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Abstract— Existing cloud gaming platforms have mainly
focused on private nonvirtualized environments with proprietary
hardware. Modern public cloud platforms heavily rely on
virtualization for efficient resource sharing, the potentials of which
have yet to be explored. Migrating gaming to a public cloud is
nontrivial, however, particularly considering the overhead for
virtualization and that the graphics processing units (GPUs)
for game rendering has long been an obstacle in virtualization.
This paper takes a first step toward bridging the online gaming
system and the public cloud platforms. We present the design
and implementation of a fully virtualized cloud gaming platform
with the latest hardware support for both remote servers and
local clients. We explore many critical design issues inherent
in cloud gaming, including the choice of hardware or software
video encoding, and the configuration and the detailed power
consumption of thin client. We demonstrate that with the latest
hardware and virtualization support, gaming over virtualized
cloud can be made possible with careful optimization and
integration of the different modules. We also highlight critical
challenges toward full-fledged deployment of gaming services
over the public virtualized cloud.

Index Terms— Cloud computing, graphics processing
unit (GPU), video gaming, virtualization.

I. INTRODUCTION

FUELED by elastic resource provisioning, reduced
costs and unparalleled scalability, cloud computing is

drastically changing the operation and business models of the
IT industry [1]. A wide range of conventional applications,
from file sharing and document synchronization to media
streaming, have experienced a great leap forward in terms
of system efficiency and usability through leveraging cloud
resources with computation offloading. Recently, advances in
cloud technology have expanded to facilitate offloading more
complex tasks such as high-definition 3-D rendering, which
turns the idea of cloud gaming into a reality. Cloud gaming,
in its simplest form, renders an interactive gaming application
remotely in the cloud and streams the scenes as a video
sequence back to the player over the Internet. A cloud gaming
player interacts with the application through a thin client,
which is responsible for displaying the video from the cloud
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rendering server as well as collecting the player’s commands
and sending the interactions back to the cloud.

This new paradigm of gaming services brings immense
benefits by expanding the user base to the vast number of less
powerful devices that support thin clients only, particularly
smartphones and tablets [2]. Extensive studies have explored
the potential of the cloud for gaming and addressed challenges
therein [3]–[5]. Open-source cloud gaming systems such as
GamingAnywhere for Android OS [6] have been developed.
We have also seen industrial deployment, e.g., OnLive [7]
and Gaikai [8]. The U.S. $380 million purchase of Gaikai by
Sony [9], an industrial giant in digital entertainment and con-
sumer electronics, and the forthcoming integration of Gaikai
and Sony’s Play Station 4 show that cloud gaming is beginning
to move into the mainstream.

These existing cloud gaming platforms tend to focus
on private nonvirtualized environments with proprietary
hardware, where each user is mapped in a one-to-one
fashion to a physical machine in the cloud. Modern public
cloud platforms heavily rely on virtualization, which allows
multiple virtual machines to share the underlying physical
resources, making truly-scalable play-as-you-go service
possible. Despite the simplicity and ease of deployment,
existing cloud gaming platforms have yet to unleash the
full potentials of the modern cloud toward the expansion to
ultralarge scale with flexible services.

Migrating gaming to a public cloud, e.g., Amazon EC2, is
nontrivial, however. The system modules should be carefully
planned for effective virtual resource sharing with minimum
overhead. Moreover, as the complexity of 3-D rendering
increases, modern game engines not only rely on the general
purpose CPU for computation but also on dedicated graphics
processing units (GPUs). While GPU cards have been
virtualized to some degree in modern virtualization systems,
their performance has historically been poor for the given
ultrahigh memory transfer demand and the unique data
flows [10]. Recent advances in terms of both hardware and
software design have not only increased the usability and
performance of GPUs but also created new classes of GPUs
specifically for virtualized environments. A representative
is NVIDIA’s recently released GRID Class GPUs, which
allows multiple virtualized systems to each utilize a dedicated
GPU by placing several logical GPUs on the same physical
GPU board. It also contains a hardware H.264 video encoder
and similar onboard hardware encoders are available in GPUs
from other industry leaders such as Intel’s Quick Sync Video
and Advanced Micro Devices (AMD’s) video coding engine.
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These new hardware advances from nearly every major GPU
vendor allow us to take a step forward in the deployment of
online gaming systems in a public cloud environment.

This paper takes a first step toward bridging the online
gaming system and the public cloud platforms. We present a
systematic study of many critical aspects of migrating gaming
services to a virtualized cloud environment. We first closely
examine the technology evolution of GPU virtualization and
pass through and measure the performance of both the earlier
and the advanced solutions available in the market. We then
present the design and implementation of a fully virtualized
cloud gaming platform, Rhizome, with the latest hardware
support for both remote servers and local clients. Based on
this platform, we explore many critical design issues inherent
in cloud gaming, including the choice of hardware or software
video encoding, and the configuration and the detailed power
consumption of thin client. We demonstrate that with the latest
hardware and virtualization support, gaming over a virtualized
cloud can be made possible with careful optimization and
integration of the different modules. We also highlight critical
challenges toward full-fledged deployment of gaming services
over public virtualized cloud.

II. BACKGROUND AND RELATED WORK

A. Gaming Over Cloud

Using remote servers and, more recently, cloud
computing for gaming has attracted significant interest.
Winter et al. [11] designed a framework to adopt thin-client
streaming and interactive games. This hybrid system rendered
certain scenes locally at the thin client and thus greatly
reduces the bandwidth requirements on the clients. To better
understand the performance of thin-client gaming applications,
Chang et al. [12] proposed a measurement approach to learn
the implementations of thin-client games even when they
are closed sourced. A follow-up study from Lee et al. [13]
further investigated the latency issues of playing thin-client
games with different network configurations.

To understand the user-perceived quality of experience
in cloud gaming systems, Jarschel et al. [14] conducted a
subjective study, in which the selected participants were asked
to play slow, medium, and fast video games under different
latency and packet-loss conditions. Hemmati et al. [15]
examined the player’s experience of cloud gaming with
selective object encoding methods. A recent study from
Claypool et al. [4] provided a detailed measurement on
OnLive [7], a commercially available cloud gaming system,
and closely analyzed its bitrates, packet sizes, and inter-
packet times for both upstream and downstream game traffic.
To further clarify its streaming quality, Shea et al. [3]
measured the real-world performance of OnLive under
different types of network and bandwidth conditions,
revealing critical challenges toward the widespread deploy-
ment of cloud gaming. Wu et al. [16] further conducted a
series of passive measurements on a large-scale cloud gaming
platform and identified the performance issues of queuing
delay as well as response delay among users. Cai et al. [2]
suggested that the existing cloud service providers could
also offer gaming as a service in their business models.

Further, Chen et al. [17] and Vankeirsbilck et al. [18] have
proposed measurement suites to evaluate both subject and
objective QoS of interactive cloud applications including cloud
gaming. Work has also been done on analyzing and optimizing
clouds for game deployments [19]–[21].

Investigating the commercial cloud gaming systems,
Lee et al. [5] proposed a system design that delivers
real-time gaming interactivity as fast as traditional local
client-side execution, despite the network latencies.
Huang et al. [6], [22] provided an open-source cloud
gaming system, GamingAnywhere, which has been deployed
on the Android OS with extensive experiments performed.
Recently, the network traffic of thin clients for both remote-
desktop and cloud gaming applications have been carefully
analyzed [23], [24]. These studies have mainly focused on
private nonvirtualized cloud environments with proprietary
hardware. The potentials of advanced hardware for both thin
clients and public cloud with resource virtualization have yet
to be understood.

B. Virtualization Techniques

Resource virtualization is a key building block of the
modern public cloud with elastic service provisioning for
massive users. There are several virtualization techniques
pertinent to this paper, the first of which is platform
virtualization that focuses on creating virtual machines and
keeping them running in an isolated fashion. It has two
major versions, namely, paravirtualization machine (PVM) and
hardware virtual machine (HVM). The other techniques are
GPU virtualization and GPU pass-through, aiming to achieve
legitimate utilization of GPU in a virtualized environment.

1) Platform Virtualization: PVM is one of the first adopted
versions of platform virtualization and is still widely deployed
today. It requires special kernels and drivers to send privileged
calls, which means PVM must use a modified OS to work with
the hypervisor. On the other hand, HVM eliminates the needs
of OS modification. It employs special hardware extensions
to trap privileged calls from guest virtual machine (VMs).
However, HVMs can also have higher virtualization overhead
than PVM and as such may not always be the best choice for a
particular situation [25]. Yet such overhead can be alleviated
using paravirtualization I/O drivers. Using PVM and HVM,
the CPU and many of the computer resources have been
well virtualized, laying a solid foundation for today’s cloud
computing. Typical PVM solutions include Xen [26] and User
Mode Linux. Amazon, the current industry leader in cloud
computing, uses Xen to power its EC2 platform [27].

2) GPU Virtualization and Pass-Through: Initial attempts
have been made to virtualize GPU, e.g., in VMWare [10]. Yet,
full virtualization of GPU remains difficult, because the GPU
possesses a fundamentally different architecture from CPU.
GPU excels at data-parallel computations but falls behind
the task-parallel ones, and thus allowing multiple VM to
share the same GPU without considerable performance loss
is still challenging. Fortunately, recent hardware advances
have enabled virtualization systems to perform a one-to-one
mapping between a device and a virtual machine guest,
allowing hardware devices that do not virtualize well to be still
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used by a VM, including GPU. A single VM can now have a
dedicated hardware mapping with the GPU, and this is known
as the GPU pass through. With this technique, cloud platforms
are able offer virtual machine instances with GPU capabilities.
For example, Amazon EC2 has added a new instance
class known as the GPU Instances, which has advanced
pass-through enabled NVIDIA GPUs for graphics and
general-purpose GPU computing.

There have been recent studies on enabling multiple VMs to
access compute unified device architecture (CUDA)-enabled
GPUs [28], [29], analyzing the performance of CUDA
applications using a GPU pass-through device in Xen [30], as
well as GPU resource scheduling in cloud [31], [32]. Despite
these pioneering efforts, the suitability of modern implementa-
tions of GPU pass-through devices for cloud gaming remains
to be explored fully.

III. ADVANCED GPU PASS-THROUGH AND GAMING

PERFORMANCE: A REALITY CHECK

To understand the performance improvement and whether
the technology is ready for gaming over public cloud, we
have conducted a series of experiments over both an earlier
GPU pass-through platform and the latest platform. With
direct access to the hardware, these local virtualized platforms
facilitate the measurement of virtualization overhead on game
applications. We are also able to measure energy consumption
of our local platform, which we are not able to obtain
from a public cloud platform. As such, our tests cover
a broad spectrum of metrics, including frame rate, energy
consumption, and CPU memory bandwidth, both with a single
user exclusively using the entire resources and with multiple
users sharing resources. We will now compare an older more
primitive implementation of virtualized device pass through
from 2011 to a newer more optimized version from 2014. For
brevity, we will refer to these two platforms as earlier and
advanced, respectively. Since we are interested in the impact
virtualization, overhead has on gaming performance, we also
compare these systems with their optimal nonvirtualized
performance (referred to as bare-metal performance).

A. Earlier GPU Pass-Through Platform (2011)

Our first test system is a server with an AMD Phenom II
1045t six-core processor running at 2.7 GHz. The mother-
board’s chipset is based on AMD’s 990X, and we enabled
AMD-V and AMD-Vi in the basic input/output system (BIOS)
as they are required for HVMs’ support and device pass
through. The server is equipped with 16 GB of an 1333-MHz
DDR-3 synchronous dynamic random access memory and the
physical network interface is a 1000-Mbit/s Broadcom Ether-
net adapter attached to the peripheral component interconnect
express (PCI-E) bus. The GPU is an AMD-based Sapphire HD
5830 Xtreme with 1 GB of GDDR5 memory.

The Xen 4.0 hypervisor is installed on our test system,
and the host and VM guests used Debian as their operating
system. We configure Xen to use the HVM mode, since the
GPU pass through requires hardware virtualization extensions.
The VM is given access to six virtual CPU (VCPUs) and
8048 MB of RAM.

B. Advanced GPU Pass-Through Platform (2014)

Our second system is a state-of-the-art server with an Intel
Haswell Xeon E3-1245 quad-core (eight threads) processor.
The motherboard utilizes Intel’s C226 chipset, which is
one of Intel’s latest server chipsets, supporting device pass
through using VT-D. The server has 16 GB of a 1600-MHz
error-correcting code DDR-3 memory installed. Networking
is provided through an Intel i217LM 1000-Mbit/s Ethernet
card. We have also installed an AMD-based Sapphire R9-280x
GPU with 3 GB of GDDR5 memory, which is representative
of advanced GPUs in the market. The Xen 4.1 hypervisor
is installed and the VM guests again use Debian as their
operating system. On this basis, we configure Xen to use the
HVM mode, and the VM is given access to eight VCPUs
and 8048 MB of RAM. Since our system’s physical hardware
supports Intel’s hyper-threading technology, we enable it in
the BIOS for both virtualized and bare-metal experiments.

C. Comparison and Benchmarks

As for the comparison of the optimal baseline, for both
systems, we run each test on a bare-metal setup with
no virtualization, i.e., the system has direct access to the
hardware. The same drivers, packages, and kernel were used
as in the previous setup. This particular configuration enabled
us to calculate the amount of performance degradation that a
virtualized system can experience.

To determine the overall system’s power consumption,
referred to as wall power, we have wired a digital multimeter
(Mastech MAS-345) into the ac input power line of our
system. The meter has an accuracy rating of ±1.5%. We
read the data from our meter using a data logger PCLink
installed on a workstation and collect samples every second
throughout our experiments. Both systems are powered by
750-W 80 PLUS Gold power supplies with active power factor
correction.

To compare the pass-through performance, we have
selected two game engines, both of which have cross-platform
implementation, and can run natively on our Debian Linux
machines. The first is Doom 3, which is a popular game
released in 2005 and utilizes OpenGL to provide high-quality
graphics. The second is the Unigine’s Sanctuary
benchmark,1 which is an advanced benchmarking tool
that runs on both Windows and Linux. The Unigine engine
uses the latest OpenGL hardware to provide rich graphics that
are critical to many state-of-the-art games. For each of the
following experiments, we run each benchmark three times
and depict the average. For Doom3 and Sanctuary, we give
the results in frames per second.

D. Frame Rate and Energy Consumption

For Doom 3, we use the ultrahigh graphics settings with
8× antialiasing (AA) and 8× anisotropic filtering (AF), with
a display resolution of 1920×1080 pixels (1080p). To perform
the actual benchmark, we utilize Doom 3’s built-in time demo,
which loads a predefined sequence of game frames as fast as
the system will render them.

1https://unigine.com/products/sanctuary/
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Fig. 1. Doom 3 performance.

TABLE I

POWER CONSUMPTION: GAMES’ BARE-METAL

VERSUS VIRTUAL MACHINE

In Fig. 1, we show the results of frame rates running on our
bare metal systems as well as on the Xen virtualized systems.
We start the discussion with our older 2011 server. This bare-
metal system performs at 126.2 frames/s, while our virtualized
system dramatically falls over 65% to 39.2 frames/s. The
advanced system of 2014 processes the frames at over 274
frames/s when run directly on the hardware; when run inside
a virtual machine, it fails less than 3%.

Table I gives the energy consumption experienced by our
machines in this experiment, measured in joules (since each
system has a different running time in the test). The older
system consumes over twice the amount of energy to perform
the Doom 3 time demo when the system is virtualized. The
advanced platform fares much better with virtualization, only
adding 5.4% to energy consumption. This first virtualization
experiment makes it clear that the device pass-through
technology has come a long way in terms of performance
and overhead. The advanced platform performs within 3%
of the optimal bare-metal result consuming only 5% more
energy. The energy efficiency of this advanced platform is
quite impressive, considering that a virtualized system must
maintain its host’s software hypervisor as well as many
hardware devices such as the I/O memory management unit,
shadow translation lookaside buffer, and the CPUs virtualiza-
tion extensions.

To confirm the performance implications with newer and
more advanced OpenGL implementations, we next run the
Unigine Sanctuary Benchmark at 1920 × 1080, with all high-
detail settings enabled. To further stress the GPUs, we enable
8× AA and 16× AF. We run the benchmark mode three
times and measure the average frame rates and the energy
consumption of the system. In this experiment, the running
time is consistent between each run and platform; we express
the results in watts (joules per second). The results are given
in Fig. 2. Once again, we see that our earlier virtualized
system shows significant signs of performance degradation

Fig. 2. Unigine sanctuary performance.

Fig. 3. Memory bandwidth by the system.

compared with its bare-metal optimal. The earlier system drops
from 84.4 to 51 frames/s when virtualized, i.e., nearly 40%.
The advanced system has a nearly identical performance when
the game engine is running in a virtualized environment or
directly on the hardware. Table I further shows that our
advanced system uses a measurable more power, but still
impressively remains at an increase of only 4.4% more power
when virtualized. The power consumption of the earlier system
appears to have only increased by 3.2%; on the surface, this
looks like a positive trait, but indeed comes with the cost of
nearly 40% lower video frame rate.

E. GPU Memory Bandwidth

Memory transfer from the system’s main memory to the
GPU can be a bottleneck for gaming, which can be even
more severe when the transfer is performed in a virtualized
environment [33]. This would affect the game’s performance
as well, because both Doom 3 and the Unigine engine
must constantly move data from the main memory to the
GPU for processing. To understand the impact, we ran a
simple memory bandwidth experiment written in OpenCL by
NVIDIA.2 We tested three different copy operations, from
host’s main memory (DDR3) to the GPU device’s global
memory (GDDR5), from the device’s global memory to the
host’s main memory, and finally from the devices global
memory to another location on the devices’ global memory.
We give the results for host-to-device and device-to-host
experiments in Fig. 3.

For both systems, the bare-metal outperforms the VMs in
terms of memory bandwidth across the PCI-E bus to the GPU.
The earlier system loses over 40% of its memory transfer

2The code is available in the NVIDIA Open Comput-
ing Language or OpenCL software development kit at
http://developer.NVIDIA.com/opencl
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to and from the host memory compared with the
bare-metal system. The newer more advanced platform
degrades even more, losing over 60% of its memory
transfer speed when virtualized. Interestingly, all virtualized
systems sustain a nearly identical performance to their bare-
metal counterpart for a device-to-device copy: the earlier
platform at 66 400 MB/s, while the more advanced platform
at 194 800 MB/s. This indicates that once the data is trans-
ferred from the virtual machine to the GPU, the commands
that operate exclusively on the GPU are much less susceptible
to the overhead incurred by the virtualization system.

Our results indicate that even though the gaming
performance issues have largely disappeared in the more
modern advanced platform, the memory transfer from main
memory across the PCI-E bus remains a severe bottleneck.
It can become an issue during the gaming industry’s transition
from 1080p to the newer high memory requirements of 4K
(4096 × 2160) ultrahigh-definition (UHD) resolution.

F. Advanced Device Pass-Through Experiments

The previous experiments have shown that running gaming
applications inside a virtual machine is now feasible with
little overhead. The observation, however, is confined to virtual
machines having access to the entire system. In a real-world
deployment over a public cloud, we are more interested in
sharing a physical machine and its resources among multiple
users. To this end, we upgraded our advanced platform to
three R9 280× GPUs, so as to test the performance and
energy implication of multiple gaming applications running
at one time on our platform. We required three GPUs, as we
tested the performance of direct device pass through, which
is a one-to-one mapping between GPU and VM. To test
the performance of other widely deployed 3-D rendering
languages, such as Microsoft’s DirectX, we further created
a Windows server 2008 virtual machine and corresponding
bare-metal installation on our platform.

1) 3DMark Windows and DirectX 11 Performance: Our first
advanced experiment utilizes Futuremark’s widely deployed
gaming benchmark 3DMark.3 Specifically, we use the Fire
Strike module, which is a 1080p benchmark utilizing the
latest DirectX features (DX11) that stresses not only the
3-D rendering capabilities of the system but also the physics
calculations done on the CPU. We run the entire Fire Strike
benchmark three times and provide the average graphics
and physics frame rates. Once again, we collect the total
energy consumption experienced by the system running the
benchmark. We first run the benchmark on our bare-metal
windows server to determine the optimal baseline. We then
perform experiments using virtual machines, assigning each
VM a dedicated R9 280× GPU and 4 GB of RAM. We test
the performance of different numbers of VMs ranging from
one to three concurrently running the 3DMark benchmark.

The performance results for the 3DMark experiment are
given in Fig. 4. We first look at the average frame rate;
our bare-metal system achieves 34.71 frames/s and our
single VM experiment achieves 34.69 frames/s. They are

3http://www.3dmark.com/

Fig. 4. Advanced: 3DMark frame rate.

within 0.1% of each other after three runs, that is, they are
statistically identical. The two-VM case drops to an average
of 34.55 frames/s, which is still only a small drop
of about 0.4%. Finally, with three VMs performing
GPU-intensive operations, the average score drops to
34.54 frames/s, which is still less than 0.5% drop in
performance. In terms of graphic-intensive gaming appli-
cations, very little performance is lost when adding more
concurrent VMs. Also presented in Fig. 4 is the 3DMark’s
CPU intensive physics gaming benchmark. Immediately, we
see a large difference between the bare-metal and the single
virtual machine performance, even though they have access to
the same amount of CPU resources. Our virtual system suffers
a 30% performance degradation from its optimal bare-metal
performance. We have found that this is because the virtualized
system does not properly use the hyperthreading provided by
the Intel CPU. To show this, we disable the hyperthreading
in our system’s BIOS and rerun Fire-Strike on the bare-metal
platform, which results in a physics test frame rate drop from
32.35 to 23.04 frames/s, making the performance of the bare-
metal and the virtual machine within 1% of each other.

Hyperthreading allows multiple software threads to
be loaded onto a physical core at one time. Thus,
hyperthreading can potentially improve the performance of
multithreaded applications. However, the performance gain
is application dependent; if functioned fully, it can offer
improved CPU utilization. Although in many cases game
performance is bounded by the GPU, those games that
introduce highly intensive CPU workloads and are properly
optimized for hyperthreading may still benefit, and the
3DMark’s physics benchmark in our experiment is clearly
such a case. Our results suggest that certain gaming related
optimizations could be applied to the Xen hypervisor to allow
it to fully utilize hyperthreading for gaming applications.

Next we run two VMs concurrently, and we find that the
physics performance drops to just over 55% of the bare-metal
baseline, and running three VMs drops to under 50% of the
bare-metal baseline. Although the single VM experiment is
surprising, the performance loss in the two- and three-VM test
are more expected. Unlike the GPU intensive graphics modules
in this benchmark, the CPU intensive physics modules are all
processed by a single physical component, the CPU. Due to
this device sharing, multiple VMs competing for the same
CPU would affect each others’ performance. The 3DMark’s
physics benchmark has been specifically programmed to use
all the available CPUs. Other than the frame rate, this
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Fig. 5. Advanced: 3DMark power usage.

TABLE II

ADVANCED: MULTIPLE INSTANCES AVERAGE FRAME RATE

benchmark also gives the score as a form of general evaluation,
and fortunately, a large public accessible dataset is available,4

which can be used to determine how a particular system
performs compared with thousands of others. When searching
this database, we find that, under the three VM case, with
a score of approximately 5000, each machine is achieving
the gaming performance of a midrange Intel Core i5-2300
processor. For many gaming applications, however, the GPU
is the bottleneck, and thus a shared CPU may not impact the
game performance.

The power consumption for this test is given in Fig. 5,
which shows that our bare-metal system uses approximately
35% less energy than the same application running inside
the VM. Further, the power consumption increases greatly as
we increase the number of concurrently running VMs. This is
because each additional VM saturates another dedicated
physical GPU. Unfortunately, 3DMark only allows our
bare-metal platform to run one instance of the Fire-Strike
benchmark at a time, and hence, we could not directly compare
multiple instances of the same gaming application directly
running on the hardware to those running inside different VMs.

2) Unigine Heaven—Multiple Instance Performance: To
determine such a difference in performance and energy
consumption, our final experiment leverages the Unigine’s
latest benchmark Heaven,5 which supports the latest graphics
rendering techniques such as DirectX 11 and OpenGL 4.0.
Once again, we use a 1920 × 1080 resolution, with all high
detail settings enabled and also utilize 8× AA and 16× AF.

The results in Table II suggest that the performance remains
consistent as we add more instances of the application to
either the bare-metal or the virtualized system. For the
bare-metal system, the average performance is approximately
30 regardless of the number of running game instances.
The virtualized performance is approximately 5% lower at
around 29 frames/s. Fig. 6 further gives a comparison of
the energy consumption. Although the energy consumption

4http://www.3dmark.com/search
5https://unigine.com/products/heaven/

Fig. 6. Advanced: Heaven power usage.

is higher in the virtual machine deployment, at its worst,
it is only about 6.5% more. This is impressive considering
that in the virtual machine deployment, we actually have one
operating system for the virtual machine host and one for
each guest VM. Overall, given such important benefits of
virtualization as performance isolation and resource sharing,
the overhead of around 5%–6.5% for advanced virtualization
is quite justifiable.

Our measurements above have demonstrated the strong
potentials of today’s GPU for high-quality cloud gaming.
Following up on these results, in the next section, we are
able to deploy a cloud gaming platform using public cloud
resources, namely, the Amazon G2 Instance. These instances
are powered by a NVIDIA GRID class GPU. This switch in
hardware is associated with using a public cloud, where we
do not control the architecture. However, we continued to use
the same nonproprietary GPU pass-through technology.

IV. VIRTUALIZED CLOUD GAMING PLATFORM:
DESIGN AND IMPLEMENTATION

Our measurements above have demonstrated the strong
potentials of today’s GPU for high-quality cloud gaming.
Migration to a real-world public cloud with resource
virtualization, however, is nontrivial considering the
interaction and the integration of the many modules in
a gaming system. To establish the best practices of system
level tradeoffs of cloud gaming over real-world public
and virtualized cloud platforms, we have implemented a
high-performance cloud gaming system named Rhizome. Our
implementation is a fully functional and modular platform,
which allows users and researchers to customize many
subsystems. It not only supports software encoding using the
highly optimized x264 encoder for H.264 video6 but also
the state-of-the-art NVIDIA GRID and its hardware H.264
encoder.7 The streaming protocol can also be customized,
e.g., Real Time Streaming Protocol over User Datagram
Protocol (UDP) or Transmission Control Protocol (TCP),
as well as over Hypertext Transfer Protocol (HTTP)/TCP
streaming, using the widely deployed open-source streaming
library Live5558 as the streaming engine.

We now offer a high-level description of our Rhizome
system, whose design is inspired by existing cloud gaming

6http://www.videolan.org/developers/x264.html
7http://www.nvidia.ca/object/grid-processors-cloudgames.html
8http://www.live555.com/



2032 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 12, DECEMBER 2015

Fig. 7. Rhizome architecture.

systems, yet incorporates the latest advances of virtualization
and hardware. Rhizome allows users and researchers to
customize its many subsystems as well. A sketch of the
Rhizome’s architecture is given in Fig. 7. Our findings
facilitate the extension of other open-source cloud gaming
systems (e.g., GamingAnywhere) to the public cloud as well.

A. Remote Server Setup

We start with the implementation of the user interactions
module, which targets both mobile (Android) and PC users.
It captures the user commands using VNC remote desktop
hooks, which have inherent cross-platform support. The com-
mands are sent back to the server over TCP, where the
server interprets the commands and sends them to the gaming
window. We emphasize here that VNC is only used for sending
commands to the server, for its low overhead and latency; it is
not involved in transmission/reception of the video any way,
as its performance is not enough for such data-intensive jobs.

The next module is the game logic, which in essence is
the gaming application that the user is playing. It intercepts
the user’s keystrokes to the game and computes the game
world changes. The rendering is performed by the GPU that
is assigned to the VM, e.g., an NVIDIA GRID GK104. The
video encoder, which in our platform is selectable, consisting
of either a software or a hardware H.264 encoder. The software
encoder is provided by the high-performance x264 encoding
library; if the VM is assigned a GRID GPU, it can utilize the
built-in H.264 encoder provided by the platform. In either case,
the encoders need additional support for real-time streaming,
namely, a discreet framer module, which allows the Live555
streaming library to request live frames from the encoders at
a desired video stream frame rate. The encoded video stream
is then encapsulated and transported in either UDP, TCP,
or HTTP/TCP. Finally, when the video is received by a thin
client (mobile or PC), we use the cross-platform media library
FFmpeg9 with real-time optimizations to decode the video
and display it on the client device.

Our design and implementation are platform independent,
although a GRID GPU is required for hardware encoding.
We have deployed and experimented with the system on
Amazon EC2 GPU Instances (G2), a new type of cloud

9https://www.ffmpeg.org/

instances backed by the Intel Xeon E5-2670 (Sandy Bridge)
processors and the NVIDIA GRID-K520 board that contains
a GK104 GPU with 1536 CUDA cores and 4 GB of
video memory.10 The GRID’s on-board hardware video
encoder supports up to eight live HD video streams (720p at
30 frames/s) or up to four live Full HD (FHD) video streams
(1080p at 30 frames/s), as well as low-latency frame capture
for either the entire screen or selected rendering objects,
enabling a G2 instance to offer such high-quality interactive
streaming as game streaming, 3-D application streaming, or
other server-side graphics tasks.

We emphasize here that the use of virtualization opens a
new space for the design and deployment of cloud gaming.
It can now be readily deployed or migrated to a public cloud
(e.g., Amazon EC2) with low cost and practically unlimited
resources. There is no need to maintain a dedicated and
specialized private cloud. Although the GRID GPU is passed
in a physical device, other parts of the system can easily be
tuned by the cloud provider. For instance, if future 3-D games
require more main memory, this can easily be satisfied as the
amount of memory is a tunable parameter for a cloud instance.
Similarly, if future games require more computing resources,
the cloud provider can increase the VM’s number of virtual
CPUs or their share of the physical resources.

V. HARDWARE VERSUS SOFTWARE VIDEO ENCODING

The video encoder is the key component in the cloud
game engine and should be the focus of optimization.
Existing video encoding applications have relied heavily on
software-based encoders, e.g., the x264 encoder, which is
also used in GamingAnywhere [22]. Although OnLive has
used a hardware encoder, it is not built into the GPU, but
instead attached to the physical output of the video card. Our
system supports both hardware and software encoding, which
allows us to directly compare the performance of hardware and
software H.264 encoders in terms of both encoding latency and
CPU overhead.

A. Encoder Benchmark

We configure our Rhizome platform to capture video from
the GPU and encode it using either the hardware or software
H.264 encoder. For all the tests, we again used the Unigine
Heaven benchmark playing in a loop as the rendering source
and used the CPU’s hardware counters to accurately determine
the running time of encoding a frame. We also collected the
CPU usage during the test, for both the encoding task alone
and the complete usage of the encoder as well as of the
streaming application.

For the software x264 encoder, we performed
measurements for a multithreaded implementation. It is worth
mentioning that although a single-threaded implementation
is not likely to cause large performance interference with
gaming applications, more threads are required to reduce
frame encoding latency to acceptable levels for cloud gaming.

For both the software encoder and the hardware encoder,
we recorded videos at 30 frames/s at a variable bitrate (VBR)

10http://aws.amazon.com/ec2/instance-types/
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Fig. 8. Encoder comparison. (a) Encoder: software 720p. (b) Encoder: hardware 720p. (c) Encoder: software 1080p. (d) Encoder: hardware 1080p.

TABLE III

CPU OVERHEAD: HARDWARE VERSUS SOFTWARE H.264

of 8 Mbits/s, and under three H.264 encoding profiles, namely,
base, main, and high. The distinction is important because
different platforms may implement only certain profiles,
e.g., many mobile devices only support the base profile, as it
is the simplest and most energy efficient. We recorded the run-
ning time for each call to the encoder and plotted them against
each other. Further, we set a threshold value of 33.33 ms,
which is the maximum single frame encoding time to allow
30-frame/s video. Any time higher than 33.33 ms indicates that
the current encoder cannot produce video at 30 frames/s. The
parameters of the x264 software encoder were initialized with
the zerolatency and very-fast flags for the fastest
possible encoding speed. For the GRID’s built-in hardware
H.264 encoder, we applied NVIDIA’s default encoding
parameters, which provide a good balance between encoding
speed and image quality.

1) 720p Result: We start our discussion with 720p H.264
software encoding; the multithreaded experimental results can
be found in Fig. 8(a). Regardless of the profile chosen, the
encoder manages an average frame encoding time between
13–14 ms. The longest encoding time experienced by any
frame in this test is approximately 20 ms, making even the
worst case acceptable for smooth 30-frames/s encoding.

Next, we tested the GRID’s built-in hardware H.264 encoder
and the results are given in Fig. 8(b). As can be seen, the
results are very consistent regardless of the encoding profile,
with an average encoding time less than 10 ms. Overall, the
hardware encoder, on average, encodes frames 30% faster than
the software encoder does, with a lower deviation.

Table III further lists the corresponding CPU utilization,
which provides the CPU times taken by both the encoder alone
and the complete system (encoder + streaming overhead).
As can be seen, the software encoder takes considerably more
CPU resources than the hardware encoder. In fact, 15% of
the total CPU is consumed by the multithreaded encoder,
which implies that more than one entire core of the eight-cores
is being used by the video encoding subsystem. It is also
important to note that even though both hardware and multi-

threaded software encoders on our cloud platform are capable
of encoding 720p HD video at 30 frames/s, for cloud gaming,
the lower the latency at this stage, the lower the playback delay
will be at the end user. This is because after the streaming
software requests a new frame, it has to wait for whatever
amount of time it takes to encode before sending to the
end user.

2) 1080p Result: We now look at the more complex
situation of encoding FHD 1080p video, using the same
settings as the previous experiment, except for the resolution.

Once again, we start our discussion with the multithreaded
software encoder. The results can be seen in Fig. 8(c). For
the high profile encoding, the average frame encode time sits
over 29 ms, and the main and base profile both attain an
average of 30 ms/frame. The multithreaded software encoder’s
performance at 1080p manages to stay under 33.33 ms/frame
on average for all the profiles. However, all profiles have
encoding time spikes that are over 40 ms. This means the
software encoder will not always meet the encoding deadline
to provide fluid 30-frame/s video.

The results for the hardware H.264 encoder can be found
in Fig. 8(d). Regardless of encoding profile level, the average
encoding time is less than 11 ms/frame. During our experi-
ments, the worst case encoding time for the hardware encoder
is only slightly over 25 ms. It is clear from these results that
GRID has no issue with encoding full high-definition frames
at rates above 30 frames/s.

A closer look into the results is shown in Table III,
which reveals the CPU processing overhead of both the
software-based x264 encoder and the hardware encoder while
processing 1080p video frames. For the multithreaded x264
encoder, it consumes 25% of the available CPU resources for
the encoding phase and a combined CPU utilization of 37%.
This implies that on the eight-core system, the software
encoder consumes the equivalent resources of two cores to
provide the encoding and nearly three cores to provide both the
streaming and encoding systems. Despite this high CPU usage,
the software-based encoder often misses the 33.33-ms
encoding deadline for 30-frame/s video. On the other hand,
the hardware H.264 encoder easily handles the frames with a
very low CPU utilization and never exceeds the threshold.

In summary, being able to offload the computationally
expensive job of encoding frames to a dedicated piece of hard-
ware not only shows a great reduction in CPU consumption
but also completes encoding a frame with much lower latency.
This reduction in latency will result in improved interaction
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Fig. 9. Encoder choice performance implication.

delay for the end user, as the streaming subsystem is not stalled
while waiting for the next frame. Further, the x264 software
encoder’s performance, even when using eight threads,
does not allow smooth capture of a 1080p video, whereas
the hardware encoder handles these high-definition frames
with low latency. As the resolution increases (e.g., toward 4K
UHD video), the suitability of the software video encoder will
quickly diminish.

B. Impact of Encoder Choice on Gaming Performance

To determine the real-world performance implications that
different encoding methods have on cloud gaming, we again
utilize Futuremark’s widely used gaming benchmark 3DMark.
For a comparison, we encode a 1080p stream at 30 frames/s
using a VBR of 8.0 Mbits/s on the H.264 main preset for
both our hardware and software encoder. We also compute a
baseline performance of 3DMark running on our platform with
all streaming and encoding tasks being disabled. Although
disabling all video outputs from our platform implies that
one would have to physically be in the data-center with a
monitor to see the game, it does provide a useful best case
scenario for what the maximum gaming performance of the
EC2 instance is. Once again, we report the score of both
the graphic and physics experiments contained in the 3Dmark
benchmark.

The results are given in Fig. 9. In terms of graphics
performance, we see that both the hardware and software
encoders fall by a very similar amount, approximately 6%.
We conjecture the loss of graphics performance between these
two is similar because both must download the current frame
from the GPU. In the case of the hardware encoder, the
frame is a fully compressed H.264 frame, but in the software
encoding case, the frame is a raw YUV image. In either
case, this download causes small but notable interference
with the GPU’s main task of rendering 3-D images for the
3Dmark benchmark. The impact on game physics caused by
the choice of encoding method is much more profound. For
example, when the Rhizome platform employs a hardware
encoder, the drop in physics performance is just under 8%;
on the other hand, if we employ the software encoder, the
loss is even greater, falling by over 28%. This major loss in
physics performance is due to the game engine contending for
CPU time with the software encoder.

As such, not only do hardware-encoding-based cloud
gaming platforms greatly reduce encoding latency, but also
they help preserve gaming performance. This fact is especially

important for gaming applications that are performance
constrained by complex physics operations.

VI. THIN CLIENT: CONFIGURATION AND PERFORMANCE

Finally, we examine the configuration and performance of
client terminals in our system. Migrating the game engine
to the cloud enables thin clients to play advanced games.
However, they still need to perform decoding in real time,
which remains a nontrivial task for their given highly
constrained resources in terms of computation, memory,
battery, and so on. As we will show, without careful planning,
the overhead of decoding could overshadow the benefit of
computation offloading to the cloud.

Our test system was a 7-in EVGA Tegra NOTE 7 tablet,
powered by NVIDIA’s advanced mobile chip-set Tegra 4,
functionally a system on chip that features a quad-core ARM
Cortex-A15 CPU, a 72-core NVIDIA GeForce GPU, and,
particularly, a dedicated video decoding block that provides
full support for hardware decoding. And to determine the
overall system’s power consumption in executing client tasks,
we resorted to a direct at the circuit level means: measuring
the direct current (dc) consumption of the tablet’s circuit.
Given the fact that the tablet’s working dc voltage stays
mostly stable (=3.7 V) for a sufficiently long period when the
battery’s remaining capacity is over 50%, we can compute the
instantaneous power as the product of current (in amperage)
and voltage. To this end, we crafted the tablet to use a
digital clamp meter (Mastech MS2115B) to measure the dc
amperage (precision of ±2.5%) external display through its
video output. The installed Android 4.2.2 Jelly Bean enables
users to explore and utilize the device with a wide range of
gaming applications. All these make it an ideal cloud gaming
client for both use and test.

A. Gaming Applications and Benchmark Setup

We configured our Tegra tablet to make use of its built-in
hardware decoder and to switch between hardware decoding
and software decoding. For comparing their respective energy
consumptions, we chose a high-definition video clip as our
sample video, which is original in 1080p resolution. To have
a consistent comparison across high and low resolutions, we
used the VLC media player to convert this source video to
multiple versions, including 480p H.264 + advanced audio
coding (AAC) (MP4) at 3.0-Mbit/s bitrate, 720p H.264 + AAC
(MP4) at 6.0-Mbit/s bitrate, and 1080p H.264 + AAC (MP4)
at 10.0-Mbit/s bitrate.

We also used an advanced 3-D benchmark for mainstream
tablets, namely, 3DMark Ice Storm, which includes
720p game scenes, two graphics tests, and a physics test to
stress GPU and CPU. We installed it both on the Tegra tablet
for the power measurement of local rendering and on the
Rhizome server for remote rendering.

B. Client-Side Power Consumption

For each run of the experiments, we fully recharged the
tablet’s battery so as to ensure a stable voltage supplied.
Then we restarted the tablet to minimize the interference
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from running other background applications and unplugged
the power supply to ensure the power source purely being
the battery. For the ice storm experiment, when we did the
local rendering tests, we started only the 3DMark application,
ran the benchmark, and began to record readings off the
clamp meter using the data logger PCLink with a sampling
frequency of 500 ms. Likewise, when conducting the remote
rendering tests, we selected the network video stream and
started measurement recording. By turning on and off the
hardware acceleration option before each run, we obtained the
measurements with the hardware decoder or with the software
decoder. For all experiments, the screen brightness, sound
volume, and other settings remained unchanged.

For the experiment of high-definition video clips,
we followed the same steps to run each version of the sample
clip, except that it did not involve any local rendering tests. It is
worth mentioning that the dc clamp meter is highly sensitive;
hence, to reduce the measuring error, we reset the clamp meter
before each measurement.

1) Video Clip Results: In Table IV, we show the resulting
CPU usage (percentage) and power consumption (wattage) of
locally playing the video clips, using software decoder and
hardware decoder, respectively, on different resolutions. The
power consumption started from 2.81 W at 480p and increased
to 4.19 W at 720p, then mounted to 6.21 W at 1080p. The
hardware decoding had a lower start of 1.87 W at 480p, 2.19 W
at 720p, and ended with a slightly higher 2.35 W at 1080p.
Clearly, the hardware decoder outperforms its software
counterpart, by consuming approximately half the amount of
power. This can be explained by the fact that the software
decoding invoked much more intensive CPU workloads than
the hardware decoding, as the CPU usage, obtained from
the Android console, indicates the hardware decoder slightly
incurred more system calls but much fewer user calls than the
software decoder; more importantly, the total CPU overhead
remained nearly constant, regardless of how high the
resolution was. On the contrary, for the software decoder,
the total CPU overhead surged from 66% at 480p to
89% at 1080p.

From an even more practical perspective, given the 15.1 Wh
battery capacity, when a user successively play the 480p videos
using the software decoder, our tablet can only work for
roughly 5.4 h (15.1 Wh divided by 2.81 W). With the hardware
decoder, it can be prolonged to roughly 8 h. Likewise, for the
720p video, it is 3.6 h against 7 h and 2.4 h against 6.4 h
(more than double) for the 1080p display. This margin
significantly grows when the video’s resolution increases;
for a 4K ultrahigh resolution display, even with a short play
duration, the hardware decoding will make a quantitative
difference against the software decoding with regard to
devices’ battery life.

2) Ice Storm Results: In Fig. 10, we show the results of the
advanced 3-D benchmark for mainstream tablets, namely, the
3DMark Ice Storm. The HD H.264 stream was created using
our Rhizome platform introduced in the previous section. The
horizontal axis represents the timeline of the benchmark in
seconds and the vertical denotes the overall power consump-
tion in watts. The hardware decoding has the lowest power

TABLE IV

POWER CONSUMPTION AND CPU OVERHEAD:

HARDWARE VERSUS SOFTWARE H.264

Fig. 10. Ice storm power consumption.

consumption (average 2.36 W), which stayed stable throughout
the entire benchmarking. The local rendering is represented as
the solid line sitting roughly in the middle (average 3.75 W),
which started high at around 5 W, dropped under four, and
remained there until the later part of the benchmark. The other
line sitting roughly on the top (average 5.11 W) gives the result
with software decoding. When applying the hardware
decoding, the device had an overall power consumption
between 2 and 3 W. Local rendering stayed competitive with
the hardware decoding at the midpoint of the benchmark,
where only game logic scenes were rendered, and no
benchmark loading or other ultra-CPU-intensive work was
taking place. However, the software decoding doubled the
amount of power consumption to over 5 W, which was even
worse than the local rendering in terms of supporting average
game logic scenes.

C. Hardware Decoder: Key for Cloud Gaming Client

A deeper investigation shows that local rendering increases
the power consumption at the very beginning and particularly
in the later part of the benchmark. We believe that this is
due to a great amount of CPU and GPU calls being made to
load and initialize the benchmark, stressing the device in its
graphics and physics test. This conjecture is not only based
on our track of CPU/GPU usage but also on the fact that the
sharp increase of power consumption corresponds to the time
that the benchmark spends loading and stress testing, where
extraordinarily intensive workloads were involved. In other
words, as opposed to traditional locally rendered gaming,
cloud gaming saves a large amount of power consumed not
only in rendering game scenes but also in game loading and
other CPU/GPU intensive operations.

However, the savings come from hardware decoding only.
The software decoder on the client side consumes even
more energy than local rendering by 5.11 W against 3.75,
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theoretically reducing the battery life by 27% and making
cloud gaming less appealing for the given notorious shortage
of power supply in mobile devices. The hardware decoder,
on the other hand, obtains a much lower average power
consumption at 2.36 W. This impressively extends the battery
life by 59% longer than local rendering and 117% longer
than using the software decoder, which makes battery shortage
much less of a concern for users.

Moreover, as exhibited in the video clip experiment, when
video resolution increased from 480p to 720p and to 1080p,
the software decoder expended significantly more computing
overhead and power consumption, while the hardware decoder
managed to contain the computational and energy cost to
a relative low amount. Given that mainstream tablets now
utilize 720p resolution and are moving toward 1080p and 4K,
the gap between software and hardware decoders will only
increase. For richer and more detailed game world at 4K
UHD resolution and beyond, a hardware decoder is definitely
needed, though it remains to be universally supported by
tablets and smart phones.

VII. CONCLUSION

Cloud gaming has attracted significant interest from both
academia and industry, and its potentials and challenges have
yet to be fully realized, particularly with the latest hardware
and virtualization technology advances. This paper presented
an in-depth study in this direction. We closely examined
the performance of modern virtualization systems equipped
with virtualized GPU and pass-through techniques. Our results
showed that virtualization for GPU has greatly improved and is
ready for gaming over a public cloud. A modern platform can
host three concurrent gaming sessions running inside different
VMs at 95% of the optimal performance of a bare-metal
counterpart. Although there is degradation of memory transfer
between a virtualized system’s main memory and its assigned
GPU, the game performance at the full HD resolution of
1080p was only marginally impacted.

Based on our findings, we have designed and implemented
a practical cloud gaming system, Rhizome, whose server side
was deployed with virtualization and advanced GPU support
in a public cloud platform. Our real-world experimental results
revealed the clear advantages of the hardware encoding over its
software counterpart. We showed that only hardware encoders
can achieve acceptable gaming performance with 1080p at
30 frames/s. We also explored practical issues facing the
thin client design. We measured and quantified the power
consumption of different ways to supply game scenes, and
found that a software decoder can consume even greater power
than local rendering. Only with a hardware decoder will a
thin client benefit from the power saving of remote rendering,
particularly for high definitions.

Our findings and implementation can be generalized to other
open-source cloud gaming systems, such as GamingAnywhere.
For a future work, we plan on modifying other platforms
to support advanced hardware encoders and analyze their
performance. Recent research has also shown that decoding
complexity and battery life of mobile devices can be greatly
effected by encoding parameters set at the server side [34]. It is

likely that further energy savings can be made with intelligent
tweaking of the encoders settings.

It is noteworthy that cloud gaming, compared with local
gaming platforms, still falls behind in providing equivalent
gaming experience for high-end users. A delay of ≈50 ms,
which already can be considered very low for cloud gaming,
is still detectable [35] and is treated as an intolerable game
lag for certain high-demanding users. Discovering novel
transmission and intelligent masking techniques that
physically or perceptually reduce the interaction delay thus
remains a key direction to explore. For instance, by striping
data across a set of simultaneous connections, parallel
TCP increases the end-to-end throughput [36] and is likely to
be beneficial for data-intensive cloud gaming applications in
terms of throughput and delay. Recent advances in TCP tail
loss recovery mechanisms have demonstrated further latency
reduction for TCP against traffic bursts [37], and several Linux
distributions have readily provided advanced TCP streaming
extensions, such as thin dupACK and thin retransmit.

Cloud gaming is rapidly evolving, particularly toward
4K UHD resolution that will offer highly immersive gaming
experience. Despite that 4K display devices are readily
available in the market, processing and delivering games in
real time impose unprecedent pressure to each and every
module of existing cloud gaming platforms. We have begun
working on a 4K-enabled cloud gaming server and are cur-
rently undertaking research to discover if any virtualization
specific issues exist at these ultrahigh resolutions. It is likely
that practical changes can be made at the hypervisor level
to enhance cloud gaming performance. Such enhancements
may include game-aware virtual CPU scheduling as well as
memory management techniques to increase memory transfer
speed from the VM to the GPU.
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