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Abstract—The recently emerged user-generated contents (UGC)
services, social networking services (SNS), as well as the pervasive
wireless mobile network services have formed social media which
has drastically changed the content distribution landscape. Today
such UGC applications as YouTube allow any user to be a content
provider, generating enormous amount of video contents that are
quickly and extensively propagated on the Internet through such
SNSes as Facebook and Twitter.
Unfortunately, the existing UGC sites are facing critical server

bottlenecks and the surges created by the social networking users
would make the situation even worse. To better understand the
challenges and opportunities therein, we investigate users’ social
behavior and personal preference of online video sharing from
both real-trace measurement study on a popular social networking
website and a user questionnaire survey. Our data analysis reveals
an interesting coexistence of live streaming and storage sharing,
and that the users are generally more interested in watching their
friend’s videos. It further suggests that even though the traffic is
significant, most users are willing to share their resources to assist
others, implying user collaboration is a rational choice in this
context.
In this paper, we present Coordinated Live Streaming and

Storage Sharing (COOLS), a system for efficient peer-to-peer
posting of user-generated videos. Through a novel ID code design
that embeds nodes’ locations in an overlay, COOLS leverages
stable storage users and yet inherently prioritizes living streaming
flows. We also present the improvement of the basic overlay
design. The evaluation results show that, as compared to other
state-of-the-art solutions, COOLS successfully takes advantage of
the coexistence of live streaming and storage sharing, providing
better scalability, robustness, and streaming quality.

Index Terms—Live streaming, social media, storage sharing.

I. INTRODUCTION

T HE traditional TV has been migrating to the Internet in the
past decade. Thanks to the development of such online

TV devices as Apple TV and Google TV, and the emergence
of such Internet TV providers as Netflix and Hulu, a number
of high-quality television contents have been successfully de-
livered over the Internet. Besides the enterprise-level TV ser-
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vices, the user-generated content services, e.g., YouTube and
Ustream, have allowed authorized providers to publish copy-
righted movies and TV shows, as well as enormous general
users to publish their own videos. It is known that this new gen-
eration of Internet video service has become more social with
diverse user access patterns [1], and the social relations among
users and videos make it a powerful vehicle for television con-
tent distribution.
Social media is defined as a group of Internet-based appli-

cations that build on the ideological and technological founda-
tions of Web 2.0, and that allow the creation and exchange of
user-generated content [2]. It has substantially changed the way
organizations, communities, and individuals communicate. It is
well-known that the trend of video sharing has become more
social, by the integration of online social networking services
such as Facebook and Twitter. Connecting people through cas-
caded relations, social media spreads information much faster
and more extensively than conventional web portals or news-
group services. Together with the pervasive penetration of wire-
less mobile networks and advanced devices (e.g., smartphones
and tablets), TV-quality video contents can now be truly gen-
erated and accessed anywhere, at any time, and by any person.
It reveals that YouTube mobile gets over 600 million views a
day, and traffic from mobile devices tripled in 2011 [3]. This
new video generation and propagation trend, beyond conven-
tional TV channels, has brought up numerous well-known In-
ternet memes.
Unfortunately, the sheer and ever-increasing data volume, the

broader coverage, and longer access durations of video objects
also present significant challenges than other types of objects,
not only to the social networking website management, but also
to the network traffic engineering and to the resource provi-
sioning of external video sites. It is known that YouTube-like
sites are facing critical server bottlenecks [1], and the surges cre-
ated by the social networking users would only make the situa-
tion worse. In fact, even the text-based Twitter has encountered
system-wide outages during some critical events, e.g., Obama’s
inauguration [4] and Michael Jackson’s tragic death [5]. While
peer-to-peer has long been advocated as a solution for TV or
movie content streaming, it remains unclear whether it is doable
for the user-generated videos with independent asynchronous
viewers.
To better understand the challenges and opportunities therein,

we investigate the social networking users’ behavior from both
system traces and a questionnaire survey. In particular, we ex-
amine the characteristics of video posting in social networking
services based on traces collected from Renren network, the
most popular Facebook-like social networking service in China.
We find that social networking users watch and share a great
amount of videos, and the distribution of the number is scale-
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Fig. 1. Application scenario.

free. Social networking users watch a good portion of videos
posted by friends, and thus together with the large amount of
videos posting in the social network, this implies that client/
server might suffer from lack of scalability. The measurement
also shows that the interval of posting and watching video is
relatively short, indicating that there is a flash-crowd after the
video is posted.
Furthermore, we have also conducted a user questionnaire

survey on their personal preference and social interest of In-
ternet video sharing, to directly understand users’ behavior. The
survey result reveals an interesting coexistence of live streaming
and storage sharing; that is, upon receiving a video post, social
networking users can watch the video immediately, or down-
load and then watch later.
As illustrated in Fig. 1, users can use the built-in camera or

mobile devices to record video, and simultaneously send the live
video to a server, such as YouTube and Ustream. Through the
posting function of social networking services, the server can
broadcast the live video to the user’s friends, who can be either
wired Internet users or mobile users. Upon receiving the video
post, a friend has three options:
1) a friend can choose to watch the live video, and thus the
requirement of streaming quality, such as startup latency
and playback continuity, should be satisfied;

2) a friend can choose not to watch the live video, but she or he
can download the video and expect to watch it later. Hence,
such a user is considered delay-tolerant. In addition, the
user may also switch to the first option at some time during
the live streaming;

3) a friend shows no interest in the video. In this case, if such a
user does not want to watch the video now or later, she or he
may not want to share the resources with other uploader’s
friends either.

The coexistence clearly makes a system design more com-
plicated. It however also suggests that semi-synchronized user
for video streaming may reach a critical mass for collaborative
streaming, and that the users downloading the video are con-
sidered relatively stable, and thus could be leveraged to combat
node churns. More importantly, our survey reveals that most of
the users are willing to share their resource to assist others with
close relations. Also, although people are not necessarily fully
satisfied with the playback quality provided by most of the cur-
rent video streaming services, their concern is more about the
content of the video, which largely determines the watching du-
ration. Consequently, if their friends upload videos, they will be
more interested and likely watch more of the entire video. All
these features imply that collaborative peer-to-peer is a rational
and promising choice in this context.

Fig. 2. Number of watched and shared videos against rank.

In this paper, we present Coordinated Live Streaming and
Storage Sharing (COOLS), a system for efficient peer-to-peer
posting of user-generated videos. Through a novel ID code
design that embeds nodes’ locations in a tree overlay, COOLS
leverages stable storage users and yet inherently prioritizes
living streaming flows with short startup delay. It also grace-
fully accommodates users’ switch from storage sharing to
live streaming, as well as node dynamics. We also improve
our overlay tree to achieve better efficiency and robust-
ness. The evaluation results show that, as compared to other
state-of-the-art solutions, COOLS successfully takes advan-
tage of the coexistence of live streaming and storage sharing,
providing better scalability, robustness, and streaming quality.

II. MEASUREMENT STUDY

The social networking services have become an important
media for spreading videos. Thus to understand the charac-
teristics of video posting in social networks, we conducted a
systematic measurement study on Renren network, the largest
and Facebook-like social network in China. Collaborating with
RenRen’s engineers, we have extracted the logs from RenRen’s
server farm; as a result, we have collected 12.8 million records
of users’ posting actions and 115 million records of watching
actions in one week.
When a user posts a video, her or his friends will be notified

in the news feed on the social networking website. Different
from text or images that can be instantly viewed, a posted video
will not be really watched until the recipient clicks the link.
The user can also further share the video, so that the video post
will spread in the social network. We examine the number of
videos a user has watched and shared. Not surprisingly, both
distributions are highly skewed, displaying long-tail scale-free
property, as shown in Fig. 2.
Besides the number of videos watched for each user, we also

consider the number of the user’s received video posts from
friends. We first estimate the number of received video posts
for each user, which is not readily available from the dataset.
We compute the ratio of the number of watched videos and
the number of received video posts from friends, defined as the



1560 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 14, NO. 6, DECEMBER 2012

Fig. 3. CDF of time span from post to watch.

reception rate for each user. On average, users watch 16% of
videos shared from friends. Although this number is not large
for the individual user, considering the huge number of users
and posted videos in the entire social network (refer to Fig. 2),
we can observe the great number of participants for the video
posting and the great number of video posts. This suggests us
the client/server architecture will suffer from huge amount of
usage, and also peer-to-peer delivery mechanism is a possible
solution.
We also study the time span between posting a video and the

actual view of this posted video by friends. We examine the
sharing records that are created in the first two days, and the
corresponding viewing records in within 6 days. We define the
view from the first user that watches the video as first view, and
if a shared video has not been watched in 6 days, we set the first
view value as 8640 (minutes of 6 days); all the views by friends
are defined as all views. The respective CDFs of the time spans
are plotted in Fig. 3. We observe that 13% of the videos will
not be watched in 6 days, and for those videos that have been
watched, 68% can be watched within one hour. This indicates
that videos can quickly spread to friends in the social network,
exhibiting strong temporal locality.
Moreover, by examining the data of all views, we find that

only 2.6% views appearing after 4 days and less than 1% after
5 days. This implies that the life span of video spreading in
the social network is in general of short durations. From the
figure we can also conclude that, although there are some friends
accessing the video after a while, most accesses occur in a short
time after the video is posted, displaying a flash-crowd property.
From this conclusion, we can simplify our application scenario
that we assume all the users join the system at the beginning,
which is different from the conventional streaming scenario.

III. USER QUESTIONNAIRE SURVEY

We next present the user questionnaire survey results. Most
of the existing studies on video sharing services measured the
log traces and data crawled from the webpages to derive user-re-
lated statistics, which we have also done in Section II. Trying
to further and directly understand the Internet users’ preference
and social interests on viewing and sharing online videos, we

Fig. 4. Breakdown of user’s concern on videos.

created a web survey and invited worldwide people to fill in.
The survey contains a series of single-choice questions plus sev-
eral questions on insensitive personal information. As a result,
hundreds of people have participated in the survey. Of them,
59% are from North America, 33% from Asia, and 7% from
Europe, with various network connections. Most of them are of
ages 19–30, which is exactly the core generation of the Web 2.0
applications users.
We now summarize the key observations from the survey

results. We find that 62% participants usually leave a video
streaming session after selecting it and return after a while,
rather than stay and wait for the startup, and 84% of them con-
sider playback quality as the key factor of this behavior. In fact,
only over half of users are satisfied with the startup latency and
playback continuity, respectively. Then, users come back in a
certain returning time. In terms of the time, some users consider
the video length, and some consider the absolute waiting time.
Considering the video length, 68% of the users come back after
half of the video has been downloaded, and 22% of the users
wait until the entire video is downloaded. While regardless the
video length, 69% of the users spend less than 5 min for waiting,
and no one will wait for more than 30 min. In short, for the same
video content, viewers of streaming and that of store-and-play
both exist.
Second, the survey asked users if they are willing to share

their resources while streaming and downloading, regardless
of any particular implementation (i.e., browser add-on, specific
software). The result is gratified that only 11% of users do not
want to contribute. Of the users, 60% do not care who they are
sharing with, and 28% users only want to share the resource with
close relations, e.g., friends in Facebook and mutual followers
in Twitter.
Third, only 56%of the people tend towatch the entire video in

general. Not surprisingly, this behavior is affected by the video
content, as three quarters of users concern more about the video
content than the playback quality, as shown in Fig. 4. Interest-
ingly, when a video is uploaded by a friend, a user are more
likely to watch more of the video. Fig. 5 shows the comparison
of the possibility of watching the entire video, uploaded by a
friend and someone the user just followed. The figure clearly
implies that a video will be watched more, if it is uploaded by a
user with closer relation. Unfortunately, we did not get such data
on the case of watching video uploaded by a total stranger, but
we believe the figure will be much lower than that of someone
followed. In short, this observation, together with the fact that
most of the users are willing to share their resources, indicates
that user collaboration is rational in this scenario.
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Fig. 5. Comparison of the possibility of watching the entire video.

IV. COOLS SYSTEM OVERVIEW

A. Streaming User and Storage User

As suggested by the survey, there exist two types of friends
interested in the posted video, namely, streaming users and
storage users. The streaming users expect to watch the video
immediately, and the storage users expect to download and
then watch the video at a different time, due to the presence of
other concurrent events. When the storage users start to watch,
they can either watch from the beginning or watch the current
live stream, given that the live broadcast is not finished. Here,
we ignore the users that are not interested in the video.
The streaming users might stop watching after a while if they

find the video is out of their interest, even though the video is
posted by friends. Users leaving causes dynamic and can affect
the data delivery. On the other hand, the storage users that are
downloading the video asynchronously do not have the concern
of interest nor playback quality, until they start to watch the
video, and we assume the users will not leave the system. Hence
such users are considered relatively stable, though they could
switch their options during downloading the video, and become
streaming users in that case. Therefore, our design principle is
to leverage the stable storage users to combat node churns (i.e.,
node dynamic behavior such as joining and leaving) in the data
delivery system.

B. Overlay Tree

Considering the above factors, we advocate a tree overlay de-
sign for video posting. It is known that a tree overlay with data
push is more efficient than a mesh overlay with data pull, but
maintaining the tree with node churns is a daunting task. For-
tunately, the existence of storage users implies that their churns
are much less frequent than the traditional live streaming, which
can thus be strategically placed to improve the robustness of a
tree overlay.
To efficiently coordinate the two types of users, we imple-

ment a labeled tree that embeds node locations in the overlay.
For ease of exposition, we explain it with a binary tree and an
example is given in Fig. 6. Each node is assigned an ID, repre-
sented by a series of binary code. The two children of the root
node (the source) have ID 0 and 1, respectively. For a given
node, its left child’s ID is the node’s ID appended by a 0, and

Fig. 6. Example of overlay tree with ID.

the right child’s ID is that appended by a 1. As such, the ID em-
beds the location of a node and also that of all of its ancestors.
Moreover, the number of digits (length) indicates its depth in
the tree.
We define a partial order of the ID: if two IDs are of identical

length, the one with greater value is considered greater (e.g., 010
is greater than 001); otherwise, the longer ID is greater (e.g., 000
is greater than 11). We also define an increment operation of the
ID: if not all the bits of the ID is 1, an increment operation will
increase the ID value by 1; otherwise, the length of ID will be
increased by 1 and all the bits are set to 0. We also denote the
value of an ID increaded by 1 as the next value of the ID. The
operation of decrement can be defined similarly, while in the
opposite way. We use a binary tree for easy exposition here and
in the following section. The overlay tree can be extended with
more children, as we will discuss in Section VI.
Since the storage nodes are relatively more stable, we expect

that the storage nodes are placed at more critical locations of
the tree, that is, close to the source. In other words, the storage
nodes’ IDs are smaller than that of streaming nodes after the
tree is stabilized. Fig. 6 shows the organization of two types of
nodes in the overlay tree. We will detail the construction and
maintenance of the overlay in the next section, particularly on
both achieving robustness with storage users and minimizing
delay for streaming users.

V. COOLS DESIGN DETAILS

A. Overlay Construction

1) Creating Storage Tree and Streaming Tree: Asmentioned,
the storage nodes are expected to be close to the source. How-
ever, we also need to guarantee short startup latency for the
streaming nodes, which requires them to be close to the source
as well. Fortunately, since the storage users are delay-tolerant,
the dilemma can be eliminated by prioritizing the streaming
nodes in the initial stage.
Specifically, COOLS first constructs two trees: one contains

all the streaming nodes, referred to as streaming tree, and the
other contains all the storage nodes, referred to as storage tree.
The source only delivers data in streaming tree at the beginning.
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Fig. 7. Example of overlay construction: creating, merging, and promotion.

After the two trees are established, and the streaming nodes have
buffered enough data to avoid timeout, the two trees will be
merged to one final overlay tree.
The source records the current maximum ID of each tree.

To construct the two trees, the source adds nodes to the cor-
responding trees sequentially. A newly added node will be as-
signed an ID as the next value of the maximum ID. The node
thus knows its parent’s location by checking the prefix of its
own ID. It is worth noting that each node only keeps the local
information such as the network address of the parent, two chil-
dren, and the source, while the source only keeps the informa-
tion of the four depth-1 children as well as the two maximum
IDs. Therefore, the COOLS design shows good scalability, as
the required information is independent on the number of nodes
in the system.
2) Merging Tree and Node Promotion: At the beginning,

the source dedicates to the streaming tree. When the streaming
nodes have buffered enough data for starting playback and avoid
timeout, the source starts to push video data to the storage tree.
In the meantime, the source stops pushing data to the streaming
tree and notifies the two depth-1 streaming tree children to con-
nect to the parents, which are found by the source using the ID
design. Since the streaming nodes have sufficient amount of the
video data, they will join the storage tree seamlessly without
interruption of playback. The first step in Fig. 7 shows the pro-
cedure of merging the two trees.
The source computes a potential maximum ID based on the

values of the two original maximum IDs, denoted as ,
e.g., 0000 in this case shown in Fig. 7. Then the source dissem-
inates this value throughout the tree. After the two trees have
been merged, the overlay tree is probably not a complete tree, as
some streaming nodes may locate deeper than expected. These
nodes are in an unsteady state, e.g., node 0000, 0001, 1100,
1101, and 1110 in the second step of Fig. 7. Some leaf storage
nodes are also unsteady if they should have children but do not
have yet, e.g., nodes 00, 01, and 10. Other nodes are in a steady
state. Since most of the unsteady streaming nodes are moving
upwards, we call this procedure as node promotion.
The unsteady nodes send control messages toward the source.

Specifically, if the node finds out that its ID is no smaller than
, it will send a promotion message; if its potential chil-

dren’s ID is smaller than but do not have any child, the
node will send a child requiring message. A rendezvous node
(not necessary the source) receiving such messages matches
them, and notifies the two senders to connect with each other.
For example in Fig. 7, node 00 matches itself with node 0000,
node 0 matches node 01 with node 0001, node 1 matches node
10 with nodes 1100 and 1101, and the source matches node 01
with node 1110.

Fig. 8. Example of node demotion.

B. Handling Node Dynamics

A storage user may finish her/his current event and start to
watch the live video after a while, becoming a streaming node.
In addition, there is also possibility that a streaming user finds
the video out of interest, and thus stops watching and leaves
the system. Given that the users are watching more of the entire
videos that are uploaded by their friends, such events are rel-
atively rare in our application scenario, yet proper handling of
node dynamics is still necessary, as addressed below.
1) Node Demotion: For switching from storage node to

streaming node, we need to demote the node in the tree. It
is worth clarifying that the demotion will not degrade the
playback quality; instead, it only lowers the depth of the node
in the tree, since it becomes more possible to leave the overlay.
Fig. 8 shows an example of the demotion process. Supposing

user 0 starts to watch the live video, it first informs the source
and gets the value of (current maximum ID of the
storage tree) from the source, and the source then decreases the
value of by one, because one storage node is switching
to streaming node. The demoting node (node 0) and the last
storage node (node 10) perform a swap, so that node 0 becomes
the first streaming node. Then the two nodes exchange the IDs,
as well as their connections with children and parents. The de-
motion is then completed. Since the demoting node has already
downloaded sufficient data, it can immediately start watching
without any startup delay. Clearly, the demotion does not affect
other nodes’ playback.
2) Node Leaving and Crash: A streaming user may stop

watching after finding that the video, though uploaded by a
friend, is out of interest. Node crash is also possible. Storage
nodes however will not leave the system unless it crashes.
When a node gracefully leaves the system, it notifies the

source, parent, and children about its current information of
the connections. When the source receives the notification, it
will compute a new and disseminate the new value
in the overlay. To simplify the process, all the right child nodes
along the path are promoted, and all the left child nodes remain
unchanged.
When a node crashes, neither the source nor its connected

nodes will be notified. However, with our ID design, the crashed
node’s children can quickly locate their grandparent, and the
grandparent thus can know the connection information of its
grandchildren. The source is also notified by these children.
Then these nodes repair the tree as if the crashed node leaves
gracefully. It is worth noting that the crash of a storage node
may cause that the new tree violates the requirement that all the
storage nodes’ IDs should be smaller than that of the streaming
nodes, if the crashed storage node’s right child is a streaming
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Fig. 9. Example of improved overlay tree.

node. This can be addressed by the source through computing
a new value, and switching the last storage node and
the streaming node that should be demoted.

VI. IMPROVING COOLS OVERLAY TREE

In the basic COOLS overlay tree exposited above, each node
has only two children. The benefit is that the node can devote
more bandwidth to each children, and the overlay structure is
easy to implement. However, the tree height can be too high if
there are a large number of nodes. Particularly, the tree height
is calculated as , where is the
total number of nodes in the system (considering the root is the
server and does not count as a node), and is the maximum
number of children the tree node has. If there are 1000 nodes,
the tree height can reach to 10, making the tree vulnerable to
node dynamics.
On the other hand, even though increasing the number of chil-

dren for each node can reduce the height, simply doing so will
lead to another problem: the number of nodes in each depth is
growing linearly, and that will burden the nodes that are close
to the root. Therefore, we expect a novel tree structure, in which
both the tree height and the number of nodes in each depth grow
sub-linearly.
We present a novel improved overlay tree structure: if the root

node has children , then the nodes at depth have at
most children, and the tree height is no greater than .
Fig. 9 shows an example of a part of an overlay tree with height
of 4. In the example, the root node has 8 children, the nodes at
depth 1 have 4 children, the nodes at depth 2 have 2 children,
and so on. Given that a complete tree in which the root node
has children, there are nodes at depth 1, nodes
at depth 2, and so on. Thus the number of nodes in depth is
at most . Also the total number of nodes

(excluding root) in the tree can be calculated as .
There is a possibility that a greater leads to a shorter tree.

To understand this, we assume a complete tree in which the root
has 4 children, and thus there are at most 20 nodes and
the tree height is 3 . If there are 21 nodes,
the root node has to have 8 children to satisfy the requirement
( becomes 3). As a result, the new tree’s height becomes 2, yet
the new tree’s height can be at most 4, and the complete tree can
have at most nodes. We
can see that the tree height can stay below 5 for a large number
of nodes.

Since the number of nodes at depth is , and

that at depth is then , thus the growth factor
at depth is . As increases, the factor decreases, and
thus the number of nodes at each depth is increasing sub-lin-
early, which satisfies our requirement.
Accordingly, to facilitate with the improved overlay tree, the

node ID is no longer base 2 number represented by 0 and 1. In
particular, at depth of an overlay tree with height , the ID is
base , which is the number of nodes at depth 1. The tree
operations (e.g., construction, demotion, and leaving) can also
be adapted with marginal modification.

VII. PERFORMANCE EVALUATION

A. Simulation Settings

Wenow present our evaluation for COOLS. In our evaluation,
we use the following typical metrics, which together reflect the
quality of service experienced by end users and the system per-
formance.
• Startup delay. It is the time taken by a node between its
request of joining the overlay and receiving enough data
blocks to start playing back;

• Data loss rate. It is defined as the fraction of the data
blocks that have missed their playback deadlines;

• Control overhead. It is size of the control messages sent
by tree node.

To compare, we have also implemented Chunkyspread-like
[6] and CoolStreaming-like [7] overlays. ChunkySpread is a
typical tree-based multicast algorithm. Chunkyspread is un-
structured, using multiple trees to balance load among nodes.
It also reacts quickly to membership changes and scales well
with low overhead. On the other hand, CoolStreaming is a
typical mesh-based data-driven overlay network for live video
streaming, in which every node periodically exchanges data
availability information with a set of partners, and retrieves un-
available data from partners. The design is not only efficient but
also robust and resilient, and more importantly, CoolStreaming
is scalable with bounded delay.
We simulate overlay nodes, which is a typical

popular video overlay size. The playback will not start until the
user has obtained sufficient data (10 seconds of video data). We
run the simulation 100 times for each overlay to get the average
results. The survey results in Section III are applied to simulate
the session setting and the node dynamics (survey results are
revisited in the parentheses):
1) the session length is set to seconds and each data
block is of one-second video data (no user will wait more
than 30 min);

2) 600 nodes are storage nodes at the beginning (62% of users
will leave and return); a storage node switches to streaming
nodes with a probability at time . Among the users,
30% return within 60 seconds, 40% return after 60 seconds
but before 300 seconds, 20% return after 300 seconds but
before 600 seconds, 10% return after 600 seconds;

3) A streaming node leaves the system with a probability of
at time . Among the users, 13% leave after watching
of the video/session, 15% leave after , 16% leave

after , and 56% watch the entire video.
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Fig. 10. CDF of startup delay.

B. Evaluation Results

Fig. 10) shows the cumulative distribution function (CDF)
of the startup delay. Because the storage nodes have already
buffered some video data before switching to streaming node,
there are nearly 60% nodes having no startup delay for all the so-
lutions. For the streaming nodes from the beginning, the mesh-
based solution performs worst, because it needs a longer time
to search and request for partners. The pure tree-based solution
and the original COOLS perform similarly, as most of the nodes
need 20 seconds to startup, but a small portion of nodes need
much longer time to startup in the pure tree-based solution. This
is because our COOLS solution is aware of the coexistence of
the two types of nodes and explicitly prioritizes the service to the
streaming nodes at the beginning. Since the improved COOLS
overlay is shallower, nodes need shorter time to startup than the
original COOLS.
Fig. 11 shows the CDF of the data loss rate. The mesh-based

solution performs the best, because it is pull-based and thus
is resilient to the node dynamics. On the other hand, the pure
tree-based solution performs the worst, because the tree overlay
is prone to suffer from the node dynamics, as there are more
than 20% nodes that have lost more than 1% data. Although our
COOLS solution is also tree-based, through differentiating and
leveraging the two types of nodes, specifically, placing stable
storage nodes closer to the root, it performs much better than
the pure tree-based solution. By further improving the overlay
structure, the improved COOLS can achieve the performance of
the mesh-based solution.
Finally, Fig. 12 compares the control message overhead of the

four solutions. Not surprisingly, with data pull, the mesh-based
solution suffers from much higher overhead than the others, as
it has nearly 50 times larger overhead size. The original COOLS
solution has almost the same overhead as the pure tree-based so-
lution, while improved COOLS solution has slightly less over-
head. This is because 1) by node ID design, the tree overlay
is well-structured, and 2) the nodes that are close to the root are
less dynamic; therefore, the nodes spend less overhead on main-
taining the overlay.

VIII. RELATED WORK

Web 2.0 applications have been emerging in the recent
years, and there have been quite a few related measurement
studies, particularly on understanding user-generated content

Fig. 11. CDF of data loss rate.

Fig. 12. Comparison of overhead size.

services such as YouTube for video sharing [1], [8]–[10], social
networking services such as Facebook and Twitter [11], [12],
etc. Besides measuring to indirectly infer user behavior and
social interests like these works did, we have further conducted
an online questionnaire survey that directly obtains such data.
The survey also motivates our study on the coexistence of live
streaming and storage sharing, and implies that peer-to-peer
is a rational choice in this new context. Besides peer-to-peer,
client-server model has been well developed [13].
Numerous multicast and peer-to-peer protocols have been de-

veloped for live or on-demand video streaming, which can be
broadly classified into two categories according to their overlay
structures [14], namely, tree-based (e.g., Chunkyspread [6]) and
mesh-based (e.g., CoolStreaming [7]). We have seen earlier at-
tempts toward joint live and on-demand peer-to-peer streaming.
For example, BitTorrent has enabled a streaming mode, so that
user could watch on-demand video while downloading it [15];
also, peer-to-peer streaming platforms such as PPLive now pro-
vide both live and VoD modes [16]. However, efficient imple-
mentation and, more importantly, seamless integration of the
two types of users, particularly in the social network context, re-
mains a great challenge. Finally, we have extended our previous
work [17] by investigating real trace from RenRen network, and
improving the overlay tree with more sophisticated design that
reduces the tree height.

IX. CONCLUSION AND FUTURE WORK

This paper presents COOLS. The COOLS design is moti-
vated by a real-trace measurement study and a questionnaire
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survey on user behavior of Internet video sharing, which re-
veals a coexistence of live streaming and storage sharing for so-
cial media content and the interest of different users. Through a
novel ID code design that inherently reflects nodes’ locations in
an tree overlay, COOLS leverages stable storage users and yet
inherently prioritizes living streaming flows, providing better
scalability, robustness, and streaming quality.
COOLS promotes the coexistence of the two types of users

for video streaming. There are many possible avenues to ex-
plore in this framework. To name one, since there are wired In-
ternet users and wireless mobile users, their heterogeneity needs
to be addressed in the overlay construction and maintenance.
Specifically, Internet users have better network connection, and
thus they should be considered to be located close to the source.
Moreover, sincemobile users are usually charged for data usage,
such users are not always suitable for relaying data. These re-
quirements call for sophisticated design of the architecture as
well as the operations.
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