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Abstract—Empowered by today’s rich tools for media
generation and distribution, and the convenient Internet access,
streaming crowdsourced multimedia content (crowdsourced
streaming, in brief) generalizes the single-source streaming
paradigm by including massive contributors for a video/data
channel. It calls a joint optimization along the path from
crowdsourcers, through streaming servers, to the end-users to
minimize the overall latency. The dynamics of the video sources,
together with the globalized request demands and the high
computation demand from each sourcer, make crowdsourced live
streaming challenging even with powerful support from modern
cloud computing. In this paper, we present a generic framework
that facilitates a cost-effective cloud service for crowdsourced live
streaming. Through adaptively leasing, the cloud servers can be
provisioned in a fine granularity to accommodate geo-distributed
video crowdsourcers. We present an optimal solution to deal with
service migration among cloud instances of diverse lease prices.
It also addresses the location impact to the streaming quality.
To understand the performance of the proposed strategies in
the real world, we have built a prototype system running over
the planetlab and the Amazon/Microsoft Cloud. Our extensive
experiments demonstrate that the effectiveness of our solution in
terms of deployment cost and streaming quality.

Index Terms—Cloud computing, live streaming, crowdsourced
multimedia content.

I. INTRODUCTION
HE Internet has witnessed a significant increase in the
popularity of media streaming with multi-source chan-
nels. In traditional video broadcast, the content of a channel gen-
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erally comes from a single source, though it could be replicated
and then streamed from different servers in a Content Distribu-
tion Network (CDN). A multi-source system, however, not only
serves massive audience worldwide, but its content also comes
from multiple contributing sources. For example, since Feb. 17,
2012, NASA Television’s Public and Media channels began to
transmit their respective content in high definition (HD), with
live feeds from such space centers as the NASA Headquar-
ters, the Johnson Space Center, and the Goddard Space Flight
Center.! With their respective content sources, they collectively
serve the users interested in the stories and the latest news from
NASA. In the very recent 2014 Sochi Winter Olympics, NBC
had a total of 41 live feeds distributed both in Solchi and in the
USA,2 and in FIFA World Cup 2014, when a goal was scored,
CBC synchronized the live scenes of the cheering fans in the
public squares from a number of cities worldwide in its live
streaming channel. The evolution is driven further by today’s
advanced mobile/tablet devices that can readily capture high
quality video anywhere and anytime (e.g. iPhone 6 supports
both 60 fps 1080p video recording, and 720 fps slow-motion
recording for 720p videos), and such mainstream video sharing
platforms as YouTube and Veedme have already enabled multi-
party collaborative video content production. All these together
are shifting the video service paradigm from the conventional
single source, to multi-source, and now toward crowd source,
in which not only the volumes of multimedia data grow to an
extent that the traditional streaming systems cannot handle ef-
fectively, but the available video sources for the content of in-
terest also become highly diverse and scalable.

Global streaming imposes high demand on end device capa-
bilities and network connections. The situation is further com-
plicated in a system for streaming crowdsourced multimedia
big data (crowdsourced streaming, in brief). First, crowd-
sourced videos are geo-distributed: they come from all over the
world, and then spread all over the world. Not only the scale of
the consumers is enormous, but also is that of the contributors;
Second, the crowdsourcers are often much more dynamic than
dedicated content providers, as they can start or terminate
a video contribution as their own will. This is particularly
true when non-professionals using their smartphones/tablets
for video production; Third, for collective content produc-
tion, massive server capacity is necessary to deal with online
video synchronization, processing, and transcoding for highly

[Online]. Available: http://www.nasa.gov/multimedia/index.html
2[Online]. Available: http://www.istreamplanet.com/sochi-2014/
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heterogeneous video contributors and consumers. Generally,
comparing with traditional single/multi-source system, more
significant effort is needed to collect the highly dynamic and
distributed video streams online, and to process/correlate and
distribute the live channels to subscribers all over the world.

Elastic resource provisioning and computation offloading
are where cloud computing platforms excel [14]. We have
seen many new generation of cloud-based multimedia services
that emerged in recent years, e.g., Netflix, which are rapidly
changing the operation and business models in the market.
Facing similar scale challenges, live streaming for crowd-
sourced multimedia big data would benefit from the cloud
services, too. Yet the distributed and highly dynamic sources,
as well as the much more stringent delay constraints imposed
by live streaming, make the problem more involving, which
remains to be explored with novel and distinct solutions.

In this paper, using realworld measurement, we identify
the potential benefits as well as the key challenges when
crowdsourced multimedia big data meets cloud. We present
a generic framework for a cost-effective cloud service that
provisions cloud resources in a fine granularity to work with
geo-distributed video crowdsourcers. Using adaptive and col-
laborative leasing strategies, our design well accommodates the
diverse capacities and prices of cloud instances, and addresses
the location impact to the streaming quality. We have built a
prototype system running over the Internet and the Amazon
EC2/Microsoft Azure cloud, and the experimental results
demonstrate the effectiveness of our solution in terms of both
deployment cost and streaming quality.

The remainder of this paper proceeds as follows.
Section II discusses the background and related work.
Section III presents an overview of the proposed cloud assisted
live streaming system for crowdsourced multimedia big data,
and analyzes its unique challenges using realworld data traces.
In Section IV, we first investigate the inherent problem of cloud
leasing strategy. An optimal solution is then developed to deal
with geo-distributed crowdsourcers in Section V. In Section VI,
we present a prototype platform with the measurement results
and the trace-driven simulation. Finally, Section VII concludes
the paper and discusses potential future directions.

II. BACKGROUND AND RELATED WORK

Empowered by today’s rich tools for media generation and
collaborative production, and the convenient Internet access,
crowdsourcing further extends the single-source paradigm. It
combines the efforts of multiple self-identified contributors,
known as crowdsourcers, for a greater result, and has seen
success in many areas [3]. For example, LiFS (Locating in
Fingerprint Space) was developed for wireless indoor local-
ization with smartphones based crowdsourcing [4]. Ou et al.
[5] used crowdsourcing approach to optimize mobile devices’
energy efficiency by utilizing signal strength traces shared by
other devices in cellular networks. For video applications, a
scalable system that allows users to perform content-based
searches on continuous collection of crowdsourced video was
proposed in [7]. Biel et al. [6] investigated the the crowd-
sourcing of personal and social traits in online social video or
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social media content in general. Recently, Youtube has inte-
grated with Google Moderator, a crowdsourcing and feedback
production, to increase the engagement between viewers and
content creators. Such other video sharing sites as Poptent and
VeedMe have also opened interfaces for crowdsourcers with
user generated content. Crowdsourced live streaming services
have emerged in the market as well, especially for streaming
sports online broadcast. Examples include Stream2Watch.me
and sportLEMON.tv.

For large scale distribution, many existing systems rely on
content distribution networks (CDNs) [15] or peer-to-peer
(P2P) [1], or hybrid solutions [11], [2]. More recently, with the
flexible and elastic resource provisioning, cloud computing has
been proven to be an efficient solution toward highly scalable
video distribution. A prominent example is Netflix, a major
on-demand Internet video provider. Netflix migrated its entire
infrastructure to the powerful Amazon AWS cloud in 2012,
using EC2 for transcoding master video copies to 50 different
versions for heterogeneous end users and S3 for content storage
[15]. In total, Netflix has over 1 petabyte of media data stored
in Amazon’s cloud. It leases the computation, bandwidth and
storage resources with much lower long-term costs than those
with over-provisioned self-owned servers, and reacts better
and faster to user demand with the dramatically increasing
scale. There have been pioneer studies on migrating video
services to the cloud to accommodate worldwide-distributed
and time-varying video demands [14], [2]. Aggarwal et al.
[17] showed that the cost of IPTV services can be noticeably
reduced through a cloud infrastructure, and Wu et al. [14] uti-
lized a geo-distributed cloud to support large scale social media
streaming applications. Wang et al. [11] presented CALMS
(Cloud-Assisted Live Media Streaming) to lease and adjust
cloud server resources in a fine granularity, meeting with the
temporal and spatial dynamics of demands from online users.

Our study is motivated by these pioneer works. Yet crowd-
sourced live streaming demands efficient content collection,
processing, and distribution with stringent delay constraints.
None of existing algorithms can simultaneously satisfy these
design requirements of the resource allocation in the global
scale. For example, [8], [12], [18] considered the viewer dy-
namic in the live streaming systems, without analysis of the
demand distribution in the different areas; though [11], [15],
[9] deployed the distributed cloud servers or CDNs to handle
the dynamic demand in the global scale, crowdsourced live
streaming further elevate the challenges with highly dynamic
and geo-distributed sourcers; [10], [14] explored the cloud
service migration for video-on-demand, while live streaming
raises more stringent delay constraint during the server re-
source allocation; [ 13] investigated the joint online transcoding
and geo-distributed delivery for dynamic adaptive streaming
neglecting the price policies of different datacenters. Generally,
the resource allocation in crowdsourced live streaming should
not only consider both the dynamic viewers and sourcers, but
also balance the trade-off between the streaming performance
and the system cost. This paper highlights these unique chal-
lenges, particularly when crowdsourced live streaming meets
cloud, and presents our initial attempts toward addressing these
challenges.
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Fig. 1. Generic crowdsourced live streaming system over cloud.

III. CROWDSOURCED LIVING STREAMING: SYSTEM OVERVIEW
AND CHALLENGES

We illustrate a generic crowdsourced live streaming system
with geo-distributed crowdsourcers and viewers in Fig. 1. A
set of crowdsourcers (or sourcers in short) upload their indi-
vidual video contents in realtime, which, through a video pro-
duction engine, collectively produce a single video stream. The
stream 1is then lively distributed to viewers of interest. Both
the sourcers and viewers can be heterogenous, in terms of their
network bandwidth, and their hardware/software configurations
for video capture and playback. As such, realtime transcoding
is necessary during both uploading and downloading, so as to
unify the diverse video bitrates/formats from different sourcers
for content production, and to replicate the output video stream
to serve the heterogeneous viewers, possibly through a CDN
with such adaptation mechanisms as DASH (Dynamic Adap-
tive Streaming over HTTP) [16].

This generic architecture reflects that of state-of-the-art re-
alworld systems. For example, NBC’s video content from the
41 feeds in Sochi Winter Olympics were encoded by Windows
Azure Media Services to the 1080P format, and dynamically
transcoded into HLS and HDS formats. These streams were then
pulled from Azure to the Akamai’s CDN and distributed to au-
diences on targeted devices, resulting in over 3000 hours of live
Olympics streaming contents.

Given the large system scale and the high bandwidth, storage,
and computation demands involved, cloud services with elastic
resource provisioning is expected. We again consider a generic
geo-distributed cloud infrastructure, which consists of multiple
cloud sites distributed in different geographical locations (e.g.,
US East (N. Virginia) and EU (Ireland) in Amazon EC2 Cloud)
[14]. Each cloud site resides in a data center, and contains a
collection of interconnected and virtualized servers. The server
resources will be provisioned for crowdsourced live streaming,
e.g., computation resources for collective production and
transcoding.

Optimization for conventional single-source video streaming
is generally viewer-driven; the resource provisioning depends
on the distribution of the viewers. In crowdsourced video, how-
ever, the sourcers themselves come from all over the world,
whose distribution must be as well taken into account during
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Fig. 2. Number of viewers and source streams variation in one week.

TABLE I
ToP 5 SOURCERS FROM TWITCH.TV ON JULY 12TH

Sourcers ID Time (Pacific Time) Location

riotgames 11:10 AM-15:40 PM  Cologne, Germany
dota2ti_ru 7:10 AM-18:10 PM Seattle, USA
srkevol 6:00 AM-23:40 PM Las Vegas, USA
riotgamesturkish 1:30 AM-7:10 AM Istanbul, Turkey
ongamenet LB SERIR S Seoul, South Korea

18:20 PM-22:40 PM

resource provisioning. This is further aggravated given that the
collaborative production escalates the demands on both band-
width and computation. The crowdsourced streaming workflow
is also much more dynamic, as individual sourcers can start/ter-
minate based on their own schedules.

To better understand the inherent challenges of deploying
such a system, we have crawled one-week trace from July 6 to
July 12, 2014 in Twitch.tv website, which is the world’s leading
video platform and community for gamers,? allowing any of its
users to broadcast their live streaming videos online through
their PCs or PS3/XBOX consoles. It has 14 geo-distributed in-
gest servers, | from Asia area (AS for short), 6 from European
area (EU for short), and 7 from United States area (US for short)
to serve live broadcast for over 44 million visitors per month in
a global scale. For simplicity, we consider that one live stream
is contributed by only one sourcer. Fig. 2 shows the number
variation of viewers and streams in a week, from July 6 to July
12, 2014. First, it is obvious that the number of viewer is highly
dynamic, which is prevalent in current large scale systems [2].
Due to the differences in time zones and languages, the dis-
tribution of viewers can be time-varying, which has been dis-
cussed in previous works [13], [11]. Similar to the number of
viewers, we can see that the number of source streams also has
great time variations in one-day time, from about 5000 streams
in the early morning to almost 12000 streams in the afternoon.
To further investigate the time-varying distribution of the source
streams, we have measured the top 15 streams with the highest
viewer population from 3:00 AM to 24:00 PM (PST) on July
12, 2014, and list the five most popular streams in Table I. We
can see that not only the time periods but also the locations of
the stream sourcers are highly dynamic. In Fig. 3, we divide
the locations as AS, EU, and US, and record the percentage of

3[Online]. Available: http://www.twitch.tv/
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Fig. 4. Viewer demand for the distributed source streams in one day.

source streams from each region for every 30 minutes between
3:00 AM to 24:00 PM. It can be easily observed that most of the
streams from Asia and Europe are during the morning and after-
noon, and the number of streams from the United States keeps
growing when night falls. We further measure the viewer pop-
ulation for the distributed source streams from each region in
Fig. 4. We can see that in the early morning between 3:00 AM
and 7:00 AM, most of the popular streams come from Europe or
Asia. We conjecture that it is because the local times in Europe
or Asia are in afternoon or evening, and there are more online
sourcers from these regions during that time. Meanwhile, the
viewer demand from these areas can also be more active during
this period. And most of the viewers may prefer the streams with
native language speaking sourcers. Similar reasons can also ex-
plain the increase of viewer demand for the source streams from
the United States after 15:00 PM.

In summary, in a crowdsourced live streaming system, both
the number and the distribution of the crowdsourcers can be
highly dynamic. Together with time-varying viewer demand,
the conventional server allocation design faces more chal-
lenging in a large scale. We will utilize the cloud service to
coordinate the crowdsourcers and viewers. The cloud server in-
stances (e.g. EC2 in Amazon Cloud) are provisioned to collect
and process the live feeds of the crowdsourcers, and the cloud
CDNs (e.g. CloudFront in Amazon Cloud) are deployed to
handle the viewer dynamics. Through dynamic cloud leasing,
we will present a cost-effective solution with streaming quality
guarantee.
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TABLE II
NOTATION TABLE

Parameter Definition

A The set of n global areas

S The set of m cloud sites

LA(t) The set of sources distributed in different areas
L3(¢) The set of sources served by different cloud sites
la; (1) The live sources from region A; at time ¢

ls; () The live sources loaded in cloud site s; at time ¢
CcP The server provisioning cost

cZ; The price of leased instances in cloud site s;

co The cost of a bootstrapping server

C? The cost of out-bound traffic from the cloud servers
c? The price of data traffic in cloud site s;

c? The cost of CDNs deployment

ci() The price policy in cloud site s;

Costiotal The total cost of the streaming system
Costiegse The cloud leasing cost

P(la,(t), Sj)
Index(la,(t), k)

Preference of sourcers from l4, (¢) for cloud site s;
Top k preferred cloud sites for sourcers from 4, (%)

Costmaz The total budget of the system

Pgiobal The global relative preference of the crowdsourcers
Dy A, @®)] The size of viewer demands for live sources 4, (t)
Costinitial The cost with most preferred cloud sites

d(i,7) The direction edge from cloud site ¢ to j

m(i,J) The service migration vector with [4, served by s;
Deg (i, ) The relative preference degradation for 71(4, j)
Save(i, j) The cost saving for migration m(%, j)

Leasemax The budget for cloud leasing strategy

IV. CLOUD-ASSISTANCE FOR CROWDSOURCED
LIVE STREAMING

In this section, we first model the global cloud service leasing
strategy with quality guarantee, and transform it into an equiva-
lent problem in a directed graph. We will then present an optimal
algorithm and an efficient online heuristic solution based on the
equivalent problem.

A. Problem Formulation

We present all the parameters and their notations in Table II.
We use A to denote the global areas, which can be divided
into n different regions as A = {43, As,..., A, }. Assume
that there are m cloud sites all over the world, represented as
S = {s1,%2,...,5m}. As most cloud providers have a min-
imum unit time for the duration of leasing a server (e.g. 1 hour
for Amazon EC2), we use T to denote this duration. We de-
fine a time slice as an integer multiple x (x € NT) of T’ and at
the beginning of each time slice x1’, our cloud leasing strategy
makes decisions on whether to provision or terminate the cloud
servers in the distributed regions. We assume that the schedules
of crowdsourced streams are predictable and can be known be-
forehand, where the rationale is of two folds. First, in practice a
large portion of crowdsourced streams are driven by well-sched-
uled events (e.g. as one of the top 5 sourcers from Twitch.tv in
Table I, the channel of srkevol has a strict schedule about the
Evolution 2014 Tournament#). Moreover, many self-motivated
crowdsourcers prefer a regular broadcast schedule everyday to
attract more viewers. We can accordingly forecast the scale of
both crowdsourcers and viewers at the next time slice, e.g.,
using techniques from [11], [18].

4[Online.] Available: http://evo2014.s3.amazonaws.com/brackets/index.html
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For a given time £, we denote the set of source streams from
the crowdsourcers as L(t). According to the location distri-
bution of crowdsourcers, we can specify the set as L4(¢) =
{la,(),14,(t),...,14,(t)} for the n different regions, respec-
tively. As all these live streams are served by the provisioned
cloud instances, we further consider the set according to the
dedicated cloud sites as L*(t) = {l;,(t),1s,(t),..., 1. (t)},
where 1, (t) represents the live streaming sources loaded in
cloud site s;. For example, if [,;(t) = 0, no crowdsourced
stream is served by cloud site s;, i.e., cloud site s; does not need
to be leased at time ¢. Otherwise, if the live streams from area
Ay, Az, and Aj are served by cloud site s;, we have I, (t) =
Ta,(t) Ula, (8) Ul (2).

We denote the server provisioning cost as CP =
>oim & (ls;(t)), where ¢ is the price of the leased instances
in cloud site s;. We assume that there is always a bootstrapping
server sy redirecting the global live sources to the distributed
streaming servers with the cost ¢y. To offload the bandwidth
support for the diverse viewer demands from the cloud servers,
a globalized CDN strategy (e.g., CloudFront in Amazon) is
deployed to distribute the live streams all over the world. The
cost of out-bound traffic from the cloud servers to the CDN can
be calculated by the number of channels loaded in the cloud
servers, and denoted as C* = 377", ¢5(s,(t)). As the cost of
the bandwidth support from the CDN to the global viewers is
proportional to the viewer demands D(t) = " | D, 4, 1),
where Dy, (t) represents the viewer demands for the crowd-
sourced streams from region A;, we can denote the total cost of
the CDN as C¢ = ¢?(D(t)) with ¢? as the cost to support one
unit of the viewer demand. The total cost of the crowdsourced
live streaming system can thus be calculated as follows:

Costyprar = co + CP + C + ¢

=co+ Z [ (s, () + s, ()] + {(D(1))

co + Z ¢j(ls; (1) +<*(D(t))

————

Costrease

where ¢;(-) can be determined by the price policy of instance
leasing and data traffic in cloud site s;. As the first and last costs
on the right side of the equation can not be reduced, we focus
on minimizing the middle part of the total cost, i.e., the cloud
leasing cost, which we denote as Costjeqgse-

We assume that the live crowdsourcers in each region I 4, (t)
have a preference value on a given cloud site s;, which we de-
note as P(l4,(t),s;). Generally, the preference value can be
quantified according to the RTT, jitter or packet loss values of
the connections between the crowdsourcers and the given cloud
site, such as defined as a concave decreasing function of the esti-
mated latency or a concave increasing function of the estimated
connection speed in a geo-distributed service [13]. To guarantee
the streaming quality of the crowdsourced streams in region A4;,
we only consider allocating these streams to the cloud sites with
the top k preference values, and define the set of these cloud sites
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as Index(l4,(t), k) for the crowdsourced streams [ 4, (). As a
real world example, Twitch/Justin.tv provides an ingest server
ranker program to feedback the list with top 3 servers for each
crowdsourcer.

The cloud service leasing problem in our geo-distributed
crowdsourced live streaming system can thus be formulated
as to find a cloud site leasing strategy L*(2), subjecting to the
following constraints:

1) Cloud site service constraint:

VA; € ’q7alsj- € I]—SJAz‘ - ls]-
Vis, ()15, (8) € Lo(8), if j # J. 15, (1) N L. (1) = 0.

2) Crowdsourcer preference constraint:

VA; € A,Sj €S, if lAi(t) C lsj (t)
s; € Index(la,(t), k).

3) Total budget constraint:
COStlease + co + Cd § COStNIa:Lf'

The cloud site service constraint states that the crowdsourced
live streams in a given region are served by only one cloud site.
The preference constraint guarantees that the crowdsourced live
streams in each region are collected by one of the cloud sites
with the corresponding top % preference values. The total budget
constraint demands that the total cost including the bootstrap-
ping server, the provisioned cloud sites and the CDN utilization
must not exceed the total budget Cost,, .. Our objective is to
maximize the global relative preference of the crowdsourcers,
which is defined as

|Diy, ()] - P(la, (1), s5)
VSJ'ESJAingJ.

> Dy, (D[P, (t), Index(la, (1), 1))
VA;EA

Pglobal =

where for ease of exposition, we also use Index(l4,(t),1) to
denote the top 1 preferred cloud site for the live crowdsourced
streams 1 4, (¢). We use | D, (t)| to represent the size of viewer
demands for crowdsourced streams 1 4, (t), and Pyiopq; is thus a
relative ratio ranged between (0, 1] in the global scale.

To make our solution cost-effective, we also need a second
objective, i.e., to minimize the cloud leasing cost Costjegse. Itis
easy to see that these two objectives (i.e., Pyiobar and C'ostieqse)
may contradict with each other, since always leasing the top
preferred cloud server can increase the leasing cost. Therefore,
we adopt the following linear combination form to align them
together by different weights:

D COStlease
Costpas —co — C4

+ q- (]- - Pglobal)

where p and g are two parameters that can assign different
weights to the two goals. As Pyj.pq; 1s a relative ratio of the
preference values of all the crowdsourcers in the system (i.e.
if Pyiopar = 1, all the crowdsourced live streams are allocated
in their most preferred cloud sites), (1 — Pyopq:) should be
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Fig. 5. Tllustrative example of (a) the distribution graph and (b) service migra-
tion vectors.

minimized as Costjzse. To make the leasing cost part also
be a ratio ranged between (0, 1], we further divide C'ostjcqse
by (Costimas — co — C?) and then use parameters p and ¢ to
linearly combine the two parts together. In the next subsection,
we will transform this problem to an equivalent graph problem
and then propose an optimal solution.

B. Equivalent Problem

For ease of exposition, we assume the given time is ¢ for the
remainder of this section and thus omit (¢) in all such nota-
tions as 14, (t), Is;(t), Dy, (t), etc. Given the geo-distributed
crowdsourcers and cloud sites, we can construct a distribution
graph. Fig. 5(a) shows an example of 5 cloud sites and global
crowdsourcers located in 6 regions. There are two types of ver-
tices in the distribution graph, namely, the live crowdsourcers
le.g. la,,...,la, in Fig. 5(a)], which are represented by cir-
cles, and the cloud sites (e.g. s1, - - -, $5), which are represented
by squares. Initially, all the live source steams are attached to
their most preferred cloud sites and we denote the corresponding
leasing cost as

b

VA; €A s;=Index(la,.1)

COStinitial =

Cj(lAi)'

According to the price strategy ¢;(+) of different cloud site s;,
we have the direction edges between these distributed cloud
sites. We use zi(z, j) to denote a direction edge from the cloud
site 4 with higher price to the cloud site j with lower price (e.g.
in Fig. 5(a), d (4,2) means that ¢;(z) < c4(z) for the same
crowdsourcer x), which indicates that the service is migrating
towards a more cost-effective solution.

With the distribution graph and direction edges, we then gen-
erate service migration vectors to indicate the available cloud
sites for more cost-effective service migration. We use (%, j)
to denote a service migration vector that represents the live
crowdsourcers 4, are migrated and served by the cloud site
s;, rather than the cloud site Indez(l4,,1). For example, in
Fig. 5(b), the cloud site s, is preferred by the live crowdsourcers
la, andly,, ie., 84 = IndeL(lAl, ) fori € {5,6}. According
to the direction edges d (4,2) and d (4,5), we can have the ser-
vice migration vectors 71(5,2) and m (5,5) for the live crowd-
sourcers ! 4, , and /7 (6,2) and 17 (6,5) for the live crowdsourcers
14,. Define M as the set of all service migration vectors that are
generated from the given distribution graph. For each service
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Fig. 6. Tllustrative example of (a) a constructed service migration graph and
(b) migrated cloud service for geo-distributed crowdsourcers.

migration vector mi(i, j) € M, the relative preference degra-
dation for live crowdsources [ 4, to be served by the cloud site
j can be calculated as follows:

|Diy, (P(lass Index(la;, 1)) — P(la,, 85))

Z |DlAi ‘P(lAwInde:r(lAw 1))
VA;EA

Deg(i, j) =

Also, for each mi(i, j), we have the cost saving as follows:

Cj (lAi)

where ¢; is the pricing policy of cloud site s; = Index(ly,,1).

Traversing all the service migration vectors m(i, j) € M, we
can have a service migration graph G(V, E). Fig. 6(a) shows
an example of Fig. 5(b). We connect the cloud sites with at
least one service migration vector through migration direction
edges. Note that there may be more than one migration direc-
tion edges leaving from the same cloud sites. For example, in
Fig. 5(b) there are two migration direction edges d (4,2) and d
(4,5) leaving from cloud site s4. Since the set of service migra-
tion vectors M has already been generated from the migration
direction edges, we can put any one of these directed edges into
the constructed service migration graph (which is only for the
connectivity purpose that will be further explained in the next
subsection). Finally, we connect the crowdsourcers to the cloud
sites by the service migration vectors. In the constructed service
migration graph G(V, F'), we can further define the optimal ser-
vice migration (OSM) problem as to find a set of migration vec-
tors O C M, subjecting to the following constraints:

1) Service migration vector constraint:

Vi (i, j), (i, j) € M and j # ],
if m(i,5) € O,then m(i,}) ¢ O.

Save(i,§) = ¢;(La,) ~

2) Preference degradation constraint:
V(i j) € O,s; € Index(la,, k).
3) Cost saving constraint:

Costinitial — Z Save(i, j) + co + C? < Costray-

Y (i,j)€0

The service migration vector constraint represents that there is
at most one migration vector leaving from a live crowdsourcer
vertex, which corresponds to the cloud site service constraint
in the cloud leasing problem. The preference degradation con-
straint is related to the crowdsourcer preference constraint of the
cloud leasing problem. The cost saving constraint refers to the
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total cost not exceeding Cost,y,,, in the original problem. Our
objective is to minimize the linear combination of cost saving
and the relative preference degradation, as seen in the equation
at the bottom of the page where Lease, 4 = C08tpmas — Co —
C9. As Costinitiar cannot be further reduced, our objective can
thus be simplified as to minimize

>

(4,4} €0

... p-Save(i,j)
-D - ).
<q eg(i, j) Tease, .. )
The OSM problem in graph G(V, E) can be naturally related
to the cloud site leasing problem: the optimal solution O indi-
cates the service allocation for the crowdsourcers in each region
toward the distributed cloud sites. Fig. 6(b) shows an example
with O = {m(1,4), m(3,3),n(5,2),n(6,5)}. Therefore, we
have the set of live crowdsourcers served in each cloud site as
follows: I, = 9, s, = L4, UZAS’ lss = la, UZA4, ls, = la,,
and I, = la,.

V. OPTIMAL CLOUD LEASING STRATEGY

The optimal solution can be computed according to the span-
ning trees in the service migration graph. Clearly, a spanning
tree is a subgraph of the directed graph G(V, E). Let T de-
note the number of spanning trees in a service migration graph
G(V, E). We define the set of service migration vectors in the
i-th spanning tree as M;, and the optimal solution of A; as O;.
We then have the following theorem:

Theorem 1: There must exist an optimal solution O of the
service migration vectors A in the service migration graph
G(V,E),suchthat O € {O4,...,07}.

Proof: We can prove this using contradiction by assuming
that there exits an optimal solution set of the service migration
vectors O with edges in a circle. According to the definition of
service migration graph G(V, F), all the vertices are connected
with service migration vectors. There are two scenarios if the
edges in directed graph contain a circle: (1) There is more than
one directed edge leaving from the same vertex. (2) The directed
edges are sequenced in a line one after another, with the end
vertex sending toward the head vertex.

1) According to the definition of service migration graph
G(V, E), there is at most one migration direction edge
leaving a cloud site vertex. As the optimal solution set
is a subgraph of G(V, E), O does not have more than
one direction edge leaving a cloud site vertex. And also,
according to the service migration vector constraint, there
is at most one service migration vector leaving a live
crowdsourcer vertex in the solution set. Therefore, there
is no more than one directed edge leaving from the same
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2) Considering the direction edge and the service migration
vector, there is no edge sending toward live crowdsourcer
in directed graph G(V, E)}. Thus, there is no live crowd-
sourcer vertex in the sequenced edges, leaving only direc-
tion edges among cloud sites. If these cloud sites are se-
quenced in a line one after another, we have the following
relationship:

aa(l) > ca(l) > ... > cena(l) > er(l).

Clearly, it leads to a conflict for ¢; (1) > ¢1(1). Therefore,
there is no sequenced edges in a circle in optimal solution
set O.

Therefore, if O is an optimal solution set of service migration
vectors in directed graph G(V, E), there is no circle in O. This
contradicts with the assumption that O has edges in a circle and
finishes the proof for the theorem. (]

According to Theorem 1, each spanning tree can provide
a local optimal solution, and the global optimal solution can
be achieved by exploring all the spanning trees in G(V, E).
There are extensive studies on enumerating all the spanning
trees in a directed graph [19], [20]. E.g., a well-known algo-
rithm in [19] uses backtracking and a method for detecting
bridges based on the depth-first search with the time com-
plexity O(|V| + |E| + |E| - |T|) and the space complexity
O(|V| + |E|). For a spanning tree ¢ in the service migration
graph G(V, E), the service migration vectors M; (and each of
its subsets) are feasible solutions under the service migration
vector constraint. By enforcing the preference degradation
constraint, a number of spanning trees can be further screened
out. Thus, for a remained spanning tree z, we need to calculate
the local optimal migration vector set O; to minimize the
combinational objective with the cost saving constraint, which
can be solved by the classic 0-1 knapsack problem. In partic-
ular, let F(ItemSet, TotalWeight) denote the standard 0-1
knapsack problem. The ItemSet is M; in our problem and the
TotalWeight isequal to (Y.,  Save(i,j) — Savemin),

m(i,7)€M>
where Savenmin = Costinitiat + co + C? — Costmas.
We thus need to select a set of items A (service migra-
tion vectors) in the ItemSet (M;) with the total weight
> Save(i, j) < > Save(i, j) — Savemn 0 as
Y (i,5) €M m(i.j)eMx
to maximize the total value

>

.. p-Save(i,j)
-Degli,) — ————=].

_ (q e9(i,J) Lease,,qe
vin(i,j)eM

From the optimal solution O of F, we can thus calculate the op-

vertex in O. timal solution O; of A; on the spanning tree i as O; = M; — 0.
Lea:ﬁ OOStinitial - Z S(J,Ue(imj) + q 1- (]— - ﬁz Deg(Z7J))
v (i,j)eO Ym(i.j)€O

_ P Costinitial Z

.« p-Save(i,j
<q : Deg(%,]) - A)
¥ih{i,)€0

Lease,qn Leaseqn
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Then the global optimal solution can be found through enu-
merating all the spanning trees on the service migration graph
G(V, E). We summarize this optimal solution in Algorithm 1.

Algorithm 1 Optimal service migration()

1.O=9
2. for each enumerated spanning tree A on G(V, E) do

3. | iftree A fulfils the preference degradation constraint
then
4, if > Save(i,j) > Savey, then
m{i.7)€Mx
5. O=F(My, > Save(i,j) — Savemin)
(3,5)€ M

6. O, =M,-0

7. If objective(0,) < objective(O) then

8. | 0 = 0,

9. end
10. end
I1. | end
12. end

13. return O as the global optimal solution for G(V, E)

It is worth noting that finding the optimal solution for the stan-
dard 0-1 knapsack problem can become a time-consuming task
as the crwodsourcers are distributed in a large scale, which can
cause the optimal solution proposed in Algorithm 1 less suitable
in practice, especially for an online system with highly dynamic
crowdsourcer distribution and viewer demand. To this end, we
further propose a simplified heuristic algorithm in Algorithm 2,
which can work efficiently and still return the global optimal
solution under certain situations. We then have the following
theorem:

Algorithm 2 Efficient online service migration()

1.O =10
2. for each enumerated spanning tree A on G(V, F)do
3. if tree A fulfils the preference degradation constraint
then
4. O,=10
5. Totalggue = 0 B
6. sort m(i, j) € M) with SZ%% in increasing
order
7. for m(i,j) € My do
8. if (9- Deg(i, j) < poz2— - Save(i, j)) or
(Total sqpe < Savenin) then
9. put m(i, j) into Oy
Totalsgpe = Totalsqpe + Save(i, j)
10. end
11. end
12. if objective(0y) < objective(O) then
13. | O =0,
14. end
15. | end
16. end

17. return O as the online solution for graph G(V, E)
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Fig. 7. Prototype implementation of crowdsourced live streaming platform.

Theorem 2: Algorithm 2 can return the global optimal solu-
tion when Costinitial + co + C% < C08tyyas for each enumer-
ated spanning tree.

Note that, if we can prove that the local optimal solution
in each spanning tree can be achieved by Algorithm 2 when
Costinitiar + o + C% < Costppaz, we can then prove that Al-
gorithm 2 can return the global optimal solution by Theorem 1.

Proof: We can prove this using contradiction by assuming
that there is a spanning tree X with Costipniriar + co + C* <
Costy,, but has an optimal solution (jA C M,, which
is better than the solution Oy found by Algorithm 2. We
assume there exists at least one service migration vector
m(i,7) € Oy, with (i, 7) ¢ 0y and Save(i,]) > 0. As
Savein = Costinitial + co +C?% — Costyna, < 0, we always
have Totalsgpe > Savemin. Thus, for all m(i,j) € Oy, we
have q- Deg(i, j) < goz&— - Save(i, j) and Save(i, j) > 0,

Deg(ij) P
Save(i,j) q-Leaseman

tion vectors are sorted with Deglig)

> Save(i,5)

Deg(i,j) Deg(i,j) Pl q :

have’Save(M) Save(ij) for Vi(i, j) € Ox. Therefore, if
Deg(s,5) D

Save(s,7) g-Leasenman

with the assumption. Otherwise, if

which mean

. As the service migra-

in increasing order, we

, we have rh’(z,g) € (), which conflicts

DEQ({;j) > p
Save(1,3) — g Leasemas’

then we have objective(0,) < objective(Oy). This shows

that the assumed solution O} is no better than the solution O,
and the theorem is proved. O

VI. PERFORMANCE EVALUATION

We have implemented the crowdsourced live streaming
system as a prototype based on PlanetLab, Amazon Cloud,
Microsoft Azure Cloud, and the opensource VLC/VLM coder,
and have conducted realworld experiments to understand its
performance. We have also performed trace-driven simulations
to further evaluate the system performance in large scale.

A. Prototype Configuration

Fig. 7 shows the implementation of the crowdsourced
streaming platform. Initially, the live streaming is started by
the broadcast senders through HTTP or RTP live streaming
protocols. These live streams will be redirected to the streaming
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TABLE III
VIDEOS SOURCE FOR LIVE STREAMING

Videos Resolution | Codec | Video Bitrate
Birds 1080p H.264 40 mbps
Monsters 1080p H.264 10 mbps
Matrix 480p XviD 1 mbps
Harry Potter 720p H.264 600 kbps
Shrinkage 720p H.264 3 mbps

servers in the local area according to a DNS server or load bal-
ancer. When the streams are received by the streaming servers,
they will be converted into different bit rates through the online
transcoding. In order to adjust to the network condition or
different types of devices in the end users, one stream can be
converted into one or several streams with different bit rates.
Finally, the distributed broadcast receivers request the nearby
CDN:s or servers for the stream with appropriate bit rate to play.

Clients. In our prototype implementation, both the live
crowdsourcers and end users are deployed in 398 Planetlab
nodes, which are set up with VLC media player 0.8.7Janus on
each node.

Server/CDN. We deploy the federation of cloud service from
Microsoft Azure Cloud and Amazon Cloud in our prototype
platform. These two cloud service providers can offer totally
21 cloud sites distributed all over the world. In each cloud
site, the General Purpose instances are provisioned with
Medium(A2) from Microsoft Azure Cloud and m3.medium
from Amazon Cloud. Each provisioned instance is set up with
Ubuntul4.04LTS and installed with VLM to manage multiple
live streaming channels. Further, we deploy the CloudFront
CDN service in All Edge Locations for the globalized
content delivery to the geo-distributed viewers. In order to
evaluate the streaming quality, the live feeds are generated
through videos uploaded from the distributed Planetlab nodes.

Videos. Our prototype platform is effective to redirect cur-
rent popular IPTV channels with public accessible URLs, such
as CNN, BBC World and so on. In order to evaluate the per-
formance (i.e. streaming quality), the live feeds are generated
through videos uploaded from the distributed Planetlab nodes.
We utilize 5 videos with different bitrates listed in Table IIL.5
Each dedicated sourcer stores one of these videos as its own
live feed.

Protocols. There are two types of protocols implemented in
our platform, namely, RTP streaming and HTTP streaming. Port
5004 is open for RTP, with Port 8081 for HTTP, respectively.
These protocols can be set up in the VLM configure file pre-
sented in Listing 1.

Listing 1: VLM Configure File

new channell broadcast enabled

setup channell output

#http{mux = ts,dst =: 8081/channell}

setup channell input

"http: //sender_ip address : 8081"

setup channell option http — reconnect

control channell play

new channel2 vod enabled

setup channel2 input rtp://@: 5004

5[Online]. Available: http://www.cs.sfu.ca/%7Ejcliu/TMM/crowdsourcing/
videos
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B. Measurement Results

To explore the distribution of the 398 planetlab nodes, we
measure the RTT latency between the nodes and the cloud sites,
and use the cloud site with the minimal latency to approximate
their locations. We deploy 18 cloud sites in different regions
from Amazon Cloud and Microsoft Azure, 9 from America area,
3 from Europe area, and 6 from Asia Pacific, respectively. As
ICMP is blocked by the instances from Microsoft Azure, we set
up tcptraceroute on the planetlab node and use tcpping to
measure the latency results. In Fig. 8, we present the nodes pop-
ulation and the average RTT latency from their top 1 preferred
cloud sites. With the latency results, each sourcer can construct
a preference list about available cloud sites. In order to evaluate
the streaming performance, we design the experiments to mea-
sure live streaming delay and lost frame ratio respectively in our
prototype planform.

After the setup of VLC, we can send a live streaming of a
screen timer video® from the planetlab node to the cloud server.
We record the start time of the streaming on the planetlab side,
as well as the time we begin to save the live streaming into a file
on the cloud server side. Then we can use ffmpeg to split both
the original video file and the received video frame by frame,
and compare them to calculate the delay. As the frame rate of
this video is 30fps, the error caused by the video is less than
33 ms. Fig. 9 presents a 40 seconds record about the delay. We

6[Online].  Availablehttp://www.cs.sfu.ca/%7Ejcliu/TMM/crowdsourcing/
videos/timer.mkv
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can see that the top 1 preference cloud site has a minimal delay,
and the delay time will accumulate along with time.

We also use ffmpeg to measure the lost frames during
the live streaming. These lost frames include both duplicated
frames (i.e., because the current frame is not received by the
playback deadline, the former frame is duplicated) and dropped
frames (i.e., the frame is received but corrupted). In either
case, the quality of experience (QoE) of viewer is decreased.
Fig. 10 presents a 50 seconds record about the lost frame ratio.
Different from the streaming delay, the lost frame ratio will
decrease along with time, and the gaps between different cloud
sites become minor.

To better understand the relationship between the streaming
quality and RTT latency, we explore the cloud sites in different
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areas and videos with different bit rates. For each cloud site,
we divide the planetlab nodes into groups according to the RTT
latency. The results on live streaming delay and lost frame ratio
are shown in Figs. 11 and 12, respectively. From Fig. 11, we
observe all the cloud sites in different regions have a sharp delay
increase when RTT latency is larger than 20 ms. Meanwhile,
given the different videos, we can observe an obvious lost frame
ratio increase when RTT latency is larger than 200 ms in Fig. 12.
Generally, we can see the streaming delay increase more than
80% if the latency is above 20 ms. On the other hand, the frame
loss ratio is relatively stable when the latency is under 200 ms.

C. Prototype Implementation

We present the implementation results to evaluate our pro-
posed strategy in the prototype system. The planetlab nodes
are split into different areas, and the number of planetlab nodes
deployed in each area is proportional to the sourcer distribution
of the real world trace in Fig. 3. From 9:00AM to 18:00PM,
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TABLE IV
CLOUD LEASING STRATEGIES FOR CROWDSOURCED LIVE STREAMING FROM 7 AREAS AT 18:00
Van (10) | CA (19) VA (20) SA (5) K. and J. (20) CHN (16) S. and A. 4) Cost
m3 X 3 m3 X 2 ml x 1 m3 X 1+ ml X 1 ml X 1
TOP (Oregon) (Virginia) | (Sao Paulo) | ™3 X 2 (Tokyo) (Singapore) (Sydney) | 35-584 per Hour
OM plg=0.1 (‘gfegxorf) m3 X(Vzir;;?al) x 1 m3 x 2 (Tokyo) m3 x 2 (Singapore) $5.118 per Hour
OM p/q=0.3 m3 x 5 (Virginia) m3 x 2 (Tokyo) m3 x 2 (Singapore) $4.978 per Hour
CP m3 X 5 (Virginia) m3 X 4 (Singapore) $4.77 per Hour

we implement the different cloud leasing strategies with every
3 hours as an interval. In our proposed optimal migration
(OM) strategy, we have two scenarios with p/¢ = 0.1, and
p/q = 0.3. Another two cloud-based strategies are also imple-
mented for comparison. The top preferred first (TOP)
strategy deploys all the available cloud sites to allocate the ser-
vice for sourcers in their most preferred cloud site. Meanwhile,
the cloud servers are allocated in the regions with the most
sourcers in centralized provisioning (CP) strategy. We
consider a conventional centralized dedicated server
(CDS) strategy as the benchmark, in which the single server
is allocated in the central region to service the global requests.
Fig. 13, 14 and 15 present the implementation results of
streaming delay, the loss frame ratio and cost ratio, respec-
tively. Comparing with the benchmark strategy, both TOP and
our proposed strategy can have 40% streaming delay reduction
on average, and our proposed strategy can further cut about
15% provisioning cost than TOP. The loss frame reduction is
more unstable in different time slots. At 18:00, the Virginia
and Singapore are selected as the central regions in the bench-
mark strategy with minor loss frame and cost ratio reduction
relatively.

Specifically, we further present the implementation results of
different regions at 18:00, when most sourcers come from North
America and Asia areas. Here, we deploy totally 94 plantlab
nodes (i.e. crowdsourcers) distributed in 7 areas all over the
world, specifically, 10 nodes in Vancouver area (Van for short),
19 nodes in California area (CA for short), 20 nodes in Vir-
ginia area (VA for short), 5 nodes in South America area (SA
for short), 20 nodes in Korean and Japan area (K. and J. for
short), 16 nodes in China area (CHN for short), and 4 nodes in
Singapore and Australia area (S. and A. for short). In Amazon
Cloud, EC2 instances are provisioned from 6 different cloud
site regions. The implementation details of the cloud leasing
strategy are presented in Table IV, and the average frame loss
reduction is recorded in Fig. 16 with centralized provisioning
as the benchmark. In Table IV, m3 x 1 4+ m1 x 1 (Singapore)
means one m3.xlarge instance and one ml.large instance are
provisioned in Singapore region to serve 16 sourcers. We also
calculate the server provisioning cost per hour according to the
prices of Amazon EC2. CloudFront is deployed as CDN for the
global distribution, and we record the average frame loss ratio
from 20 distributed users. Generally the frame loss ratios can
be reduced by about 10% for TOP and OM (p/gq = 0.1) strate-
gies. Especially, for the plantlab nodes in China, the improve-
ment can reach almost 30% with the OM (p/gq = 0.1) strategy.
Comparing with TOP strategy, our proposed solution OM (p/q
= 0.1) saves 8.34% cost, and improves 9.1% video quality on
average. On the other hand, although OM (p/g = 0.3) strategy
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Fig. 17. Reduction of streaming delay.

has little performance improvement for Van, CA, VA, and SA
areas, it achieves similar improvement for the other three areas
and can further reduce the cost by 2.5%.

D. Trace-Driven Simulation Results

To further evaluate the performance of the proposed strategy
in larger scale, we simulate the system with the real world trace
data from Twitch.tv and the measurement results from the proto-
type system. The diverse prices of distributed cloud sites are re-
ferred to Amazon Cloud and Microsoft Azure Cloud. The price
cost should cover the peak user demand, and we will take this
cost as the budget constraint in our proposed OM strategy. We
also set p/g = 0.1 and p/q = 0.3. The preference value is
inversely proportional to the RTT latency. Another two cloud
based strategies are deployed for comparison. All these cloud-
based strategies can scale their provisioning capacity adaptively
to the user demand.

Fig. 17 shows the streaming delay reduction of the four
cloud-based strategies comparing with the benchmark CDS
strategy. Generally, TOP and OM strategies, which deploy the
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geo-distributed cloud service, can reduce almost 50% streaming
delay of the benchmark strategy. The CP strategy can have
an improvement only when most of viewers concentrate on
several sourcers from the same region (e.g. 3:00AM-8:00AM
in Asia and 13:00PM-16:00PM in Europe). Different from the
streaming delay reduction, the frame loss reduction is more
dynamic with time variations in Fig. 18. Before 8:00 AM,
most of popular sourcers are from Europe and Asia, the CDS
strategy would suffer from the long transmission, despite the
total number of streams is not large, and there is still extra avail-
able bandwidth capacity for the rented server. After 9:00AM,
sourcers from north America attract more viewer demand. Then
dedicated server can provide an acceptable service with less
frame loss ratio. In Fig. 19, we present the cost ratio between the
four cloud-based strategies and the benchmark strategy. As the
server instances are allocated in the distributed cloud sites with
diverse prices, the TOP strategy can lead to a higher cost when
the peak demand comes. Because of the budget constraint, the
provisioning cost in our proposed strategy is limited under the
cost of the benchmark. Yet, comparing with the TOP strategy,
the gap of streaming delay and frame loss ratio can still be kept
within 5%, and almost 30% of the provisioning cost is saved
through the service migration during peak demand. When p/q
is improved from 0.1 to 0.3 we can observe a general increase
of the streaming delay for about 10% on average in Fig. 17.
The gap is obvious around 12:00PM, when most streams and
viewers come from US regions. In Fig. 18, the gap of frame
loss is relatively small, and can reach the peak for about 5%
during 5:00AM to 8:00AM, when most streams and viewers
come from Asia regions. Comparing with OM p/q = 0.1, OM
p/q = 0.3 can generally save about 2% cost, expect for the
peak demand around 15:00PM in Fig. 18.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we explored the emerging live streaming sys-
tems for crowdsourced multimedia big data, in which both the
number and distribution of the crowdsourcers can be highly dy-
namic. It further motivated the design of cloud leasing strategy
to optimize the cloud site allocation for geo-distributed live
crowdsourcers. A prototype of crowdsourced live streaming
platform was built with Amazon Cloud/Microsoft Azure and
Planetlab nodes. The performance of the proposed strategy was
evaluated through extensive experiments.

Our work is an initial study, and there are still many open
issues to be further explored. We plan to continue enhancing
our design by conducting more evaluations on our prototype
with larger scale experiments. Our ongoing work includes
tailoring our method for some specific crowdsourced live
streaming applications, such as synchronizing multiple collabo-
rative crowdsourced live videos for 3D immersive environment
reconstruction or real-time interaction. We are also interested
in extending our current deployment strategy to a more general
scenario, in which the distributed server instances can cooperate
with CDNs for a larger service coverage with a lower cost. In
addition, we believe that the dynamic geo-distributed crowd-
sourcers are predictable, in which there are two major types
of live sources, namely, scheduled sources and non-scheduled
sources. The scheduled sources mean the crowdsourcers follow
some social event in a fixed location during a certain time,
such as a presidential election, or a football match. In this case,
the number of sourcers is easy to predict, as it usually can be
inferred from the number of audience. As to the non-sched-
uled sources, the crowdsourcers can start their live streaming
arbitrarily. While, these time-varying live sources usually tend
to adjust their schedule according to the dynamic viewers
demand, since they are motivated to get more subscribers as
a reward. Especially, some popular crowdsourcers may start
to broadcast in a fixed time every day which is convenient for
the native language speaking viewers, or choose a period when
a peak number of viewers can be achieved. This behavior of
crowdsourcers is evident in some modern crowdsourced live
streaming platform, such as Twitch.tv. Our solution could be
enhanced with crowdsourcer prediction through user behavior
analysis from real-world measurement results.
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