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Abstract—Multipath TCP (MPTCP) enables transmission via
multiple routes for an end-to-end connection to improve resource
usage of regular TCP. Due to the increasing concern in green
computing, there has been significant interest in designing energy-
efficient multipath transport. For existing MPTCP congestion
control algorithms, the research community still lacks a compre-
hensive understanding of which components in such an algorithm
play the fundamental role in energy efficiency, how various
algorithms compare against each other from energy-consuming
perspective, or whether there exist potentially better solutions
for energy saving. In this paper, we take a first step to answer
these questions. Based on the MPTCP Linux kernel experiments,
we first summarize that the energy consumption is related to
three aspects: average throughput, path delay and different
network scenarios. In order to bridge congestion control to the
three aspects, we analyze the existing algorithms and capture
the essential parameters of multipath congestion control model
related to MPTCP’s energy-efficiency. Then we design a win-
dow increase factor to shift traffic to low-delay energy-efficient
paths. We further extend this design by using an energy-aware
compensative parameter to fit the general hierarchical Internet
topology. We evaluate the performance of existing multipath
congestion control algorithms and our proposed algorithm in
different network scenarios. The results successfully validate the
improved energy efficiency of our design.

I. INTRODUCTION

Multipath transport protocols enable data transmission via
multiple available paths of an end-to-end connection and
match the multihoming network scenarios, e.g., ubiquitous
mobile devices equipped with both WiFi and cellular access,
and in data centers numerous machines interconnected with
multiple routes between each pair. Multipath transport protocol
design attracts a lot of interest. IETF started Multipath TCP
(MPTCP) and published MPTCP as an experimental standard
[1] in 2013. Compared with single-path transport, MPTCP
brings the following advantages: 1) it can obtain aggregate
bandwidth from concurrent usage of multiple paths, thus
increasing throughput [2]; 2) it can have backup paths and
enhance fault tolerance; 3) it can be flexible to use good quality
paths as much as possible and thus have great potential to
support high-quality services.

A major concern raised by MPTCP, however, is the extra
energy consumed by using more than one path. The increasing
concern in green computing prompts energy-efficient protocol
design for the current Internet [3, 4]. Since transport layer
largely decides the performance of network communications,
it remains unclear whether the general Internet over both wired

and wireless networks can indeed benefit from using MPTCP.
Although MPTCP has potential to achieve high performance
for multihomed networks, it may consume more power1 (as
shown in our experiments) than regular single-path TCP. This
problem poses challenges on the design of MPTCP.

There has been significant interest in the design of energy-
efficient MPTCP. The methods proposed previously in litera-
ture can be categorized into two main classes. The first class
focuses on designing efficient path selection schemes on the
basis of energy cost prediction [5, 6]. These methods have to
sacrifice some user-sensitive service qualities (e.g., bandwidth
and file download time) to get energy reduction in return. As
shown in [5], the method proposed in [6] chooses only one
path as the energy-efficient strategy for all scenarios and fails
to obtain more aggregate bandwidth. The state machines in
such schemes also bring extra computational overhead and
may affect their online performance in practice.

The second class focuses on energy-efficient multipath
congestion control [7, 8]. These methods employ energy-
efficient designs in congestion window evolution of MPTCP
and trade off algorithm responsiveness gently for energy sav-
ing. Compared with path selection schemes, energy-efficient
congestion control algorithms need quite small modification
of MPTCP Linux kernel and naturally fit real-world imple-
mentation. However, for the existing multipath congestion
control algorithms, the research community still lacks a clear
understanding of which components in such an algorithm
play the fundamental role in energy efficiency, how various
algorithms compare against each other from the respect of
energy consumption, or whether there exist potentially better
solutions for energy saving.

In this paper, we take a first step towards answering these
questions. Based on MPTCP Linux kernel experiments, we
first summarize that the energy consumption of MPTCP is
related to three aspects: average throughput, path delay and
different network scenarios. Then we propose a congestion
control model in order to bridge the congestion control pa-
rameters to the three aspects. Comparison of the existing
algorithms in the experiments leads us to capture the key pa-

1In this paper, the term power denotes the electrical energy consumed per
second. The unit of power is Watt. We use the term energy to denote the
calculated electrical energy over a period. The unit of energy is Joule. Energy
depends on both power and time. The energy consumption of a host-to-host
data flow depends on both host CPU power and flow completion time.



rameters that can indeed impact energy efficiency. The traffic-
shifting parameter impacts energy efficiency because it decides
the throughput and the ability to offload traffic to low-delay
paths. The compensative parameter is very useful for designing
energy-cost-awareness of MPTCP in different networks, yet
it may also bring tradeoff between energy consumption and
throughput. The insight we gain has important implications
for the design of energy-efficient MPTCP. First, we analyze
the conditions under which the traffic-shifting parameter can
be designed to increase throughput optimally. Our experiments
show that the algorithm satisfying these conditions achieves
the best energy performance in the scenarios where multiple
MPTCP users share the network bandwidth resource. Second,
because shifting traffic to low-delay paths can efficiently
reduce energy costs for MPTCP, we analyze the traffic-shifting
parameters of the existing algorithms and find that there is
still margin for improvement if Round Trip Time (RTT) is
used as path quality. Then we design the Delay-based Traffic
Shifting (DTS) to utilize a function of RTT to control the
aggressiveness of congestion window increase. Furthermore,
we utilize the compensative parameter to extend our algorithm
by incorporating an energy-related price in the congestion
control model, and this price is efficient to save energy for
the hierarchy network topologies.

The contributions of this paper are as follows:
• We analyze the energy consumption of MPTCP opera-

tions and summarize the main aspects concerned with
energy consumption.

• We propose a general model to decompose existing
multipath congestion control algorithms, and derive the
critical parameters that decide MPTCP energy efficiency
in many scenarios.

• We evaluate the performance of the existing algorithms
with Linux kernel based experiments in different network
scenarios, and we compare the algorithms from energy
efficiency perspective.

• We use the critical parameters to design new algorithms
for energy-efficient multipath congestion control, and we
validate their efficiency in real-world experiments.

The remainder of this paper is organized as follows. Section
II introduces related work. MPTCP energy consumption is an-
alyzed in section III. In section IV, we propose the congestion
control model and analyze the existing algorithms by adjusting
the related parameters. Section V proposes the design of our
algorithm. In section VI, we evaluate the performance of our
algorithm via real-world experiments. Section VII concludes
the paper.

II. RELATED WORK

Multipath TCP (MPTCP) is the most significant extension to
TCP in the past decade. Its architecture, congestion control and
experimental standard are standardized by IETF as RFC 6182,
RFC 6356 and RFC 6824, respectively. To serve different
design goals in this new protocol, various multipath congestion
control algorithms have been proposed in the literature [7–
16]. Among these existing studies, energy-efficient MPTCP

becomes increasingly important as energy efficiency continues
gaining attention as a key resource for global economics.

Energy-efficient MPTCP designs in the literature can be
divided into two categories. The first category includes the
work that design energy-efficient path selection mechanisms.
In particular, Pluntke et al. [6] propose the path usage sched-
uler that solves Markov Decision Process (MDP) offline to
select a low-energy path. After that, Lim et al. [5] present the
design of energy-aware MPTCP (eMPTCP) that utilizes WiFi
and 3G/LTE energy models to estimate and select energy-
efficient paths. These approaches will unavoidably degrade
MPTCP’s QoS (e.g., aggregate throughput or downloading
completion time). As shown in [5], the schedulers proposed
in [6] only choose WiFi for all scenarios and have the same
performance as regular TCP over WiFi, thus losing MPTCP’s
advantages such as throughput increment. Additionally, the
path selection mechanisms (e.g., MDP in [6]) also bring
systematic complexity and large computational overhead, and
they are difficult to work online and hard to be implemented in
practical applications. The second category includes the work
on energy-efficient multipath congestion control algorithms.
Le et al. [7] use the inverse of loss rate as energy model
and design congestion control to shift traffic to low-energy
paths. Peng et al. [8] design a multipath congestion control
model by optimizing the energy utility. The congestion control
approaches trade off algorithm responsiveness, and they are
comparatively easy to be implemented in the MPTCP Linux
kernel. But there is still no general framework to describe these
approaches in the literature. Differing from the above work,
our goal is to propose a multipath congestion control design
model through comparative analysis of energy efficiency of
MPTCP and design the model’s key components.

III. ENERGY CONSUMPTION OF MPTCP

In this section, we analyze the energy consumption of
MPTCP on our local testbed. We will first demonstrate the
existence as well as the importance of MPTCP’s energy
consumption issue. We then summarize the main aspects that
can significantly impact energy consumption of MPTCP.

A. MPTCP Consuming More Power than TCP

Although MPTCP can take advantage of multiple interfaces
to improve network utilization of regular TCP, it may also lead
to energy-related issue in both wireline and wireless networks.
We conduct experiments and measure the performance of
MPTCP in different scenarios.

We first measure power consumption of machine-to-
machine data transfers over our testbed. There are two
types of machines in the testbed. The first type has double
NICs (each with capacity 100Mbps) and Quad-core Intel
Core i7-3770 CPU. The other type is also configured with
double NICs (each with capacity 1000Mbps) and the CPU
type of Octa-core Intel Xeon E5-2680 v2. We install the
MPTCP Linux kernel of version 0.90 [17] in the machines.
We change the number of subflows traversing a NIC by
modifying Linux kernel’s MPTCP path-manager module
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Fig. 1. Power consumed by TCP and MPTCP when using machine CPU
Core i7-3770, 3.4GHz, 4 cores.
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Fig. 2. Nexus 5 power consumption in data transfers.

in ‘/sys/module/mptcp fullmesh/parameters/num subflows’.
During data transfers, we record instant host CPU power
from Intel’s Running Average Power Limit (RAPL) driver
[18, 19]. We also capture the power consumption of classic
TCP as our baseline for comparison. In this experiment,
the classic TCP connection uses one NIC, and the MPTCP
connection uses double NICs simultaneously.

Fig. 1 shows how CPU power changes with the number of
subflows for Quad-core Intel Core i7-3770 CPU. It is easy to
see that: 1) MPTCP consumes more CPU power than classic
TCP; 2) the power consumption of MPTCP increases with the
number of subflows.

To better understand this feature in wireless environments,
we also investigate MPTCP power consumption on mobile
devices. We use Nexus 5 smart phone and install the MPTCP
kernel image [20] on it. Both WiFi and LTE (Long-Term
Evolution) NICs are enabled for MPTCP. As we can see in Fig.
2, MPTCP largely increases smart phone’s power consumption
for data transfers.

B. Energy-related Factors

We continue to analyze the energy consumption of MPTCP
and study the aspects that can significantly impact energy
efficiency of MPTCP.

We first study how instant power and total energy change
with throughput of MPTCP. We conduct the experiments for
the general Internet. The available bandwidth of an MPTCP
connection between two machines increases from 200Mbps to
1000Mbps. The connection is used to transmit 10GB data, and
during the data transmission we read instant CPU power from
RAPL and calculate the total energy consumption.
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Fig. 3. Energy, power vs throughput of MPTCP: (a) transmitting 10GB data
with wired Ethernet; (b) downloading 500MB data with WiFi.
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Fig. 4. Power consumption of MPTCP under different path delays: MPTCP
flow using high RTT paths consumes more CPU power than the one using
low RTT paths.

As shown in Fig. 3, The power consumption of MPTCP
is approximately a linear function of throughput by using the
WiFi network (single-path case is discussed in [21]), but the
power consumption is non-linear related to the throughput by
using Ethernet. We can use the following equation to describe
the relation between power PMPTCP and throughput τ :

PMPTCP ∝ f(τ) (1)

where f(·) is an increasing function. f(·) can be regarded as
a linear function in wireless networks, but in wired networks
it should be a non-linear function.

Fig. 3(a) shows that the total energy decreases with through-
put, but the power increases with the throughput. The result



also indicates that the power consumption of MPTCP has
gentle increase, which is only about 15% power increase
across the bandwidth ranging from 200Mbps to 1000Mbps.
We also measure energy and power change with throughput in
WiFi networks. Fig. 3(b) shows that the power consumption of
MPTCP increases sharply with throughput, up to 90% across
the throughput ranging from 10Mbps to 50Mbps.

We also study how power consumption changes with dif-
ferent delays of the used paths. To do this, we need to
keep the throughput and change the delay in different mea-
surements. MPTCP Linux kernel of version 0.90 provides
a easy way for this operation. In MPTCP Linux kernel
of version 0.90, an MPTCP connection consists of multi-
ple paths and each path can have one or more more sub-
flows with independent congestion windows. Each connec-
tion can use the two paths simultaneously to transmit data.
On each path, we can change the number of subflows by
modifying Linux kernel’s MPTCP path-manager module in
‘/sys/module/mptcp fullmesh/parameters/num subflows’. The
aggregate throughput of multiple subflows on a path is almost
the same with the throughput of only one subflow on the
path, but it can be observed that path delay increases with
the number of subflows of the path. Hence, we can change
the path delay by changing the number of subflows of each
path. We use two machines for data transfer. Each machine
has Quad-core Intel Core i7-3770 CPU and two NICs. When
the parameter ‘num subflows’ is changed from 1 to 2, the path
delay is also changed from low to high. We measure RTT and
instance CPU power during the data transfer. Fig. 4 shows that
the MPTCP flow using low delay paths consumes less CPU
power than that using high delay paths. This indicates that
using low delay path can save energy for MPTCP.

Consider an end-to-end MPTCP connection using n paths
for a data transfer. Let Etotal denote the total energy con-
sumption of MPTCP, M denote the data amount and τ denote
the average throughput of MPTCP. The data transfer duration
is M

τ . For path r, let τr be the throughput and RTTr be the
round trip time. Based on our results in Fig. 3 and Fig. 4,
we describe the total energy consumption of MPTCP as the
following equation.

Etotal =
M

τ

n∑
r=1

Pr(τr, RTTr) (2)

where function Pr(τr, RTTr) is the power for path r and it
increases with both τr and RTTr.

From Equation (2), we can summarize the following as-
pects that can significantly impact the energy consumption of
MPTCP.

1) Throughput τ r: For each subflow, energy consump-
tion is inversely proportional to average throughput. In
MPTCP Linux kernel, window-based congestion control
is used to decide the send rate of each subflow. Send
rate can indicate current path qualities such as RTT or
loss rate, and these qualities are usually used to estimate
average throughput on the path.

2) Ability to shift traffic to low-delay paths: given
n available paths with dynamic changed path delay,
MPTCP is supposed to detect good paths with low delay
in time, and shift traffic to these paths to save energy.
The increase term of congestion control algorithm in
MPTCP Linux kernel impacts the ability to shift traffic.

3) Adaptation to topology and link state: MPTCP has to
adapt to different topologies (e.g. hierarchy) and traffic
characteristics (e.g. bursts) on the Internet. MPTCP may
also have to deal with different link conditions. The high
error rate of wireless link would result in severe packet
loss. This will increase MPTCP retransmission opera-
tions and significantly increase the energy consumption.
In addition, as shown in our experiments the power P (r)

increases slowly with throughput in wired networks but
increases sharply with throughput in wireless networks.

In section IV and V, we will analyze how to design
multipath congestion control to improve energy efficiency of
MPTCP from the above three aspects.

IV. CONGESTION CONTROL MODEL AND PARAMETER
ANALYSIS

Based on the observation in section III, we have pro-
posed Equation (2) to capture the intuitive yet fundamental
relationship between energy consumption and properties of
MPTCP. However, how to pinpoint the above three features
into MPTCP’s design parameters (in congestion control) re-
mains challenging.

In this section, we first propose a multipath congestion
control model whose parameters decide the window evolution.
We can further analyze the existing multipath congestion
control algorithms by using these parameters.

Congestion control algorithm plays the fundamental role
in MPTCP. We first need a theoretical model to analyze the
energy-related design of existing multipath congestion control
algorithms. We describe the network model which is similar
to [11]. Consider a network that consists of link set L. A link
l ∈ L has finite capacity cl. There is a set S of MPTCP users
in the network. For any user s ∈ S, let s represent the set of
available paths between s and its destination. A path r ∈ s
consists of multiple links. If path r uses a link l, then we
denote l ∈ r. For each path r, let xr(t) = wr(t)/RTTr be
the send rate at time t, RTTr and wr(t) denote the round
trip time and congestion window respectively. For each user
s ∈ S, let xs(t) = (xr(t), r ∈ s). We propose the following
differential equation:

lim
∆t→δ

∆xr
∆t

=
ψr(xs)x

2
r

RTT 2
r (
∑
k∈s xk)2

−βr(xs)λrx2
r−φr(xs) (3)

where the parameters are described as follows:
• δ: the time step size for the differential equation, which

equals to 1 for wVegas algorithm [12] and equals to
infinitesimal for the algorithms in [7–16];

• ψr(xs): the traffic-shifting parameter in the increase term
of window evolution, which works as the core of a
multipath congestion control algorithm and decides the



important properties (e.g. traffic-shifting ability, TCP-
friendliness, Pareto-optimality and responsiveness);

• βr(xs): the parameter that decides the decrease term of
window-based multipath congestion control;

• λr: the signal to trigger window decrease, e.g., a delay
condition used for DWC, a delay-based path price used
for wVegas, and loss rate used for other algorithms;

• φr(xs): the compensative parameter that compensates
window increase aggressiveness and impacts responsive-
ness of a multipath congestion control algorithm.

This model can be used to not only design new multipath
congesiton control algorithm, but also generalize the existing
algorithms with specified parameters. By using this model,
we can decompose each of the algorithms into several pa-
rameters. For instance, EWTCP [14] has ψr(xs) =

(
∑

k xk)2

x2
r

√
|s|

;

Coupled [15][16] has ψr(xs) =
RTT 2

r (
∑

k xk)2

(
∑

k∈s wk)2 ; LIA [9] has

ψr(xs) =
(

max
k∈s

wk

RTT 2
k

)
RTT 2

r

wr
; OLIA [11] has ψr(xs) = 1;

Balia [8, 13] has ψr(xs) = 2
5 + 1

2
maxk xk

xr
+ 1

10 (maxk xk

xr
)2;

ecMTCP [7] has ψr(xs) =
(maxk

wk
RTT2

k

)RTT 2
r pr

wrph
; DWC

[10] has ψr(xs) =
RTT 3

r (
∑

k xk)2

|s|mink RTTkwr
∑

k wk
; wVegas [12] has

ψr(xs) =
RTT 2

r min
k∈s

qk

qrxr/(
∑

k∈s xk)2 (where qr = RTTr − baseRTTr).
These specified parameters decide the properties of the al-
gorithms. In order to capture the key parameters that can
be used for energy-efficient design, we will next analyze
the parameters, evaluate their impact on energy efficiency of
the existing algorithms, and then propose our algorithm for
improvement.

V. THE DESIGN OF ENERGY-EFFICIENT CONGESTION
CONTROL

In this section, we present the design of the parameters
ψr(xs) and φr(xs) of Equation (3) in order to achieve energy-
efficient congestion control.

A. ψr(xs) Design for Throughput Increment

Given the amount of data in a transfer, higher throughput
brings shorter download time. Short download time can con-
tribute to low energy consumption. From Equation (2), we see
that increasing the throughput of multipath TCP is an intuitive
way to achieve energy-efficiency. Yet the throughput increase
cannot be unbounded. Most data in the current Internet is
transmitted by TCP at transport layer. As a transport layer
protocol, multipath TCP is supposed to be TCP-friendly to en-
sure fair bandwidth share with regular TCP in their coexisting
network environments. Therefore, increasing the throughput
of multipath TCP should be under the constraint of TCP-
friendliness, and it is also a reasonable design for energy-
efficiency.

Throughput increase depends on the window increase term
of multipath TCP congestion control algorithm. The window
increase term should be bounded by the TCP-friendly condi-
tion. According to the design goal of TCP-friendliness in [9],

MPTCP should not take up more capacity than if it was regular
TCP using the best path. We need to derive the TCP-friendly
condition by using the parameter ψr(xs) in our proposed
congestion control model. We have the following condition

Condition 1. For the loss-based multipath congestion control
algorithms derived from Equation (3), the parameters ψr(xs),
βr(xs) and φr(xs) for all route r ∈ s satisfy ψh(x∗s) ≤ 1,
βh(x∗s) = 1

2 and φh(x∗s)=0, where h = argmax
k∈s

x∗k and x∗s is

the throughput vector at equilibrium.

If an MPTCP algorithm satisfies Condition 1, it will
satisfy the the design goal of TCP-friendliness in [9].
This can be illustrated with Equation (3). At equilibrium,
we have dxr

dt = 0, and on the best path h, we have
ψh(x∗s)x2

h

RTT 2
h(

∑
k∈s x

∗
k)2
− βh(x∗s)λhx

2
h. The MPTCP algorithm has

the aggregate throughput
√

2ψh(x∗s)
λh

/RTTh which is less than

the throughput
√

2
λh
/RTTh obtained on the best path if it is

regular TCP.
The parameter ψr(xs) also decides the responsiveness of

an MPTCP algorithm. High responsiveness brings aggressive
window increase, fast convergence and high throughput.

There is, however, a tradeoff between TCP-friendliness and
responsiveness [9], [13]. So it is still a problem to increase
throughput under the constraint of TCP-friendliness. Pareto-
optimality [11] can be used to deal with the problem and
improve the throughput of TCP-friendly MPTCP algorithms.

In resource allocation problems, Pareto optimality is the
equilibrium state at which one individual cannot gain more
profit without damaging the profits of other individuals. For
resource pooling of transport protocols in a network, Pareto
optimality is the state at which it is impossible for an end-to-
end connection to increase its throughput without decreasing
the throughput of other coexisting end-to-end connections.

Suppose there are |S| multipath TCP users in the network.
Each user s ∈ S has a utility Us(xs) that is an increasing
function of xk for all k ∈ s. The aggregate utility of all the
users is as follow∑

s∈S
Us(xs)−

1

2

∑
l∈L

∫ ∑
k∈l xk

0

pl(y)dy (4)

where pl(y) is the link price or congestion cost of link l, and
it is an increasing function with pl(0) = 0 for all links l ∈ L.
Let x∗s be the maximum of the utility as Equation (4). We use
the following condition to design Pareto-optimal throughput
increment by using the parameter ψr(xs).

Condition 2. For all routes r ∈ s, there exists a concave
utility function Us(xs) that satisfies θr(x∗s)

∂Us(xs)
∂xr

∣∣∣
xs=x∗s

=

ψr(x∗s)x∗2r
RTT 2

r (
∑

k∈s x
∗
k)2 , where θr(xs) is a positive function related

to step size and x∗s is the maximizer of Equation (4).

As we have discussed in section IV, wVegas has step size
δ = 1 and θr(xs) = xr/λr, and the others all have step size
δ = 0 and θr(xs) = x2

r .



If an MPTCP algorithm satisfies Condition 2, it is Pareto-
optimal. This can be illustrated with Equation (4). Utility
Us(xs) is an increasing function of xs, and path price
term 1

2

∑
l∈L
∫∑

k∈l xk

0
pl(y)dy also increases with xs. At the

maximizer x∗s , it is impossible to increase x∗s for user s
without decreasing throughput of other users or increasing
congestion. Therefore, the maximizer is at Pareto-optimality
and its utility increasing rate θr(x∗s)

∂Us(xs)
∂xr

∣∣∣
xs=x∗s

is the best

aggressiveness a MPTCP algorithm can get based on its utility
as Equation (4) under the constraint of TCP-friendliness.

B. ψr(xs) Design for Delay-based Traffic Shifting

MPTCP algorithms are supposed to detect the bad quality
paths and offload data traffic from these paths to better ones.
The ability to shift traffic has important influence on MPTCP
energy efficiency. We have shown in our experiments that
MPTCP flow using low-delay paths consumes less CPU power
than the flow using using high delay paths. In addition, using
good quality paths could avoid frequent window decrease due
to severe packet loss and thus reduce energy consumed by
retransmission or recovery operations.

It is also important to choose proper variables to estimate
path quality. In Equation (3), the parameter ψr(xs) decides
the ability of shifting traffic. Now we design the parameter
ψr(xs) and study how it changes with path delay.

Based on the results in section III, We see that the power
consumption of MPTCP increases with the path delays. In
section IV, we see that the parameter ψr(xs) of Equation (3)
can impact MPTCP’s traffic shifting to good-quality paths, and
we also show that path delay has never been used in traffic-
shifting design of loss-based congestion control. Accordingly,
our goal is to design the traffic-shifting function that can
be improved by introducing an efficient delay-based factor.
We propose the Delay-based Traffic Shifting (DTS) with the
following factor:

εr =
2

1 + e−10( baseRTTr
RTTr

− 1
2 )

(5)

where baseRTTr is the minimum RTT experienced on path r.
This factor is an increasing function of baseRTTr

RTTr
. The factor

is designed to avoid moving traffic to high-delay path, to
increase window properly when the path continue recovering
( baseRTTr

RTTr
becomes smaller and smaller), and to maintain a

stable throughput on low-delay paths.
According to the above analysis, the traffic-shifting parame-

ter ψr(xs) can be de designed to optimally increase throughout
and use low-delay paths. Both throughput increment and low-
delay path utilization lead to the energy efficient design of our
congestion control algorithm. Our algorithm achieves through-
put increment by designing the the parameter ψr(xs) to satisfy
the condition of Pareto-optimality, and it also employs the
DTS to offload traffic to low-delay paths. To ensure Pareto-
optimality, let ψr(xs) = c · εr, where c is a constant. The
ratio baseRTTr

RTTr
can be regarded as a random variable and its

expectation is 1
2 . If c = 1, the parameter ψr(xs) also satisfies

Algorithm 1: Pseudo-code of DTS
Input: TCP socket of each subflow r
Output: Congestion window w[r]
Initialization:
for each subflow r do

current rtt[r]← 0; base rtt[r]← 0;
ε denominator[r]← 1; ε numerator[r]← 1;
ε[r]← 1; ψ[r]← 1;

Update of baseRTT:
for each subflow r do

/* calculate RTTr */
current rtt[r] =
calculate current rtt(subflow tcp socket);
if current rtt[r] < base rtt[r] then

base rtt[r]← current rtt[r];

Update of ε:
for each subflow r do

/* calculate baseRTTr/RTTr */
rtt div = divide(base rtt[r], current rtt[r]);
rtt div = 10 ∗ rtt div − 5;
/* exp(10 ∗ baseRTTr/RTTr − 5) Taylor expansion*/
ε numerator[r] =
100∗ (1+rtt div+50∗ (rtt div)2 +17∗ (rtt div)3);
ε denominator[r] = 100 + ε numerator[r]; ε[r] =
divide(2 ∗ ε numerator[r], ε denominator[r]);

Evolution of congestion window w:
for each ACK on path r do

w[r]← w[r] + ψ[r]ε[r]w[r]/current rtt[r]2

(
∑

k∈s w[k]/rtt[k])2 ; //derived by
Eq. (2)

for each loss on path r do
w[r]← 1

2w[r];
return w[r]

the fairness condition. Algorithm 1 summarizes our proposed
traffic-shifting methods.

C. φr(xs) Design for Hierarchical Topology

The Internet is basically a hierarchy that has many end
devices connected to the local aggregated switching node
and then connects the local networks to the backbone. In
such hierarchical network topologies, employing MPTCP may
aggravate the traffic concentration on both aggregated and
core nodes and result in severe network congestion. This
will also delay data transmission and increase energy costs
in the networks. When using MPTCP we need to deal with
the balance between the number of subflows and the energy
overhead. Therefore, we introduce an enegy-related price to
the congestion control.

Energy proportional management has been studied in lit-
erature [22], [23]. With adaptive power management, the
networks make energy cost in proportion to the workload,
and thus they can choose optimal data rate to achieve energy
efficiency. Let L

′
be set of links between switches. For any



l
′ ∈ L′ , let Ql′ be the queue size on link l

′
, Q be the expected

queue size, and ρ be the bottleneck energy cost for unit traffic.
We refer to the general model in [23] and use the following
utility

Uep =
∑
l′∈L′

(Ql′ −Q)+ + ρ
∑
l′∈L′

yl′ (6)

where yl′ is the traffic on link l
′
. The first term is service

quality provided by the data center, and the second term is
the energy cost. Let [Rlsr] be the routing matrix where Rlsr =
1 if link l is on the path r of user s and 0 otherwise, and
yl =

∑
s∈S

∑
r∈sR

l
srxr be the aggregate traffic on link l. We

add the data center cost utility to Equation (4) and obtain the
following problem

max
∑
s∈S

Us(xs)− κsUep (7)

s.t. yl ≤ cl ∀l ∈ L (8)

where κs is the weight of the price. From Equation (6) we
obtain the parameter φr(xs) of Equation (3) as φr(xs) =
κsx

2
r
∂Uep

∂xr
.

We can further extend our algorithm by using the parameter
φr(xs), and we get the following fluid model

dxr
dt

=
cεrx

2
r

RTT 2
r (
∑
k∈s xk)2

− 1

2
prx

2
r − κsx2

r

∂Uep
∂xr

. (9)

VI. PERFORMANCE EVALUATION

In this section, we evaluate the energy efficiency of existing
algorithms and our proposed algorithm via experiments in
different scenarios.

A. Impact of Throughput

We measure the energy consumption of the four algorithms
(LIA [9], OLIA [11], Balia [13], ecMTCP [7]), among which
only OLIA is Pareto-optimal. Consider the network scenario as
Fig. 5(a) with N MPTCP users and 2N TCP users sharing the
two bottlenecks. To examine the performance of large number
of MPTCP users, we use parallel MPTCP connections between
a server machine and a client machine, both configured with
MPTCP Linux kernel. On the client machine we generate N
parallel MPTCP senders, each of which sends 16MB data to
the server machine. In the experiments, we install the MPTCP
Linux kernel of version 0.90 [17] on Ubuntu 14.04 and read
energy consumption values from Intel’s RAPL driver in each
host’s CPU. The algorithms in section IV are implemented in
the kernel.

Fig. 6 shows energy consumption results under different
values of N by using box-whisker plot (indicating minimum,
25th percentile Q1, median, 75th percentile Q3, and maximum,
as well as the outliers out of the range between Q1-1.5*(Q3-
Q1) and Q3+1.5*(Q3-Q1)). OLIA consumes less average en-
ergy than the others, especially when the value of N becomes
large. This is because OLIA’s Pareto-optimality can efficiently
increase throughput in resource pooling without losing TCP-
friendliness and decrease the time of data transmission. This
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Fig. 5. Experiment scenarios: (a) increasing throughput; (b) shifting traffic.
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Fig. 6. Comparison of the four TCP-friendly algorithms (LIA, OLIA, Balia,
ecMTCP) separately used for the scenario in Fig. 5(a) with (a) N = 10,
(b) N = 20, (c) N = 50 and (d) N = 100 multipath TCP users (each
transmitting 16MB data).
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experiment validates that the traffic-shifting parameter that sat-
isfies the conditions in section V can achieve energy efficiency
as well as maintaining high throughput and fairness.

B. Energy-Efficiency of DTS

We need first evaluate how these shifting methods work
in practice when MPTCP is confronted with dynamic quality
change of multiple paths. We use the scenario in Fig. 5(b) to
compare the algorithms. This scenario has four path quality
states (Bad-Bad, Bad-Good, Good-Good and Good-Bad) that
occur at random. This is because the scenario generates on
each path a bursty traffic that follows Pareto pattern at rate
45Mbps and occurs at random intervals (average 10 seconds)
and with average bursty duration of 5 seconds. Although the
scenario is an extremely harsh test for the algorithms, it could
happen in real world such as data centers with much bursty
traffic [24]. Fig. 7 shows that LIA outperforms the other
existing algorithms in traffic shifting.

We implement DTS in the MPTCP Linux kernel of version
0.90 [17]. This kernel has implemented four existing multipath
congestion control algorithms. We can design and implement
our congestion control algorithm by compiling the source
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Fig. 8. Comparison of LIA and Modified LIA.

code file as module, and we can enable it by modifying
the value in ’/proc/sys/net/ipv4/tcp congestion control’. Each
MPTCP subflow is associated with a subsocket and a con-
gestion window. For each subflow, TCP socket information
can be obtained from its subsocket. To obtain baseRTT for
each subflow, we define the struct baseRTT and use a
function to update the value in congestion control. Then the
congestion control function can calculate the parameter ψr(xs)
and behave the window evolution.

We use the same scenario as Fig. 5(b) over our testbed to
evaluate the modified algorithm. Fig. 8 shows the trace of LIA
and our algorithm. The results show that our algorithm can
save energy without degrading its throughput. Fig. 9 shows
that our algorithm can reduce energy consumption by up to
20% compared to LIA. We see that the parameter εr can im-
prove energy consumption without sacrificing responsiveness
in adaptation to dynamic change of path quality.

C. Performance in Advanced Networks and Discussion

1) Datacenter Network Topologies: We also evaluate the
performance of our algorithm in the experiments on large-
scale datacenters. We rent virtual machine instances on EC2.
We build up a virtual private cloud and four private subnets.
We create 40 instances as hosts. Each host has four Elastic
Network Interfaces (ENIs), and each ENI is set the capacity
of 256Mbps. Each ENI has a private IP address and uses
it to connect to a subnet. Hence, there are four routes be-
tween each pair of hosts. We implement our algorithm in the
MPTCP Linux kernel of version 0.90 and copy the kernel
image on the instances. The related configuration includes:
c4.xlarge instance, Quad-cores Intel Xeon E5-2666 v3 CPU,
40GB storage, 7.5GB Memory, availability zone of us-west-2c,
Ubuntu Server 14.04 LTS, Linux 3.18.34 and MPTCP v0.90
kernel. We use iperf to generate traffic between each pair
of hosts and record their throughputs. We read host CPU’s
instant power consumption from Intel’s RAPL driver. The
experiments take 5 hours in total. We evaluate the performance
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Fig. 9. Performance of DTS in testbed experiments.
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Fig. 11. The three datacenter topologies with multihomed hosts.

of the four algorithms: TCP, DCTCP [25], LIA, and our
algorithm. Each host has one connection. Each connection
transmits 10GB data. As shown in Fig. 10, our algorithm
saves up to 70% of aggregated energy of the single path
congestion control algorithms TCP and DCTCP. Fig. 10 also
shows that our algorithm has similar performance as LIA in
general datacenter networks.

From Equation (2), we see that increasing link utilization is
a reasonable way to reduce energy costs in wireline networks.
It has been shown in [2], [11] that increasing the number of
MPTCP subflows can improve throughput and link utilization
of the data center networks. Thus in our evaluation we com-
pare the eight algorithms and analyze their energy overhead
change across the increasing number of MPTCP subflows.

For performance evaluation in data centers, we use htsim
[26], a C++ based simulator that is fit for large scale network
traffic simulation and provided by Raiciu et al. to evaluate
performance of MPTCP in data centers of various topologies
[2]. Three topologies, FatTree [27], VL2 [28] and BCube [29],
have been proposed to address traffic concentration on a small
number of bottleneck links in data center networks. As shown
in Fig. 11, FatTree and VL2 follow a hierarchical topology
to organize switches in access, aggregate, and core layers,
and VL2 uses faster links between switches than FatTree.
BCube employs the generalized hypercube topology rather
than hierarchical organization of switches, and it makes use
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Fig. 12. Energy overhead of LIA in BCube
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Fig. 14. Energy overhead of LIA in VL2
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Fig. 15. Performance improvement by using φr(xs) of Equation (3).

of some hosts to relay traffic. We build the three topologies
(FatTree: 128 hosts, 80 switches, 100Mbps 100ms links; VL2:
128 hosts, 80 switches, 1Gbps 100ms links; BCube: 128 host,
64 switches, 100Mbps 100ms links) in our simulations. Each
host sends a long-lived (1000 sec) MPTCP flow to another
host, which is chosen at random. For each algorithm in each
case (the number of subflows) under each type of topology,
we simulate ten times and record its average energy overhead.
Fig. 12 shows that Increasing the number of subflows can
greatly reduce energy overhead in BCube, while Fig. 13 and
Fig. 14 show that increasing the number of subflows fails to
save energy for FatTree and VL2.

We then evaluate performance of the extended DTS in
simulations for both FatTree and VL2 topologies with 8
subflows of each MPTCP connection. Fig. 15 shows that our
algorithm can save up to 20% energy costs. Fig. 16 shows that
our algorithm has similar performance to LIA in the FatTree
and VL2 topologies.

2) Heterogeneous Wireless Networks: Multipath transmis-
sion has great potential to enhance communications between
mobile devices or vehicles in heterogeneous wireless networks.
We also investigate how DTS performs in heterogeneous
wireless networks. We do the simulations by using the network
simulator (ns-2.35). We use the MPTCP patch for ns-2.35 [30].
This patch includes the MPTCP Agent that uses the algorithm
LIA in the phase of multipah congestion avoidance, and it
retains the other three phases (Slow Start, Fast Retransmit and
Fast Recovery) of regular TCP. We can modify the MPTCP
Agent by replacing the congestion avoidance phase with
different congestion control algorithms. We use the simple
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Fig. 17. Performance of DTS in the heterogeneous wireless network scenario.

heterogeneous wireless network topology where a sender uses
both WiFi and 4G interfaces to transmit data to a receiver.
The wireless link type is set DropTail and its queue limit is
50 packets. The receiver buffer size is the default 64KB. For
the path representing WiFi link, we set 10Mbps bandwidth
and 40ms transmission delay. For the path representing 4G
link, we set 20Mbps bandwidth and 100ms transmission delay.
We generate cross traffic on both links to simulate a dynamic
wireless network environment. The MP-TCP Agent is attached
with infinite FTP flow. The simulation time is 200 seconds.
Fig. 17 shows the energy and throughput performance. Our
results show that DTS outperforms LIA in energy consumption
and it can save up to 30% energy compared to LIA. Our results
validate the efficiency of using the compensative parameter
φr(xs). Fig. 17 also shows the throughput performance of
DTS and LIA, and it indicates that for DTS there exists a
tradeoff between energy consumption and throughput.

VII. CONCLUSION AND FUTURE WORK

This paper has analyzed the existing multipath conges-
tion control algorithms from energy efficiency perspective. A



general analytical model has been proposed to explore the
decisive parameters for MPTCP energy efficiency. Based on
the analysis results, new algorithms has been proposed and
their efficiency has been validated in the experiments. MPTCP
has great potential to evolve in different network scenarios and
support a variety of high-quality services. The future work will
be concerned with energy performance evaluation of MPTCP
in virtualized cloud environments and energy-efficient designs
for multimedia applications over MPTCP.
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