We trained the network based on multiple
real-world network datasets. Our trace-driven experiments
further demonstrated the superiority of DeepCast compared
to the state-of-the-art approaches.

ACKNOWLEDGEMENT

This work was supported by a Canada Technology Demon-
stration Program and a Canada NSERC Discovery Grant.
Cong Zhang’s work was supported in part by NSFC Grant
No.61902369. Lifeng Sun’s work was supported in part by
NSFC Grant No.61936011, Beijing Key Lab of Networked
Multimedia.

REFERENCES

[1] “Live streaming statistics.” https://stretchinternet.com/live-streaming-
statistics/.

[2] “Facebook live statistics.” https://www.socialmediatoday.com/
marketing/top-5-facebook-video-statistics-2016-infographic.

[3] “Twitch 2017 year in review.” Accessed: July 30, 2017, [online].https:
//www.twitch.tv/year/2017/.

[4] C. Zhang, J. Liu, and H. Wang, “Towards hybrid cloud-assisted crowd-
sourced live streaming: measurement and analysis,” in Proceedings of
ACM NOSSDAV, p. 1, 2016.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing – a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[6] C. Ge, N. Wang, W. K. Chai, and H. Hellwagner, “Qoe-assured 4k
http live streaming via transient segment holding at mobile edge,” IEEE
Journal on Selected Areas in Communications, 2018.

[7] H. Pang, Z. Wang, C. Yan, Q. Ding, and L. Sun, “First mile in
crowdsourced live streaming: A content harvest network approach,” in
Proceedings of Thematic Workshops of ACM Multimedia, pp. 101–109,
2017.

[8] B. Yan, S. Shi, Y. Liu, W. Yuan, H. He, R. Jana, Y. Xu, and H. J.
Chao, “Livejack: Integrating cdns and edge clouds for live content
broadcasting,” in Proceedings of ACM Multimedia, pp. 73–81, 2017.

[9] F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun, et al., “Intelligent
edge-assisted crowdcast with deep reinforcement learning for personal-
ized qoe,” in Proceedings of IEEE INFOCOM, pp. 910–918, 2019.

[10] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of ICML, pp. 1928–1937, 2016.

[11] Z. Wang, L. Sun, C. Wu, W. Zhu, and S. Yang, “Joint online transcoding
and geo-distributed delivery for dynamic adaptive streaming,” in Pro-
ceedings of IEEE INFOCOM, 2014.

[12] “Twitch irc.” https://help.twitch.tv/customer/portal/articles/1302780-
twitch-irc.

[13] X. Ma, C. Zhang, J. Liu, R. Shea, and D. Fu, “Live broadcast with com-
munity interactions: Bottlenecks and optimizations,” IEEE Transactions
on Multimedia, vol. 19, no. 6, pp. 1184–1194, 2017.

[14] Z.-N. Li, M. S. Drew, and J. Liu, Fundamentals of multimedia. Springer,
2004.

[15] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic ap-
proach for dynamic adaptive video streaming over http,” in Proceedings
of ACM SIGCOMM, vol. 45, pp. 325–338, 2015.

[16] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal
bitrate adaptation for online videos,” in Proceedinsg of IEEE INFOCOM,
pp. 1–9, 2016.

[17] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of ACM SIGCOMM, pp. 197–210,
2017.

[18] M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi,
“Approximation algorithms for the multiple knapsack problem with
assignment restrictions,” Journal of combinatorial optimization, vol. 4,
no. 2, pp. 171–186, 2000.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[20] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.,” in Proceedings of AAAI, vol. 2, p. 5, 2016.

[21] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” CoRR, vol. abs/1511.06581, 2015.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[23] T. Huang, R.-X. Zhang, C. Zhou, and L. Sun, “Qarc: Video quality aware
rate control for real-time video streaming based on deep reinforcement
learning,” in Proceedings of ACM Multimedia, 2018.

[24] R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduc-
tion. MIT press, 1998.

[25] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural
network design, vol. 20. Pws Pub. Boston, 1996.

[26] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proceedings of NuerIPS, pp. 1057–1063, 2000.

14

[27] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” in Proceedings of ICLR, 2017.

[28] Y. Wu and Y. Tian, “Training agent for first-person shooter game with
actor-critic curriculum learning,” in Proceedings of ICLR, 2016.

[29] “Measureing broadband america 2016 from federal communications
commission.” https://www.fcc.gov/reports-research/reports/measuring-
broadband-america/raw-data-measuring-broadband-america-2016.

[30] “Amazon ec2 pricing.” https://aws.amazon.com/ec2/pricing/on-
demand/.

[31] O. Krajsa and L. Fojtova, “Rtt measurement and its dependence on
the real geographical distance,” in Telecommunications and Signal
Processing, pp. 231–234, IEEE, 2011.

[32] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: a system for large-
scale machine learning.,” in Proceedings of USENIX OSDI, vol. 16,
pp. 265–283, 2016.

[33] J. Peng and R. J. Williams, “Incremental multi-step q-learning,” in
Machine Learning Proceedings, pp. 226–232, Elsevier, 1994.

[34] A. M. Elkahky, Y. Song, and X. He, “A multi-view deep learning
approach for cross domain user modeling in recommendation systems,”
in Proceedings of WWW, pp. 278–288, 2015.

[35] H. Kellerer, U. Pferschy, and D. Pisinger, Introduction to NP-
Completeness of Knapsack Problems, pp. 483–493. 01 2004.

APPENDIX

Proof: We prove this theorem by reducing the multiple knap-
sack problem (MKP), which is a known NP-hard problem [35],
to this problem (Ω). As the original problem Ω is complex,
we consider a simplified case Ω′ of the original problem.
We remove the computation constraint, which means each
edge has free and sufficient computation capacity so that
edges have all versions for every channel. We assume that
α3 is large enough for every viewer, i.e., viewers can not
accept bitrate mismatch. We set the penalty of every viewer
consistent by setting α

(u)
1 , α(u)

2 and β(u) the same for every
viewer u. In this way, the original problem Ω is simplified to
Ω′, that is, assigning viewers (i.e., items) to each edge (i.e.,
knapsack) so that the total profit (i.e., the opposite value of
the penalty) is maximized and the total used bandwidth of
each edge (i.e., sum of weight for each knapsack) does not
exceed the bandwidth capacity (i.e., W (e)

B). We therefore can
transform the MKP problem to the problem Ω′ and vice versa.
As problem Ω′ is a special case of the original problem Ω,
we prove that the viewer assignment and transcoding selection
problem is NP-hard.

Fangxin Wang (S’15) received the B.S. degree from
the Department of Computer Science of Technology,
Beijing University of Post and Telecommunication,
Beijing, China in 2013 and the M.S. degree in the
Department of Computer Science and Technology,
Beijing, China in 2016. He is currently pursuing the
Ph.D. degree in the School of Computing Science,
Simon Fraser University, Burnaby, B.C., Canada.
His research interests include Internet-of-Things,
wireless networks, big data analytics and machine
learning.

Cong Zhang received M.Sc. from Zhengzhou Uni-
versity, Zhengzhou, China, in 2012, and Ph.D. from
Simon Fraser University, Canada, in 2018. Cur-
rently, he is an associate researcher in the School
of Computer Science at the University of Science
and Technology of China. His research interests
include multimedia communications and cloud/edge
computing.

Feng Wang (S’07-M’13-SM’18) received both the
Bachelor’s degree and Master’s degree in Computer
Science and Technology from Tsinghua University,
Beijing, China in 2002 and 2005, respectively. He
received the PhD degree in Computing Science from
Simon Fraser University, Burnaby, British Columbia,
Canada in 2012. He is currently an Associated
Professor in the Department of Computer and In-
formation Science at the University of Mississippi,
University, MS, USA.

Jiangchuan Liu (S’01-M’03-SM’08-F’17) received
B.Eng. (Cum Laude) from Tsinghua University, Bei-
jing, China, in 1999, and Ph.D. from The Hong Kong
University of Science and Technology in 2003, both
in Computer Science. He is currently a Full Pro-
fessor (with University Professorship) in the School
of Computing Science at Simon Fraser University,
British Columbia, Canada. He is an IEEE Fellow, a
Fellow of Canadian Academy of Engineering, and
an NSERC E.W.R. Steacie Memorial Fellow.

He is a Steering Committee Member of IEEE
Transactions on Mobile Computing, and Associate Editor of IEEE/ACM
Transactions on Networking, etc. He is a co-recipient of the Test of Time Paper
Award of IEEE INFOCOM (2015), ACM TOMCCAP Nicolas D. Georganas
Best Paper Award (2013), and ACM Multimedia Best Paper Award (2012).

Yifei Zhu (S’15) received the B.E. degree from
Xi’an Jiaotong University, Xian, China, in 2012, and
the M.Phil. degree from Hong Kong University of
Science and Technology, Hong Kong, in 2015. He
is now a Ph.D. student in the School of Computing
Science, Simon Fraser University, British Columbia,
Canada. His areas of interest are cloud comput-
ing, multimedia networking, Internet-of-Things and
crowdsourcing.

Haitian Pang (S’16) received the B.E. degree from
the Department of Automation, Tsinghua University,
in 2014 and Ph.D. Degree from the Department
of Computer Science and Technology, Tsinghua
University, in 2019. His research interests include
network game modeling, cellular-WiFi networking,
and mobile networking optimizations.

Lifeng Sun (M’05) was born in 1972. He is cur-
rently a Professor with the Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. His research interests include video streaming,
video coding, video analysis, and multimedia edge
computing. He received the Best Paper Award in
the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY in 2010,
the Best Paper Award from ACM Multimedia 2012,
and the Best Student Paper Award from MMM 2015,
IEEE BigMM 2017 and NOSSDAV 2019.

