
1252 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

Computation–Communication Tradeoffs for Missing
Multitagged Item Detection in RFID Networks

Hao Liu, Rongrong Zhang , Lin Chen , Member, IEEE, Jihong Yu , Member, IEEE,
Jiangchuan Liu , Fellow, IEEE, Jianping An , Member, IEEE, and Qianbin Chen , Senior Member, IEEE

Abstract—Missing item event detection is one of the most
important radio-frequency identification (RFID)-enabled func-
tions. Yet it is largely unaddressed how to fast and reliably
detect missing item event in multitagged RFID systems where
multiple tags are tagged on one item. The canonical methods
can only solve tag-level detection problem where each item is
associated with one tag, and applying them to detect the missing
multitagged items would falsely alarm and is time inefficient. To
bridge the gap, this article formulates and analyzes the missing
multitagged item detection problem. Our key idea is to search
the proper seeds so that the reader only needs to probe a subset
of the tags each being selected from different items instead of
the entire tag set for the missing item detection. By employing
the computation–communication tradeoffs, we design two proto-
cols named M2ID and M2ID+ that classifies the tags before the
segmentation compared to the former to improve time efficiency.
With the derived optimum parameters, our protocols can achieve
up to 4x performance gain in terms of time efficiency compared
with the state-of-the-art solution.

Index Terms—Computation–communication tradeoffs, miss-
ing item event detection, multitagged item, radio-frequency
identification (RFID).

I. INTRODUCTION

RADIO-FREQUENCY identification (RFID) is an
enabling technology in a variety of Internet of Things

(IoT) applications, ranging from inventory control [1], [2],
supply chain management [3], [4], to object tracking [5], [6],
and localization [7]. An RFID system typically consists
of one or multiple readers and a massive number of tags.

Manuscript received January 4, 2021; revised March 27, 2021; accepted
May 4, 2021. Date of publication May 11, 2021; date of current ver-
sion January 7, 2022. This work was supported in part by the NSF of
China under Grant 61901035 and Grant 61801064, and in part by the
Beijing Institute of Technology Research Fund Program for Young Scholars
and Young Elite Scientist Sponsorship Program by CAST and Chongqing
Key Laboratory of Mobile Communications Technology. The work of
Rongrong Zhang was supported by the Science and Technology Project of
Beijing Municipal Education Commission under Grant KM202010028005.
(Corresponding author: Jihong Yu.)

Hao Liu, Jihong Yu, and Jianping An are with the School of Information and
Electronics, Beijing Institute of Technology, Beijing 100081, China (e-mail:
jihong.yu@bit.edu.cn).

Rongrong Zhang is with the Information Engineering College, Capital
Normal University, Beijing 100048, China (e-mail: zhangrr@cnu.edu.cn).

Lin Chen is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510275, China (e-mail: chenlin69@mail.sysu.edu.cn).

Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A1S6, Canada (e-mail: jcliu@sfu.ca).

Qianbin Chen is with the School of Communications and Information
Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China (e-mail: chenqb@cqupt.edu.cn).

Digital Object Identifier 10.1109/JIOT.2021.3079269

Readers, usually backed up with sufficient computation and
storage capacity, interrogate the tags via wireless channel. On
the other hand, tags characterized by unique IDs [8], [9], are
able to capture energy from the RF signal of a nearby reader
and backscatter their messages.

Item tracking and monitoring is a typical and important IoT
application where RFID is deployed. It is reported that inven-
tory shrinkage, shoplifting, internal theft, and human error,
bring nearly 61.7 billion dollars in loss for U.S. retailers in
2020 [10] and almost 13.4 billion dollars for U.K. retailers
annually [11]. Therefore, time-efficient and reliable missing
item detection is of critical importance.

This article concentrates on a particular missing item detec-
tion scenario arising from multitagged RFID systems, where
each item to be monitored is attached with multiple tags.
Attaching multiple tags on an item has such advantages as
enhancing security [12], [13], improving localization accu-
racy, and accurately monitoring an item’s state [14]–[16].
However, this also brings new challenges for missing item
detection, which are largely unexplored in the literature. Prior
works [2], [17]–[25], cannot be applied in the missing mul-
titagged item detection since here these tag-level algorithms
would be time inefficient, repeating checking the present item.
Specifically, the response of one tag attached to the item is
enough to show the presence of the item. Therefore, the miss-
ing item detection problem in the multitagged RFID systems is
more challenge and the systematic study is called for to bridge
the gap between tag-level detection and item-level detection.

This article studies the missing multitagged item detection
problem in RFID systems and devises time-efficient solutions.
Motivated by the observation above, we query a subset of the
tags instead of the entire tags in prior works. We develop two
protocols following the guideline.

1) Seed Searching: Based on the characteristic of hash
function, a proper seed, which makes one tag from each
item map to a unique value, achieves extracting a subset
of the tags in the system and assigning them to sin-
gleton slots in the response frame for the missing item
detection.

2) Reader-Tag Communication: The reader broadcasts the
seed chosen in the first step and the corresponding
unique hashing values. The tags mapping to these val-
ues respond in sequence accordingly. The reader then
detects missing items based on the tags’ responses.

The first protocol named M2ID provides a suit of the seg-
mentation and the seed searching methods. M2ID divides

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2311-4348
https://orcid.org/0000-0001-7943-3172
https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0001-6868-6860

LIU et al.: COMPUTATION–COMMUNICATION TRADEOFFS FOR MISSING MULTITAGGED ITEM DETECTION IN RFID NETWORKS 1253

all tags into multiple tag segments to reduce the computa-
tion time cost of the seed searching. It makes each segment
contain the same number of the target tags with the unique
hashing values fallen into a specific interval. This would
reduce the communication time cost by avoiding broadcasting
unique hashing values to the tags in sequence, and avoiding
receiving time-inefficient response since these unique val-
ues implying the positions of the target tags’ response slots
are randomly distributed. On the top of M2ID, we propose
M2ID+ to further improve the time efficiency. M2ID+ works
in a “sampling-classification-segmentation” pattern, which can
reduce the reader-tag communication cost at the price of extra
less computation cost and thus the overall time cost. The main
contributions of this article are articulated as follows.

1) We formulate the largely unaddressed missing mul-
titagged item detection problem in RFID systems
and provide solutions from the perspective of the
computation–communication tradeoffs.

2) We present two concrete protocols namely M2ID and
M2ID+. M2ID constructs a framework integrating
the seed searching and the reader-tag communica-
tion, enabling the computation–communication trade-
offs. M2ID+ exploiting the time difference between
the computation and the communication reduces the
communication cost at the expenses of affordable extra
computational cost, improving the time-efficiency.

3) We optimize the protocol performance with the optimum
parameters derived. The analytical results also reveal the
relationship between the frame size and the probability
of finding a proper seed, indicating the computation–
communication tradeoffs.

4) We conduct extensive simulations to evaluate the
performance of the proposed protocols. The results show
that M2ID and M2ID+ achieve performance gain of 2x
and 4x over the state-of-the-art one [26] in terms of time
efficiency, respectively.

We would like to emphasize that we provide not only the
efficient solutions to the missing multitagged item detection
problem, but a new methodology embracing the computation–
communication tradeoffs, which benefits to solve other proto-
col design problems in RFID systems.

II. RELATED WORK

The works of missing item detection are separated into
two categories: 1) probabilistic protocols [2], [17]–[22] and
2) deterministic protocols [23]–[25].

Probabilistic protocols detect a missing item event with a
predefined probability. Tan et al. [17] initiated the study of
probabilistic detection and propose a solution called trusted
reader protocol (TRP). TRP detects missing item event by
comparing the precomputed slots with those picked by the tags
attached on items. If an expected singleton slot turns out to be
empty, then the missing item event is detected. Luo et al. [18]
and [19] employed multiple seeds to increase the probability
of the singleton slot, which reduces the useless empty and col-
lision slots and thus achieves better performance. RUN [20]
and BMTD [21] address the influence of the unknown tags.

Yu et al. [2] designed a suit of detection protocols for mul-
ticategories and multiregion RFID systems and study how to
detect missing item by using COTS RFID devices.

Deterministic protocols, on the other hand, are able to
exactly identify which items are absent. Li et al. develop a
series of deterministic protocols in [23] to reduce the radio
collision by reconciling collision slots and finally iron out
a bit-level tag identification method by iteratively deactivat-
ing the tags of which the presence have been verified, hence
affirming the presence of items. Subsequently, Zhang et al.
proposed [24] to identify tag responses in all rounds and
observe the change among the corresponding bits among
all bitmaps to determine the present and the absent tags
for identifying the presence of items. But how to configure
the protocol parameters is not theoretically analyzed. More
recently, Liu et al. [25] enhanced the work by reconciling
both 2-collision and 3-collision slots and filtering the empty
and unreconcilable collision slots to improve time efficiency.

With the presence of the multitagged items in RFID
systems, the prior works show their weakness in terms of time
efficiency. The key of addressing the multitagged missing item
detection problem is to probe a subset of the tags for the detec-
tion, avoiding repeated checks of the present items. However,
very limited works have studied the problem from this per-
spective. The most related work [26] utilizes a bloom filter to
solve the tag identification problem for the multitagged RFID
systems. Yet, the false positives of the bloom filter and the
low ratio of the singleton slots (no more than 36.7%) make it
time inefficient for the missing item detection.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will introduce the system model used in
our paper and formulate the problem of detecting the missing
multitagged items in an RFID system.

A. System Model

We consider an RFID system consisting of one reader 1

and a large number of the tags, where each physical item
is attached by multiple tags. The reader is connected with a
backend server which has a powerful computational capability.
For the purpose of simplification, we treat the reader and the
server as an entity and just call it reader. Moreover, each tag
has a unique ID and performs computations, such as hashing
function. All tags’ IDs in the system are recorded by the reader.

The communication between the reader and the tags follows
the rule of “Listen-before-talk” [8], [28]. In the detection, for
an example, the reader broadcasts commands and parameters
including the frame size f and a seed s at first. Then, each
tag uses its ID and the received seed s to generate one pseudo
random value via hash function as (H(ID, s) mod f), and exe-
cutes the next step according to the received commands (i.e.,
compare, response or wait for next commands).

1For multiple readers, we can treat them as a single virtual reader as
in [22] and [27]. Specifically, the backend server searches all proper seeds and
corresponding hashing values and sends them to all readers such that readers
broadcast these parameters. Consequently, the backend server can synchronize
the readers and we can logically consider them as a whole.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

1254 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

The downlink (i.e., reader-to-tags) transmission is contin-
uous. The uplink (i.e., tags-to-reader), on the other hand,
contains a blank slot between any two tags’ 1-bit responses [8].
For simplicity, we denote Td and Ttag as the time duration of
1-bit broadcasting slot and 1-bit response slot, respectively.
Consider an arbitrate response slot, it may experience three
states. When no tags respond in this slot, it is an empty slot;
when a single tag responds, it is a singleton slot; when multiple
tags respond, it is a collision slot. The latter two states are also
regarded as nonempty slots. Considering the unstable channel,
there exists error transmissions. We assume that the down-
link works in error-free channel since the reader supported
by the external power source can increase the transmission
power. On the contrast, the tag can not support much power
to counter the interference. Therefore, we assume that the error
occurs in the uplink and the manifestation of the error trans-
mission is bit inversion. The “1” inverted to “0” brings the
false positives and the “0” inverted to “1” induces the false
negatives which will cause the practical damage.

B. Problem Formulation

In this article, we are interested in detecting the missing
multitagged items in an RFID system where n tags moni-
tor g items each attached by the multiple tags, i.e., g < n.
Considering the instability of the uplink, we define ma as the
number of missing items and Pd as the probability that the
reader successes in detecting the missing item event without
the false alarm. We formulate the multitagged missing item
detection problem as follows: The missing multitagged item
detection problem is to devise an algorithm of minimum exe-
cution time to detect missing item event with Pd ≥ α under
the condition of ma ≥ Ma in the unstable uplink. The α is
the required correct detection probability among all detec-
tion, and the Ma is a predefined detection threshold meaning
the tolerance to the minimum number of the missing items.
Note that the problem is degraded to deterministically identify
missing items when α = 1 and Ma = 1. The proposed proto-
cols in this article can also achieve deterministic missing item
identification.

We would like to emphasize the key difference between
the missing multitagged item detection problem and the prior
missing single-tagged item detection problem: The success-
ful response of one tag on a multitagged item indicates the
presence of the item, it is thus feasible to query one tag
for checking the state of an item. In contrast, if we use the
prior algorithms for the missing single-tagged item detection
problem, all tags on the item would respond to the interro-
gation, resulting in severe interference and thus considerably
degrading time efficiency. For example, there are 10 000 items
being monitored where each item is attached by three tags, the
prior works have to probe 30 000 tags, which sharply increases
the time cost. Instead, we only query 10 000 tags by picking
one tag from each item.

C. Design Rational

The response of a tag means the presence of the item,
the reader has no need to query the other tags on this item.

Meanwhile, the absence of one tag indicates the potential miss-
ing item. Therefore, it is feasible to probe one of the tags on
an item instead of all for the missing item event detection.
If the probed tag is absent, we would further poll the left
tags on the item, and a missing item would be found if all
of them are absent. Considering the number of missing items
is usually small, the idea above can improve time efficiency
significantly.

In this article, we randomly select one tag from each item,
referred to as a representative tag. These g tags constitute the
representative tag set defined as GA = {RT1, RT2, . . . , RTg}
where the RTk is a tag on the item k for 1 ≤ k ≤ g. The set of
the remaining tags named pending tags is denoted by GB. We
are interested in interrogating the representative tags to detect
potential missing item event. Unfortunately, the pending tags
in GB would cause the sever interference to the representative
tag detection. Hence, an efficient scheme should be able to
eliminate this negative impact.

We distinguish the representative tags and the pending
tags via their hashing values by selecting such a seed that
there exists no common hash value mapped by the tags
in GA and GB. Furthermore, we prefer a proper seed that
makes each tag in GA map to a unique hash value and
respond in a singleton slot. Consequently, the reader only
needs to broadcast the proper seed and corresponding unique
hashing values. Each tag learns whether it should respond
after comparing its hashing value with the received hash-
ing value, and the response slot of the representative tag is
determined by the hashing value. After receiving the represen-
tative tags’ responses, the reader can find the potential missing
items.

Yet, it is impractical to search a proper seed for all tags
in a large-scale system for the extremely high computational
complexity, it is necessary to design a strategy that can lessen
the number of the tags simultaneously involving in the seed
searching. On the other hand, these unique hashing values indi-
cating the response slot positions of the representative tags
are randomly distributed. Hence, we have to broadcast each
of these hashing values and the response slots might involve
empty slots, leading to the low efficiency. To address the
obstacles, we induct these unique hashing values to a spe-
cial range so that we only need to broadcast the boundary
values of this range once and all response slots are singleton,
which retrenches the reader-tags communications. This makes
the communication cost reduced from broadcasting hashing
values many times determining by the number of the repre-
sentative tags to broadcasting only twice, meanwhile, from
involving empty slots to reaching 100% utilization in response
frame.

Moreover, motivated by the difference between the com-
putation time of the reader and the transmission rate among
the reader-tag communications (i.e., the clock period of
the CPU in the reader is about 0.3 ns and a time slot
in the communication is over 10 μs), we could tradeoff
the computation cost and the communication cost to fur-
ther minimize the overall execution time. Following the
design rational above, we construct M2ID and the improved
M2ID+.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: COMPUTATION–COMMUNICATION TRADEOFFS FOR MISSING MULTITAGGED ITEM DETECTION IN RFID NETWORKS 1255

IV. M2ID: MISSING MULTITAGGED ITEM

DETECTION PROTOCOL

A. Motivation

The seed and a tag’s ID determine the hashing value of the
tag in RFID systems, so we can find out a proper seed that
makes each of g representative tags have a unique hashing
value. The reader then broadcasts the seed and the corre-
sponding hashing values informing the tags whether/when
they should respond. We denote the jth representative tag’s
hashing value under the proper seed s and the frame size f
by hj = (H(IDj, s) mod f) + 1, meaning its response slot
is also hj. To avoid sequentially broadcasting these unique
hashing values, we make them all designated in a range of
[1, g] ⊆ [1, f] that we only need to broadcast the parameter g
once at the beginning of the protocol. This makes the commu-
nication cost reduced from broadcasting every unique hashing
values to broadcasting only one value.

We take an example to illustrate this. As shown in Fig. 1,
there exists two items and each is attached with three tags (i.e.,
g = 2 for two representative tags). We pick one tag from each
item as a representative tag (i.e., tag 1,4). Originally, we select
a proper seed s

′
so that all representative tags’ hashing values

are unique and their corresponding hashing values represent the
slot position in the response frame. For example, the hashing
value of the tag 1 is 2 and it should respond in the second
slot in the response frame, the tag 4’s hashing value is 5 and
it should respond in the fifth slot in the response frame [see
Fig. 1(a)]. Hence, we have to broadcast these hashing values
(i.e., 2, 5) to tags and the response frame involves empty slots,
leading to low efficiency. In our design, as shown in Fig. 1(b),
our required seed s makes all unique hashing values fall in the
range of [1, 2], while the pending tags’ hashing values are out
of this range. Finally, tag 1, 4 will respond in the response slots
1, 2, respectively. Thus, we only need to broadcast hashing
value 2 and the utilization of response frame reaches 100%,
which retrenches communication time cost.

Finding such a seed is effective for the missing item detec-
tion, but the time cost would soar if we search for all tags
in the system. Specifically, the probability of seeking out the
proper seed can be expressed as follows:

pft = g!

gg

(
g

f

)g(
1 − g

f

)n−g

. (1)

It can be proven that pft is maximum when f = n (see
Section IV-D). We next show that the time cost is unaffordable
even for a small-scale system. For example, when n = 100 and
g = 50, we have pft = 2.701 × 10−51. That is to say, we need
Ns × Tcpu ≈ 3.702 × 1038s ≈ 1.174 × 1031years on average
with 1000-GHz CPU to find the seed for 100 tags. Therefore,
a scheme of lower computation complexity is called for to
achieve the time-efficient detection.

In this article, we follow the principle of “Divide and
Conquer.” Take the system of n = 100 and g = 50 as an
example again. We first divide them into ten segments and
each segment consists of ni = 10 tags including gi = 5 repre-
sentative tags. Recall (1), it only takes 5.333 μs to finding the
proper seed in a segment when the reader works on a 5-GHz

CPU. And the total searching time for all segments is 53 μs,
which is significantly less than the unsegmented one above.
Aggressively, if we divide all tags into 50 segments where
ni = 2, gi = 1 on average, the total searching time decreases
to 40 ns. Therefore, the segmentation is an effective method
to decrease the time cost in the seed searching.

B. Segmentation

Segmentation can reduce the computational complexity, but
directly segmenting the tags randomly is undesirable. Recall
that the tags conduct hashing operations with a seed and
the frame size, and are segmented by their hashing val-
ues and a given segment size. The random segmentation
would unbalance the number of the tags falling into the seg-
ments, degrading the performance gain of the segmentation.
On the other hand, we have to spend extra time on telling
tags the range of unique hashing values in each segment due to
the different number of the representative tags in each segment.

In this article, we propose a segmentation method approx-
imately uniformly segmenting the set of the tags. By the
uniform segmentation, each segment contains the identical
number of the representative tags and the similar number of the
pending tags. Hence, the hashing value range of each segment
might be different. More specifically, this method operates as
follows. First, the reader records all tags’ IDs, we thus sim-
ulate at the reader that all tags calculate their hashing values
under a seed ssg and frame size fsg. The setting of frame size
fsg will be discussed in Section IV-D.

Second, the reader determines the hashing value range of
each segment guaranteeing the identical number of the repre-
sentative tags in each segment. Each segment’s hashing value
range can be expressed via boundary values. The lower bound
and upper bound values can be set as follows. We denote gi

as the number of the representative tags in the ith segment for
i = 1, 2, . . . For the first segment, the reader sets lower bound
as bt1 = 1 and then seeks out the largest value of upper bound
be1. The required be1 should satisfy g1 = ∑be1

k=bt1
�(k) ≤ gd,

where g1 is the number of the representative tags whose hash-
ing values are in the range of [bt1, be1], �(k) is the number
of the representative tags whose hashing values equal to k,
and gd is the required number of the representative tags in
each segment. Once be1 set, the boundary values of the first
segment are set as [bt1, be1]. Thus, the tags should be in the
first segment when their hashing values are into the range of
[bt1, be1]. For the second segment, we set the lower bound as
bt2 = be1 + 1 and find the largest value of be2 as the first seg-
ment does. After repeating above processes, we eventually set
each segment’s boundary values so that each segment contains
no more than gd representative tags.

C. Protocol Description

Our proposed multitagged missing item detection protocol
M2ID can be described as follows.

We start at the view of the reader.
1) In the segmentation, the reader picks up an arbitrary

seed ssg from the seed pool and encodes each tag via its
hashing value which is in a range of [1, fsg], meanwhile,

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

1256 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

(a) (b)

Fig. 1. Example of required seed s when n = 6, g = 2, f = 6.

confirms the boundary values of each segment. Then,
the reader compares each tag’s hashing value with the
segment boundary to decide each tag’s affiliation.

2) In the seed searching, the reader searches a proper seed
under the corresponding optimum frame size to separate
the representative tags and the pending tags in each seg-
ment. The position of a tag’s response is determined by
the serial number of the segment and its hashing value.
In the ith segment, the representative tags’ hashing val-
ues are unique and in a range of [1, gd] with the proper
seed si and the optimum frame size fi. In case that we
can not always seek out the proper seed for all repre-
sentative tags mapping to [1, gd] since the limited scale
of the seed pool, we prefer the suboptimum seed that
makes the representative tags map to [1, gd] as many as
possible.

3) In the reader-tag communications, the reader first broad-
casts parameters including the seed ssg and the frame
size fsg for the segmentation. Then, it broadcasts the
boundary values {bti, bei} of the ith segment and its cor-
responding seed si and the frame size fi. After finishing
broadcasting, the reader interrogates the tags and listens
to the tags’ responses for detecting the missing item
event.

At the tags end, each tag receives parameters from the reader
and first calculates its hashing value for the segmentation with
the seed ssg and the frame size fsg. Then, it compares its hash-
ing values with the boundary values of segments. If its hashing
value falls into {bti, bei}, it should be in the ith segment. After
that, it uses the received si and fi to do another hashing. If the
value falls into [1, gd], the tag will regard itself as a represen-
tative tag and then respond in the corresponding position of the
response frame when interrogated. Otherwise, the tag will keep
silent and wait for the reader’s new command. Consequently,
only the representative tags respond and all the response slots
should be singleton.

Since the response slots are orchestrated to be mapped by
one representative tag, the reader knowing all representative
tags’ mapping positions can detect the missing item event if
there exists at least one empty slot. After finding any empty
slot, the reader will poll the other tags on the item attached
by this missing representative tag to affirm the item state.

By conducting the operations above across all segments, we
can identify all representative tags. One of the challenges in
M2ID is how to tune parameters for the minimum execution
time. We will address this in the following.

D. Parameter Optimization

In this part, our optimization is described based on the situ-
ation that all proper seeds are sought out in the seed pool. Our
goal is to configure the frame size fsg for the segmentation,
the frame size fi for the seed searching in the ith segment,
and the required number of the representative tags gd in each
segment.

1) At the beginning, we first discuss the setting of the frame
size fsg in the segmentation. Based on the description in
Section IV-B, the number of the representative tags in
each segment is no more than gd. Thus, the positions of
the representative tags’ responses are decided as follows:

RePosj = gd(i − 1) + yj (2)

where the yj is the hashing value of the jth representative
tag in the ith segment. In a segment, gi representative
tags’ hashing values are unique and in the range of
[1, gd]. Sometimes, gi may be smaller than gd because
of the coincident hashing values of the multiple repre-
sentative tags. If we make gi = gd in each segment,
we would achieve 100% utilization of response frame
without empty slots. For example, each segment has
two representative tags and we consider the ith segment.
The proper seed in this segment makes the representa-
tive tags’ hashing values be y1 = 1 and y2 = 2. Thus,
the tags will respond in the (2(i − 1)+ 1)th slot and the
(2(i − 1) + 2)th slot, respectively. The key of achieving
gi = gd is that each representative tag maps to a unique
value without considering the pending tags’ hashing val-
ues. The probability that each representative tag maps to
a unique hashing value can be written as

pg =
∏g−1

j=0

(
fsg − j

)
f g
sg

≥ 66.7%. (3)

The expected round of the seed searching defined as Ng

is 1/pg. Here, pg ≥ 66.7% means that an arbitrary seed
makes the representative tags map to the unique values,
i.e., E[Ng] = 1/pg ≤ 1.499 ≈ 1. The value of fsg can
thus be derived while the number of the representative
tags in each segment is gd.

2) We next discuss the optimum frame size fi in the seed
searching. The probability of seeking out a proper seed
for the ith segment can be expressed as follows:

psi = gd!

(
1

fi

)gd
(

1 − gd

fi

)ni−gd

(4)

where ni is the number of the tags in the ith segment
and fi is the frame size for calculating hashing value.
We then should derive fi to maximize psi .
Theorem 1: Given gd and ni in the ith segment, the
optimum size of fi maximizing psi should satisfy fi = ni.
Proof: The partial differential function of psi by fi can
be expressed as

∂psi

∂fi
= gdgd!

f gd+1
i

(
1 − gd

fi

)ni−gd−1(ni

fi
− 1

)
. (5)

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: COMPUTATION–COMMUNICATION TRADEOFFS FOR MISSING MULTITAGGED ITEM DETECTION IN RFID NETWORKS 1257

When (∂psi/∂fi) = 0, we have two points, such as
fi1 = gd and fi2 = ni, and gd ≤ fi. According to the
requirement of the proper seed, we set fi = ni. As
shown in (5), it is positive when fi < ni and negative
when fi > ni. Hence, we can get the maximum psi with
fi = ni.
Theorem 1 indicates the optimum frame size fi is
determined by the number of the tags ni in this segment.

3) Now, we discuss the selection of gd. The expected exe-
cution time of the segmentation, defined as Tsg, consists
of the time spent on the seed searching and broad-
casting the parameters including the seed value, the
frame size for the segmentation and each segment’s
boundary values. The cost of broadcasting gd can be
negligible compared with the cost of other parameters
broadcasting. Thus, the cost of the segmentation and
broadcasting each boundary values for all segments can
be expressed as

Tsg = Tsearching + Teach = nNgNcTcpu

+ (
L
(
fsg

) + L
(
ssg

))
Td +

r∑
i=1

(L(bti) + L(bei))Td

(6)

where Ng = 1 holds following (3). We use L(·) to stand
for log2(max{·}) and the number of the segments r is
equal to g/gd. The operator of L(·) shows the length of
data expressed by the binary sequence. As the boundary
values of each segment should be less than fsg, the length
of binary sequence expressing boundary values is twice
of L(fsg). Therefore, (6) can be rewritten as

Tsg = nNcTcpu +
(

L
(
ssg

) +
(

2g

gd
+ 1

)
L
(
fsg

))
Td. (7)

We can observe that the execution time of the segmen-
tation is decided by gd when fsg is derived by (3).

Then, we will discuss the execution time after each tag rec-
ognizes its belonged segment. As described in Section IV-C,
the expected total execution time of the seed searching, broad-
casting the corresponding optimum frame sizes and the seed
values can be written as

Ts =
r∑

i=1

Nsi niNcTcpu + (L(fi) + L(si))Td (8)

where the Nsi is the round of the seed searching and we have
Nsi = 1/psi . As stated in Theorem 1, we prefer pms to represent
the maximum of psi with the respect to fi if we make fi = ni

pms(gd, ni) = gd!

ggd
d

(
gd

ni

)gd
(

1 − gd

ni

)ni−gd

. (9)

Hence, the minimum expected round for searching the proper
seed is 1/pms(gd, ni).

During the searching process, we initialize the seed value
to “1” and increase by “1” in the next round if we do not
find out the proper one. Therefore, the value of si is equal to
1/pms(gd, ni), and Tss can be rewritten as

Ts =
r∑

i=1

niNcTcpu

pms(gd, ni)
+

(
L(ni) + L

(
1

pms(gd, ni)

))
Td. (10)

In addiction, the execution time of the response frame can be
expressed as

Tr =
r∑

i=1

giTtag = rgdTtag = gTtag. (11)

Recall (6), (10), and (11), the expected execution time of
the M2ID, defined as the Twhole, is

Twhole = Tsg + Ts + Tr = nNcTcpu + gTtag

+
(

L
(
ssg

) +
(

2g

gd
+ 1

)
L
(
fsg

))
Td +

g
gd∑

i=1

niNcTcpu

pms(gd, ni)

+
(

L(ni) + L

(
1

pms(gd, ni)

))
Td. (12)

We observe that Twhole is determined by the latter part of Tsg

(i.e., 2g/gdL(fsg)Td) and the whole part of Ts. Considering fi
and fsg are fixed so that Td and Ts are determined by gd, we
thus only optimize these two part with gd where we approxi-
mate ni with the expected number of the tags E[ni] = ngd/g.
However, using the expected value of ni may be inaccurate for
L(ni) that depends on the maximum ni. To solve this problem,
we set an upper bound for the maximum ni. Based on exten-
sive numerical analysis, we fix max{ni} = 3n/g. Intuitively,
we extract the part related with gd from (12), the expression
is written as follows:

Tsim = g

gd

(
ngd

g

NcTcpu

pms(gd,E[ni])

)
+ 2g

gd
log2

(
fsg

)
Td

+ g

gd

(
log2

(
3ngd

g

)
+ log2

(
1

pms(gd, max{ni})
))

Td.

(13)

Now, the problem is converted to find out the proper value
of gd to minimize Tsim. Generally, we are going to directly
conduct differential function of Tsim to calculate the extreme
point where the proper gd can be found. Yet, the differential
function is too complex to derive the closed form of gd. A
feasible way is to find such an upper bound that the values of
gd over this bound would make Tsim increasing.

Conducting algebraic operations, we can observe that the
first part of Tsim is of the order of the magnitude �((ne/g)gd)

while the sum of the other parts is in �(1/gd). Consequently,
we can find the upper bound for gd due to the fact that Td

is significantly larger than Tcpu. Considering the exponential
increase and the reciprocal decrease of Tsim with gd, the upper
bound is usually not large. Once finding it, we would search
an optimum gd from 1 to the upper bound.

We conduct the numerical experiment to understand this
with varying n and g where the period of CPU is 0.27 ns
and doing hash function needs 344 clock cycles. As shown
in Fig. 2, Tsim increases extremely when gd is greater than 4,
and the minimum of Tsim can be reached by gd ≤ 4.

After the three steps above, we can obtain fsg, fi, and gd

that would minimize the overall execution time of M2ID. Let
us take an example to interpret M2ID. As shown in Fig. 3,
there exists g = 3 items each being attached by 3 tags. Using
the parameter configuration method presented in this section,
we have fsg = 9 and gd = 1. The tags are divided into three

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

1258 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

(a) (b) (c) (d)

Fig. 2. Impact of gd on T . (a) Value of Tsim when n = 1000 and g = 100. (b) Value of Tsim when n = 1000 and g = 200. (c) Value of Tsim when n = 1000
and g = 500. (d) Value of Tsim when n = 2000 and g = 1000.

(a)

(b)

(c)

Fig. 3. Illustration of M2ID when n = 9 and g = 3.

segments with ssg [see Fig. 3(a)] and then the reader finds
the proper seed si of the ith segment [see Fig. 3(b)]. Finally,
each tag calculates its position with the received parameters
and decides whether/when to respond following (2). If rec-
ognizing itself as a representative tag, the tag replies in the
calculated position in the response frame. Consequently, only
the representative tags respond in sequence [see Fig. 3(c)].

As mentioned in Section III-A, we assume the downlink
works in the error-free channel and the uplink works in the
unstable channel. Hence, we assume the probability of each
received bit from the tags occurring bit inversion is pe. The
probability of a missing representative tag which is undetected
in M2ID resulted from the bit inversion is written as

Punde = 1 − Pm(1 − pe) = pe (14)

where Pm is the probability that a representative maps to a
singleton slot and the value is 1. Therefore, the probability of
detecting the real missing representative tag is expressed as

Pcd = 1 − PMa
unde = 1 − pMa

e (15)

where the Ma is the detection threshold. Therefore, the relia-
bility of M2ID working in the unstable channel is estimated.

V. M2ID+: THE IMPROVEMENT OF M2ID

In this section, we introduce M2ID+ to more actively trade-
off the computation time and the communication time to
further improve the time efficiency.

A. Motivation

M2ID can effectively complete the missing multitagged
item event detection, its performance, however, is hindered by
the time cost of the reader-tag communication, as described

below. First, probing all representative tags is time-consuming
because the detection time cost is proportionate to their size
while it is adequate for the probabilistic detection to interro-
gate part of the representative tags with the given reliability
requirement. Second, (3) indicates that the frame size in
the segmentation fsg increases as the system scales up, the
time spent on broadcasting boundary values of each segment
will thus soar following (7), degrading the time efficiency.
Moreover, we have to broadcast the different frame sizes
used for the seed searching of each segment in M2ID, which
introduces extra time cost.

To tackle the drawbacks of M2ID, we introduce the fol-
lowing three approaches to further embrace the computation–
communication tradeoffs, improving the time efficiency.

1) We select the partial tags via sampling instead of the
entire tag set in M2ID, which reduces the number of the
representative tags participating in the detection. Note
that if both the sampling ratio and the required reliability
are 1, M2ID+ can achieve the deterministic detection.

2) We avoid spending too much time on broadcasting the
boundary values of each segment and improve the time
efficiency via two steps.

a) We divide the sampled tags into categories and
each is further segmented into multiple segments
with the smaller frame size for the subsequent
segmentation.

b) We introduce the seed searching into the segmenta-
tion instead of selecting an arbitrary seed in M2ID,
which would further reduce the frame size used in
the segmentation.

3) During the seed searching of each segment, we set the
identical frame size across all segments of a category
so that the readers broadcasts its value once instead of
multiple times in M2ID.

We would like to explain that M2ID+ brings extra compu-
tation time cost compared to M2ID, but this reduces more
communication time cost and thus the overall time cost. Let
us take an example to make the explanation. Consider a system
input of gd = 1, g = 50, n = 500, M2ID would use 1212-bit
binary sequence to broadcast the boundary values of all seg-
ments. In contrast, this cost reduces to 411 in M2ID+ where
the tags are classified into ten categories before the segmen-
tation, including 300 bits representing the boundary values,
100 bits expressing the ten 10-bit seed sequences used in the
subsequent segmentation for all categories, and about 11-bit
cost equivalently to the computation time of 279 μs.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: COMPUTATION–COMMUNICATION TRADEOFFS FOR MISSING MULTITAGGED ITEM DETECTION IN RFID NETWORKS 1259

B. Protocol Description

In M2ID+, the reader works in two modes, i.e., offline or
online. In the offline mode, the reader will conduct the param-
eters configuration, the operations of the sampling and the
classification according to the user’s requirements. They are
done in the reader once the system is confirmed before the
detection. On other side, online mode will search the seed
and communicate with the tags for each executed detection.
Therefore, the time cost for the detection discussed in this
article refers to the cost of online mode.

1) Sampling Classification: In the offline mode before
the detection, the reader first picks up two arbitrary
seeds and two corresponding thresholds to conduct the
sampling and the classification. For example, an arbi-
trary tag’s hashing value is hs,j = (H(IDj, ssample)

mod fsample) + 1 with the sampling seed ssample and the
frame size fsample. The threshold Th is �psamplefsample	.
If hs,j ≤ Th, this tag is sampled. Consequently, npsample
of the tags are sampled to participate in the sequent
operations. The reader then makes these sampled tags
do another hashing operation with the second seed
sclass and its corresponding classification size fclass, i.e.,
hc,j = (H(IDj, sclass) mod fclass) + 1. The value of hc,j

indicates the category the tag belongs to. For example,
If hc,j = u, it would be classified into the category u for
u = 1, 2, . . . , fclass.

2) Segmentation of a Category: During the online mode for
the detection, consider an arbitrary category u, the reader
first divides it into multiple segments. Specifically, the
reader searches for such a seed ssegu

that all representa-
tive tags of this category map to unique hashing values
with the frame size fsegu

. Furthermore, we only record
the length of each segment (i.e., dqu = bequ − btqu + 1,
where qu represents the qth segment in the category u)
instead of the boundary values in M2ID. The reader then
finds another proper seeds for the representative tags in
each segment ensuring that their hashing values fall into
[1, gd]. The process of the seed searching in each seg-
ment is similar with M2ID. The difference here lies in
that we use an identical frame size fsu across all segments
instead of the different frame sizes in M2ID.

3) Parameters Broadcasting: The reader first broadcasts the
seeds, the frame sizes and the thresholds used in sam-
pling and classification. For the category u, the reader
broadcasts the parameters used in the segmentation,
namely the frame size fsegu

and the seed ssegu
. The reader

then sends the identical frame size fsu used in the seed
searching for each segment and each segment’s length
dqu and the found seeds. Sequentially, the reader inter-
rogates the sampled representative tags in the category
u and waits for their responses. Repeating these opera-
tions for all categories, the reader checks the observed
response slots of the representative tags. It can detect
missing items if the predicated busy slots turn to be
empty.

At the tag side, each tag does hash function to check
whether it is sampled according to the received parameters.

Only a sampled tag determines which the category it belongs
to, while the unsampled tags will keep silent. After knowing
its category, the tag computes its segment and checks whether
it is a representative tag. Each representative tag will then
respond at a corresponding slot as M2ID does.

M2ID+ makes the sampled representative tags map to sin-
gleton slots and then identified when all proper seeds are
sought out. The key left is to configure the parameters used
in the sampling, the classification and the segmentation to
minimize the overall execution time.

C. Parameter Setting

We here introduce how to set the parameters used in M2ID+
so that the detection reliability can be satisfied while the over-
all execution time can be minimized. Consider we have U
categories (i.e., U = fclass) and the expected number of the
tags and the representative tags in each category is ns/U and
gs/U, respectively, under the sampling ratio psample, where
ns = npsample, gs = gpsample. In an arbitrary category u,
the reader divides the tags into several segments with the
frame size fsegu

and each segment contains gd representative
tags. Recall Section V-B, the expected overall time cost of
M2ID+ is

Ttotal = Tr_whole + Tres = UTu + gsTtag (16)

where Tr_whole is the expected time cost used by the reader
to complete the computation and the broadcasting for U cat-
egories. Tu is the expected time cost of the category u, and
Tres is the time duration of the response frame determined by
the number of the sampled representative tags gs.

For the uth category, the expected time cost can be divided
into the following three parts:

Tu = Tsegu
+ Tidenu + Tssbu (17)

where Tsegu
is the expected time cost used for the segmentation

and its parameters transmission, Tssbu is the expected time
cost of the seed searching and the seed transmission for all
segments, and Tidenu is the cost of broadcasting the identical
frame size fsu for all segments expressed as Tidenu = L(fsu)Td.

As mentioned above, the time cost of the segmentation
contains the cost of the seed searching and the parameters
broadcasting. Thus, Tsegu

is written as

Tsegu
= CunsNc

U
Tcpu

+
(

gs

gdU
L(D) + L

(
fsegu

) + L(Cu)

)
Td (18)

where D is the expected length of each segment in all cate-
gories, and Cu is the expected round needed to find a seed for
the segmentation. In addition, the value of the seed equals to
Cu. Specifically, the expected length of each segment is

D = E
[
dqu

] = fsegu
gdU

gs
. (19)

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

1260 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

And the expected number of the rounds is

Cu = 1
∏ gs

U −1
q=0 fsegu−q

f
gs
U

segu

= f
gs
U

segu∏ gs
U −1
q=0 fsegu

− q
(20)

where fsegu
should meet fsegu

≥ gs
U in order to make all

representative tags map to the unique hashing values.
Moreover, Tssbu is the sum of the cost of the seed searching

for all segments Tssu and the cost of broadcasting the proper
seeds Tssbu . Specifically, Tssu can be written as

Tssu =
ru∑

q=1

nqu NcTcpu

psms(gd, nqu , fsu)
= nsNcTcpu

Upsms

(
gd,

gdn
g ,

gdn
g

) (21)

where ru is the number of the segment in the category u and
its expected value is [gs/(gdU)]. nqu is the number of the tags
in the qth segment of the category u and its expected value
is [(gdn)/g]. The probability psms(gd, [(gdn)/g], [(gdn)/g]) of
finding a proper seed with the identical frame size [(gdn)/g]
can be written as

psms

(
gd,

gdn

g
,

gdn

g

)
= gd!

ggd
d

(
g

gdn

)gd
(

1 − g

gdn

) gdn
g −gd

.

(22)

Correspondingly, the expected time cost Tssbu of broad-
casting the proper seeds of all segments in the category
u is

Tssbu = gs

gdU
L

⎛
⎝ 1

psms

(
gd,

gdn
g ,

gdn
g

)
⎞
⎠Td. (23)

Therefore, the (17) can be rewritten by substituting
with (18), (21), and (23)

Tu = nsNc

U

⎛
⎝Cu + 1

psms

(
gd,

gdn
g ,

gdn
g

)
⎞
⎠Tcpu

+
(

gs

gdU
L(D) + L(fsegu

) + L(Cu) + L

(
gdn

g

))
Td

+ gs

gdU
L

⎛
⎝ 1

psms

(
gd,

gdn
g ,

gdn
g

)
⎞
⎠Td. (24)

Recall the operation of L(·), we make the following set-
tings for the analysis feasibility: max{D} = 3fsegu

gdU/gs,
max{nqu} = 3gdn/g, max{fsegu

} = fsegu
, max{Cu} = Cu. Thus,

the expression (24) can be expanded as

T∗
u = nsNc

U

⎛
⎝Cu + 1

psms

(
gd,

gdn
g ,

gdn
g

)
⎞
⎠Tcpu

+
(

log2(fsegu
) + log2(Cu) + log2

(
gdn

g

))
Td

+ gs

gdU
log2

⎛
⎝ 3fsegu

gdU

gspsms

(
gd,

3gdn
g ,

gdn
g

)
⎞
⎠Td. (25)

And we thus have the expected overall execution time of
all categories at the side of the reader as follows:

Tr_whole =
U∑

u=1

T∗
u = UT∗

u

=
⎛
⎝Cu + 1

psms

(
gd,

gdn
g ,

gdn
g

)
⎞
⎠nsNcTcpu

+
(

log2(fsegu
) + log2(Cu) + log2

(
gdn

g

))
UTd

+ gs

gd
log2

⎛
⎝ 3fsegu

gdU

gspsms

(
gd,

3gdn
g ,

gdn
g

)
⎞
⎠Td. (26)

Therefore, the expected overall execution time of our
proposed M2ID+ is expressed as

Ttotal =
⎛
⎝Cu + 1

psms

(
gd,

gdn
g ,

gdn
g

)
⎞
⎠nsNcTcpu

+
(

log2(fsegu
) + log2(Cu) + log2

(
gdn

g

))
UTd

+ gs

gd
log2

⎛
⎝ 3fsegu

gdU

gspsms

(
gd,

3gdn
g ,

gdn
g

)
⎞
⎠Td + gsTtag.

(27)

Obviously, Ttotal is determined by psample, U, fsegu
, and gd. The

key of achieving the best time-efficiency is to minimize Ttotal
with the optimum values of these four parameters.

To this end, we first show the configuration of the sample
ratio psample under the requirement of the detection. Second,
we discuss the optimum number of the categories U, the opti-
mum frame size for the segmentation fsegu

in the category u,
and the optimum number of the representative tags in each
segment gd. Third, we derive the identical frame size for the
specific situation after the classification and the segmentation.

1) Optimum Sampling Ratio: A smaller sampling ratio usu-
ally yields the less time cost, but the unbounded decreas-
ing would make the detection unreliable. Consequently,
we must set an appropriate sampling ratio. The cor-
rect detection probability in the unstable channel is
expressed as

Pd = 1 − (
1 − psamplePm(1 − pe)

)Ma (28)

where Pm is the probability of an arbitrary represen-
tative tag mapping to a singleton slot in the response
frame, pe is the probability of the bit inversion induced
by the unstable channel, and Ma is the threshold. Recall
Section V-B, we ensure the probability of an arbitrary
representative tag mapping to a singleton slot in the
response frame is 1. Consequently, given the reliability
requirement α and establishing Pd ≥ α, we have

psample ≥ 1

1 − pe

(
1 − (1 − α)

1
Ma

)
(29)

which is the sampling ratio we need.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: COMPUTATION–COMMUNICATION TRADEOFFS FOR MISSING MULTITAGGED ITEM DETECTION IN RFID NETWORKS 1261

(a) (b)

Fig. 4. Parameters configuration when n = 1000 and g = 100. (a) Search
the optimum fsegu . (b) Search the optimum U.

2) Configuring the Number of the Categories U, the Frame
Size Used for the Segmentation fsegu

, and the Number of
the Representative Tags in Each Segment gd: Recall (27),
the object moves to configure the number of the cate-
gories U, the number of the representative tags gd in
each segment, and the frame size of the segmentation
fsegu

in each category to minimize the execution time
Ttotal. Because it is difficult to directly derive them, we
have to search the optimum value of these parameters.
Let us start with the gd. We have shown in Section IV-D
that gd would be small with the high probability because
of the exponentially increasing rate. We set the range of
gd as 1 ≤ gd ≤ 4. And U should be set to ensure
that each category contains the representative tag(s), we
thus have 1 ≤ U ≤ (gs/gd). The lower bound of fsegu

is set as (gs/U) according to the (20). The upper bound
fsegu

can be set if fsegu
makes Cu(fsegu

, U) < 2, which
means that the expected round of searching a proper
seed for the segmentation is less 2. Now, the range of
these three parameters have been determined, we start
to seek out the proper values. We will take an example
to explain the searching process with a system con-
sisting of 100 items and ten tags on each item (i.e.,
total 1000 tags in the system), as shown in Fig. 4. The
period of the CPU is 0.27 ns with the clock round of
344 doing hash function and the downlink transmission
rate is 40.97 kb/s. The curves in Fig. 4(a) shows the
time cost with the different number of categories and
the different frame size for the segmentation. Note that
it is adequate to show 1 ≤ U ≤ 7 because the exe-
cution time soars for U > 6. More specifically, the
curves at the different gd in Fig. 4(b) shows the time
cost with the different number of categories under the
corresponding optimum fsegu

. Hence, we can obtain the
optimum parameters as follows: the number of the rep-
resentative tags in each segment g∗

d = 1, the frame size
f ∗
segu

= 35 used for the segmentation of a category u,
and the number of the categories U∗ = 5. As mentioned
in Section V-B, the optimum parameter configuration
for the sample, the classification and the segmentation
can be calculated offline and can be recorded in the
reader’s storage. The reader will select the proper con-
figuration from the storage once the system input is
fixed.

(a)

(b)

(c)

(d)

Fig. 5. Illustrating M2ID+ with seven items each attached by three tags.

3) Identical Frame Size of the Seed Searching for
Each Segment: Before the classification and the seg-
mentation, the expected number of the tags seg-
mented into the qth segment of the category u is
E[nqu] = ngd/g under the fixed gd. After that, the
true number of the tags nqu might be different, which
results in directly using the nqu = gdn/g is ineffi-
cient.

For the category u after the classification and the segmen-
tation, the number of segments is ru under the fixed gd. The
expected cost of the seed searching for all segments is

T∗
ssu

=
ru∑

q=1

nqu NcTcpu

psms
(
gd, nqu , fsu

) . (30)

The difference fsu between (17) and (30) is that the former
is an expected value used to set U, gd and fsegu

while the
latter optimum based on the true value of the nqu . Now, our
objective is to minimize the (30) with a proper f ∗

su
. We have

∂T∗
ssu

∂fsu

= NcTcpuggd
d

gd!

ru∑
qu=1

g2
d

(
1 − gd

fsu

)gd−nqu

f 2
su

(
gd
fsu

)gd+1

+
gd

(
gd − nqu

)(
1 − gd

fsu

)gd−nqu−1

f 2
su

(
gd
fsu

)gd
. (31)

The result is o when f ∗
su

= (1/ru)
∑ru

qu=1 nqu . Thus, the proper
frame size f ∗

su
of the category u is fixed.

We next take an example to explain M2ID+. Our system is
shown in Fig. 5. The configuration is gd = 1, U = 2 and all
tags are sampled. Then, the tags in the category 1 are divided
into five segments with the fseg1

= 7 and the reader searches
the proper seed for each segment with the identical frame
size fs1 = 3. Finally, only the representative tags respond for
the missing item detection, and all the slots in the response
frame are singleton, that said the utilization ratio of the slots
to identify the representative tags reaches 100%. The tags in
the category 2 would repeat the above process.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

1262 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

(a) (b) (c) (d)

Fig. 6. Detection probability and the execution time versus the number of the total tags with α = 95% and α = 99%. (a) α = 95%. (b) α = 99%.
(c) α = 95%. (d) α = 99%.

(a) (b) (c) (d)

Fig. 7. Detection probability and the execution time versus. The number of the tags on each item with α = 95% and α = 99%. (a) α = 95%. (b) α = 99%.
(c) α = 95%. (d) α = 99%.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed M2ID and
M2ID+ in terms of the detection probability and the exe-
cution time, and compare their performance with the most
related work named BPI [26] that uses bloom filter to iden-
tify the tags in the multitagged RFID systems. The timing
parameters in the simulation follow the EPC-global Gen-2
standard [8]. Specifically, the transmission rate is 40.97 kb/s,
and a broadcast slot and a response slot are Td = 24.4 μs and
Ttag = 290.8 μs, respectively. Furthermore, the number of the
rounds accomplishing once hash function is Nc = 344 [29]
and the period of the CPU’s clock is TCPU = 0.27 ns. The
parameters like the sampling ratio and the number of the rep-
resentative tags in each segment are set from the analysis. The
results are obtained from 1000 independent runs.

Performance Verification: We evaluate the proposed proto-
cols under five scenarios. In the simulation, the threshold of
the missing items is set to Ma = 2 and the required detection
reliability varies from α = 95% to α = 99% in the first two
scenarios and is fixed to α = 95% in the third scenario. In
the fourth scenario, we set α = 100% and psample = 100% to
enable the tag identification of M2ID+, and we show the supe-
rior time efficiency of the proposed protocols compared with
the state-of-the-art BPI [26]. The above simulations work in
the ideal channel, i.e., pe = 0. Therefore, the detection prob-
ability equals to the ratio of the correct detection. In the last
simulation, we verify the effectiveness of the proposed pro-
tocols under the unstable channel and the ratio of the correct
detection is set as α = 95%.

1) In the first scenario, there exists ten tags on each item
and the number of the tags varies from 1000 to 5000.
The simulation results of the detection probability and
the execution time are depicted in Fig. 6. The results

(a) (b)

Fig. 8. Time efficiency versus the system scale under α = 95%. (a) Case 1
with the number of the total tags varied from 5000 to 30 000 and ten tags on
each item. (b) Case 2 with the number of the tags on each item varied from
2 to 10 and 30 000 tags in total.

(a) (b)

Fig. 9. (a) Execution time with the number of the total tags varied from 1000
to 30 000 and the number of the tags on each item is set to 10. (b) Execution
time with the number of the tags on each item varied from 2 to 10 and the
number of the total tags is set to 30 000.

show that the proposed M2ID and M2ID+ can satisfy
the requirement of the detection reliability. Yet, these
two protocols have to spend more time on finding a
missing item event as the number of the tags in the
system increases when there would be more represen-
tative tags leading to the longer time cost of the seed

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: COMPUTATION–COMMUNICATION TRADEOFFS FOR MISSING MULTITAGGED ITEM DETECTION IN RFID NETWORKS 1263

(a) (b) (c) (d)

Fig. 10. Ratio of the correct detection and the execution time versus the error probability of the uplink with pe = 0.1 and pe = 0.2. (a) pe = 0.1.
(b) pe = 0.2. (c) pe = 0.1. (d) pe = 0.2.

searching and the parameters broadcasting. We can also
observe that M2ID+ is more time-efficient. As shown
in Fig. 6(c), M2ID+ is faster 3× than M2ID when the
number of the total tags is 5000.

2) In the second scenario, we investigate the impact of the
number of the tags on one item on the detection proba-
bility and the execution time. To this end, we set the total
number of the tags in the system as 1000, and vary the
number of the tags on each item from 2 to 10. We can
draw from Fig. 7 the similar conclusions as in the first
scenario that both M2ID and M2ID+ can achieve the
required reliability, but the latter is more time-efficient
and the gain is 2× at least.

3) In the third scenario, we show the impact of the system
scale on the time efficiency. The experiment consists of
two cases: The first case witnesses ten tags on each item
while the number of the total tags varies from 5000 to
30 000; The second case has 30 000 tags while the num-
ber of the tags on each item changes from 2 to 10. They
indicate the change of the number of the items. We can
observe from Fig. 8 that both M2ID and M2ID+ spend
more time as the system scales up, but the increasing
speed of M2ID+ is significantly slower.

4) In the fourth scenario, we compare the proposed proto-
cols with the state-of-the-art solution BIP. To this end,
we set the sample ratio in M2ID+ to 100%. Fig. 9(a)
shows that M2ID+ is most time-efficient and M2ID+
is faster than BIP when the number of the tags with
the change of the item population. Similarly, Fig. 9(b)
depicts the execution time when the total number of the
tags is 30 000 and the number of the tags on each item
varies from 2 to 10. Similarly, M2ID+ spends least time
among these three protocols. From Fig. 9, M2ID+ is still
most effective among them and M2ID+ achieves at least
4x performance gain compared with BPI.

5) In the fifth scenario, we verify the effectiveness of our
proposed protocols in the unstable channel where the
downlink works in error-free and the probability of bit
inversion in the uplink is from pe = 0.1 to pe = 0.2.
Fig. 10 illustrates that ten tags on each item while the
number of the total tags varies from 1000 to 5000 with
different pe. The ratio of the correct detection degrades
in M2ID but still satisfies the requirement of the correct
detection. The execution time of M2ID+ grows with the
increasing pe since M2ID+ has to increase the sample
ratio to guarantee the correct detection.

VII. CONCLUSION

This article has addressed a variation on the missing item
event detection problem arising from multitagged item in
RFID systems. The application of the prior works to the new
problem suffers low time efficiency due to repeated checks of
one item. To overcome this drawback, we have provided two
solutions, namely M2ID and M2ID+, from the perspective of
tradeoff between the computation and the communications.
They have used the seed selection to ask a subset of the
tags in systems to report their presence while M2ID+ can
achieve both probabilistic detection and deterministic identi-
fication. We have also derived the optimum parameters under
the unstable channels. The simulation results have confirmed
the superiority in terms of time efficiency under the required
detection reliability to the existing state-of-the-art solution.

REFERENCES

[1] J. Liu, X. Chen, X. Liu, X. Zhang, X. Wang, and L. Chen, “On improv-
ing write throughput in commodity RFID systems,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., 2019, pp. 1522–1530.

[2] J. Yu, W. Gong, J. Liu, L. Chen, K. Wang, and R. Zhang, “Missing tag
identification in COTS RFID systems: Bridging the gap between theory
and practice,” IEEE Trans. Mobile Comput., vol. 19, no. 1, pp. 130–141,
Jan. 2020.

[3] L. Zhang, W. Xiang, X. Tang, Q. Li, and Q. Yan, “A time-and energy-
aware collision tree protocol for efficient large-scale RFID tag identi-
fication,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2406–2417,
Jun. 2018.

[4] J. Yu, J. Liu, R. Zhang, L. Chen, W. Gong, and S. Zhang, “Multi-seed
group labeling in RFID systems,” IEEE Trans. Mobile Comput., vol. 19,
no. 12, pp. 2850–2862, Dec. 2020.

[5] J. Zhang et al., “RFHUI: An RFID based human-unmanned aerial vehi-
cle interaction system in an indoor environment,” Digit. Commun. Netw.,
vol. 6, no. 1, pp. 14–22, 2020.

[6] J. Liu, S. Chen, M. Chen, Q. Xiao, and L. Chen, “Pose sensing
with a single RFID tag,” IEEE/ACM Trans. Netw., vol. 28, no. 5,
pp. 2023–2036, Oct. 2020.

[7] X. Liu et al., “Accurate localization of tagged objects using mobile
RFID-augmented robots,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1273–1284, Apr. 2021.

[8] EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF
RFID Protocol for Communication at 860 MHz–960 MHz. EPC, El
Segundo, CA, USA, 2015.

[9] H. Aftab, K. Gilani, J. Lee, L. Nkenyereye, S. Jeong, and J. Song,
“Analysis of identifiers in IoT platforms,” Digit. Commun. Netw., vol. 6,
no. 3, pp. 333–340, 2020.

[10] N. R. Federation. (2020). National Retail Security Survey. [Online].
Available: https://nrf.com

[11] Crime and Tech. (2019). Retail Security in Europe. Going Beyond
Shrinkage. [Online]. Available: https://checkpointsystems.com/uk/detail/
369/uk-retailers-suffer-most-from-shrinkage

[12] L. Bolotnyy and G. Robins, “Multi-tag RFID systems,” Int. J. Internet
Protocol Technol., vol. 2, no. 3, pp. 218–231, 2007.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

1264 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 2, JANUARY 15, 2022

[13] S. Dhal and I. Sengupta, “Protocol to authenticate the objects attached
with multiple RFID tags,” in Emerging Trends in Computing and
Communication. New Delhi, India: Springer, 2014, pp. 149–156.

[14] L. Shangguan, Z. Yang, A. X. Liu, Z. Zhou, and Y. Liu, “Relative local-
ization of RFID tags using spatial–temporal phase profiling,” in Proc.
NSDI, 2015, pp. 251–263.

[15] J. Liu, H. Dai, Y. Yan, X. Zhang, X. Chen, and L. Chen, “Is this side
up? Detecting upside-down exception with passive RFID,” in Proc. IEEE
SMARTCOMP, 2017, pp. 1–2.

[16] D. Hochhalter, D. Bigelow, N. J. Witchey, and C. Milam, “RFID-based
rack inventory management systems,” U.S. Patent App. 15 725 638,
2018.

[17] C. C. Tan, B. Sheng, and Q. Li, “How to monitor for missing RFID
tags,” in Proc. IEEE ICDCS, 2008, pp. 295–302.

[18] W. Luo, S. Chen, T. Li, and Y. Qiao, “Probabilistic missing-tag detection
and energy-time tradeoff in large-scale RFID systems,” in Proc. ACM
MobiHoc, 2012, pp. 95–104.

[19] W. Luo, S. Chen, Y. Qiao, and T. Li, “Missing-tag detection and energy-
time tradeoff in large-scale RFID systems with unreliable channels,”
IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1079–1091, Aug. 2014.

[20] M. Shahzad and A. X. Liu, “Expecting the unexpected: Fast and reliable
detection of missing RFID tags in the wild,” in Proc. IEEE INFOCOM,
2015, pp. 1939–1947.

[21] J. Yu, L. Chen, R. Zhang, and K. Wang, “Finding needles in a haystack:
Missing tag detection in large RFID systems,” IEEE TCOM, vol. 65,
no. 5, pp. 2036–2047, May 2017.

[22] J. Yu, L. Chen, R. Zhang, and K. Wang, “On missing tag detection
in multiple-group multiple-region RFID systems,” IEEE Trans. Mobile
Comput., vol. 16, no. 5, pp. 1371–1381, May 2017.

[23] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. 11th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., 2010, pp. 1–10.

[24] R. Zhang, Y. Liu, Y. Zhang, and J. Sun, “Fast identification of the miss-
ing tags in a large RFID system,” in Proc. IEEE 8th Annu. Commun.
Soc. Conf. Sensor Mesh Ad Hoc Commun. Netw., 2011, pp. 278–286.

[25] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu, “Completely
pinpointing the missing RFID tags in a time-efficient way,” IEEE Trans.
Comput., vol. 64, no. 1, pp. 87–96, Jan. 2015.

[26] X. Xie, X. Liu, H. Qi, and K. Li, “Fast identification of multi-tagged
objects for large-scale RFID systems,” IEEE Wireless Commun. Lett.,
vol. 8, no. 4, pp. 992–995, Aug. 2019.

[27] J. Yu, W. Gong, J. Liu, L. Chen, and K. Wang, “On efficient tree-
based tag search in large-scale RFID systems,” IEEE/ACM Trans. Netw.,
vol. 27, no. 1, pp. 42–55, Feb. 2019.

[28] J. Yu et al., “Stabilizing frame slotted aloha based IoT systems: A geo-
metric ergodicity perspective,” IEEE J. Sel. Areas Commun., vol. 39,
no. 3, pp. 714–725, Mar. 2021.

[29] M. O’Neill, “Low-cost SHA-1 hash function architecture for RFID
tags,” RFIDSec, vol. 8, pp. 41–51, Jul. 2008.

Hao Liu received the B.E. degree in information
engineering from the Beijing Institute of
Technology, Beijing, China, in 2014, where
he is currently pursuing the Ph.D. degree.

His research interests include RFID technology.

Rongrong Zhang received the B.E. and M.E.
degrees in communication and information systems
from the Chongqing University of Posts and
Telecommunications, Chongqing, China, in 2010
and 2013, respectively, and the Ph.D. degree in com-
puter science from the University of Paris Descartes,
Paris, France, in 2017.

She was a Research Fellow with the School
of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, ON, Canada. She is an
Associate Professor with Capital Normal University,

Beijing, China. Her research interests focus on wireless body area networks
and Internet of Things.

Lin Chen (Member, IEEE) received the B.E. degree
in radio engineering from Southeast University,
Nanjing, China, in 2002, the Engineer Diploma
degree from Telecom ParisTech, Paris, France, in
2005, and the M.S. degree in networking from the
University of Paris, Paris, in 2005.

He currently works as Professor with the School
of Computer Science and Technology at Sun Yat-sen
University, Guangzhou, China and also an Associate
professor with the department of Computer Science
of the University of Paris-Sud, Paris. His main

research interests include modeling and control for wireless networks, dis-
tributed algorithm design, and game theory.

Mr. Chen serves as the Chair of IEEE Special Interest Group on Green
and Sustainable Networking and Computing with Cognition and Cooperation,
IEEE Technical Committee on Green Communications and Computing.

Jihong Yu (Member, IEEE) received the B.E.
degree in communication engineering and the M.E.
degree in communication and information systems
from the Chongqing University of Posts and
Telecommunications, Chongqing, China, in 2010
and 2013, respectively, and the Ph.D. degree in
computer science from the University of Paris-Sud,
Orsay, France, in 2016.

He was a Postdoctoral Fellow with the School
of Computing Science, Simon Fraser University,
Burnaby, BC, Canada. He is currently a Professor

with the School of Information and Electronics, Beijing Institute of
Technology, Beijing, China. His research interests include backscatter
networking, Internet of Things, and space-air communications.

Prof. Yu is an Associate Editor of IEEE INTERNET OF THINGS JOURNAL

and Compute Communications (Elsevier).

Jiangchuan Liu (Fellow, IEEE) received the B.Eng.
(Cum Laude) from Tsinghua University, Beijing,
China, in 1999, and the Ph.D. degree from the Hong
Kong University of Science and Technology, Hong
Kong, in 2003.

He is currently a Full Professor with the School
of Computing Science, Simon Fraser University,
Burnaby, BC, Canada.

Prof. Liu is a co-recipient of the Test of Time
Paper Award of IEEE INFOCOM in 2015, the ACM
TOMCCAP Nicolas D. Georganas Best Paper Award

in 2013, and the ACM Multimedia Best Paper Award in 2012. He is a Steering
Committee Member of IEEE TRANSACTIONS ON MOBILE COMPUTING,
and an Associate Editor of IEEE/ACM TRANSACTIONS ON NETWORKING,
IEEE TRANSACTIONS ON BIG DATA, and IEEE TRANSACTIONS ON

MULTIMEDIA. He is a Fellow of the NSERC E.W.R. Steacie Memorial and
the Canadian Academy of Engineering.

Jianping An (Member, IEEE) received the Ph.D.
degree from the Beijing Institute of Technology,
Beijing, China, in 1996.

In 1995, he joined the School of Information
and Electronics, Beijing Institute of Technology,
where he is currently a Full Professor. He is cur-
rently the Dean of the School of Information and
Electronics, Beijing Institute of Technology. His
research interests are in the field of digital sig-
nal processing, wireless networks, and high-dynamic
broadband wireless transmission technology.

Qianbin Chen (Senior Member, IEEE) received
the Ph.D. degree in communication and information
system from the University of Electronic Science
and Technology of China, Chengdu, China, in
2002.

He is currently a Professor with the
School of Communication and Information
Engineering, Chongqing University of Posts and
Telecommunications, Chongqing, China, where he
is the Director of the Chongqing Key Laboratory
of Mobile Communication Technology. He has

authored or coauthored over 100 papers in journals and peer-reviewed
conference proceedings, and has coauthored seven books. He holds 47
granted national patents.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 09:26:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

