
39

Cloud-assisted Crowdsourced Livecast

CONG ZHANG AND JIANGCHUAN LIU, Simon Fraser University

HAIYANG WANG, University of Minnesota Duluth

The recent two years have witnessed an explosion of a new generation of livecast services, repre-
sented by Twitch.tv, GamingLive, and Dailymotion, to name but a few. With such a livecast service,
geo-distributed Internet users can broadcast any event in real-time, e.g., game, cooking, drawing,
etc., to viewers of interest. Its crowdsourced nature enables rich interactions among broadcasters
and viewers, but also introduces great challenges to accommodate their great scales and dynam-
ics. To fulfill the demands from a large number of heterogeneous broadcasters and geo-distributed
viewers, expensive server clusters have been deployed to ingest and transcode live streams. Yet our
Twitch-based measurement shows that a significant portion of the unpopular and dynamic broad-
casters are consuming considerable system resources; in particular, 25% of bandwidth resources
and 30% of computational capacity are used by the broadcasters who do not have any viewers at
all. In this article, through the real-world measurement and data analysis, we show that the public
cloud has great potentials to address these scalability challenges. We accordingly present the design
of Cloud-assisted Crowdsourced Livecast (CACL) and propose a comprehensive set of solutions for
broadcaster partitioning. Our trace-driven evaluations show that our CACL design can smartly
assign ingesting and transcoding tasks to the elastic cloud virtual machines, providing flexible and
cost-effective system deployment.

CCS Concepts: • Information systems → Multimedia streaming;

Additional Key Words and Phrases: Crowdsourced livecast, public clouds, workload migration,

resource allocation

ACM Reference format:
Cong Zhang and Jiangchuan Liu and Haiyang Wang. 2010. Cloud-assisted Crowdsourced Livecast.
ACM Trans. Multimedia Comput. Commun. Appl. 9, 4, Article 39 (March 2010), 23 pages.
DOI: 0000001.0000001

1 INTRODUCTION

Empowered by the high-performance personal devices (e.g., desktop PCs and mobile phones)
and high-speed communication networks (e.g., optical networks and LTE), the paradigm of

This publication was made possible by NPRP grant #[8-519-1-108] from the Qatar National Research Fund
(a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.
Dr. J. Liu’s work is also supported by the Natural Sciences and Engineering Research Natural Sciences and
Engineering Research Council (NSERC) of Canada. H. Wang’s work was supported by Chancellor’s Small

Grant and Grant-in-aid programs from the University of Minnesota. Author’s addresses: C. Zhang and J.
Liu, School of Computing Science, Simon Fraser University, Canada; H. Wang, Department of Computer
Science, University of Minnesota Duluth, USA..
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1551-6857/2010/3-
ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:2 C. Zhang, J. Liu, and H. Wang

live streaming service has shifted from the conventional single source, to multi-source, to
many sources, and now toward crowdsource [17], where the available media sources for the
content of interest become highly diverse and scalable. In recent years, crowdsourced livecast
has emerged as a powerful and popular streaming service over the Internet [9]. Such livecast
services as Twitch.tv1 (or Twitch for short), GamingLive2, and Dailymotion3, allow Inter-
net users to broadcast cooking shows, costume design, music-making, game playthrough4,
etc., attracting an increasing number of viewers around the world. One recent report from
Twitch5 revealed that more than 30,000 broadcasters stream game playthrough on Twitch
simultaneously and over 10 billion messages are delivered by its live chatting service a day.
To accommodate the growing number of broadcasters and viewers, Twitch is aggressively
expanding dedicated servers clusters into high-demand areas67. Currently, it has 31 service
regions (i.e., ingesting regions) across five continents8.
To better understand the challenges and opportunities therein, we have closely monitored

1.5 million broadcasters and 9 million streams within one month on Twitch. We find that,
despite the success of numerous celebrities, there indeed exist many more broadcasters who
have very few or even no viewers. These unpopular broadcasters have irregular schedules,
starting or terminating their broadcast programs at any time. They have created highly
dynamic workloads to the Twitch’s servers and consumed a significant amount of valuable
server resources continuously. In particular, over 25% of the bandwidth resources and over
30% of the computational capacity are used to host the broadcasters with no any viewer
at all. These unpopular broadcasters are not only in greater numbers, but also harder to
be managed with the irregular schedules and resource consumptions. They are not yet
considered in the optimization of existing streaming systems, making the optimal resource
allocation quite challenging.
Previous studies have shown the potentials of public clouds in accommodating the dy-

namic patterns of workloads [15][18]. The technical report from Twitch, however, revealed
the weakness of completely employing public clouds in terms of the higher expense, the
latency concerns, and the inflexible management9. We, therefore, explore the feasibility of
using dedicated servers and public clouds cooperatively. Through a series of measurements
based on Amazon EC210 (EC2 for short) and PlanetLab11 nodes, we find that public clouds
can provide comparable performance in the ingesting and transcoding steps. Yet given the
existence of different service regions, how to assign the broadcaster to the regions with
minimum operation costs remain challenging.
In this article, we present CACL (Cloud-assisted Crowdsourced Livecast), a generic frame-

work that facilitates a cost-effective migration for broadcasters’ workloads. In this frame-
work, we first design a stability index (s-index) to characterize a broadcaster’s degree of
stability in the workload patterns. Then, we formulate and solve the resource allocation

1www.twitch.tv, owned by Amazon.com in September, 2014.
2www.gaminglive.tv
3www.dailymotion.com
4When game players play games, they also broadcast the monitor contents from their game devices to fellow

viewers with the real-time comments.
5https://blog.twitch.tv/twitch-engineering-an-introduction-and-overview-a23917b71a25#.87r28fv6u
6https://dotesports.com/general/twitch-paris-data-center-europe-174
7http://www.techradar.com/news/gaming/twitch-flips-the-switch-on-a-new-australian-data-centre-1307999
8https://twitchstatus.com/
9http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
10https://aws.amazon.com/ec2
11https://www.planet-lab.org/

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:3

Live Streams

Live Chatting

Broadcaster Viewers

Fig. 1. A generic system diagram of crowdsourced livecast platforms

problems in ingesting and transcoding steps, considering the diverse capacities and expenses
in different regions. Trace-driven evaluations show that our proposed solutions migrate up
to 59.9% of workloads from the dedicated servers to the public cloud and reduce about 20%
of leasing cost compared with other cloud-assisted strategies. The remainder of this article
is organized as follows. We introduce the background of crowdsourced livecast systems in
Section 2. We present the Twitch-based measurement and emphasize the challenge of han-
dling unpopular broadcasters in Section 3. We introduce the EC2-based measurement and
propose the CACL framework in Section 4. We formulate and solve the resource allocation
problem in Section 5. The trace-driven simulations evaluate the performance of our design
in Section 6. After the discussion of related work in Section 7, we conclude our work and
further offer some potential research directions in Section 8.

2 BACKGROUND

In this section, we briefly introduce the system diagram of crowdsourced livecast platforms.
As shown in Figure 1, two main services, streaming service and chatting service, jointly serve
the geo-distributed broadcasters and fellow viewers. In the former, broadcasters’ devices
(i.e., sources) send encoded streams to the service provider’s ingesting servers, using TCP-
based protocols, e.g., Real Time Messaging Protocol (RTMP)12, to maintain the low-latency
communication. Then, the streams are transcoded to multi-quality formats, e.g., HTTP Live
Streaming (HLS)13, and delivered to fellow viewers through Content Delivery Networks
(CDNs). In the latter, a set of chatting servers receive the viewer’s live messages, and then
dispatch the messages to the corresponding broadcaster and other viewers, enhancing the
participants’ experience and interaction in live events.
For example, the crowdsourced game stream “TwitchPlaysPokemon”14, as shown in Fig-

ure 2a, offered the live stream and emulator for the game “Pokemon Red15”, in which
players (also as the viewers in Twitch) simultaneously send the control messages of Poke-
mon through the IRC (Internet Relay Chat) protocol and live messages in Twitch. That
said, the viewers are no longer passive, but can affect the progress of the broadcast as well.

12https://en.wikipedia.org/wiki/Real-Time Messaging Protocol
13https://en.wikipedia.org/wiki/HTTP Live Streaming
14https://en.wikipedia.org/wiki/Twitch Plays Pokemon
15Pokemon Red is a role-playing video game.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:4 C. Zhang, J. Liu, and H. Wang

Streaming service Chatting service

Game Playthrough Control

Commands
Control Messages

Live Messages

(a) TwitchPlaysPokemon

1 2

43
5

(b) Super Mario Maker Competition

Fig. 2. The illustrations of two crowdsourced livecast streams

This truly crowdsourced game streaming attracted more than 1.6 million players and 55
million viewers. Figure 2b demonstrates another typical livecast example, in which four
broadcasters are playing Super Mario Maker16. We split this streaming screenshot into five
areas. Four players’ games are rendered in area #1-#4, respectively. The viewers can discuss
the broadcasters’ game operations in the chatting window in area #5. It is worth noting
that the broadcasters and viewers can be highly heterogeneous and dynamic, who can have
quite different hardware and software configurations, and may join or leave the system at
will. The broadcasters’ popularity varies significantly as well. “TwitchPlaysPokemon” has
attracted more than 72 million viewers17; yet many broadcasters have only one or two
viewers, or even none.

16Super Mario Maker is the evolution version of the classic video game Super Mario Bro.
17https://www.twitch.tv/twitchplayspokemon

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:5

3 MEASUREMENTS OF CROWDSOURCED LIVECAST: TWITCH AS A CASE
STUDY

In this section, we try to answer the following questions: how many unpopular broadcasters
exist in real crowdsourced livecast systems? And, what is the underlying impacts of those
unpopular broadcasters on the platform performance? We closely investigate the broadcast-
ers’ workloads and the corresponding resource consumptions using the crawled data from
Twitch, the largest commercial crowdsourced livecast platform18.

3.1 Twitch-based Datasets

The crawled data are continuously collected from Twitch every five minutes in a one-month
period (Feb. 1st-28th, 2015). Through the official APIs19, our multi-threaded crawler20 ob-
tained information from each broadcaster and the official system dashboard21. We retrieved
both the broadcaster dataset and stream dataset from it22. We have excluded certain out-
liers23 from the two datasets. A brief explanation is as follows:

• in broadcaster dataset: each trace collects the total number of views and other
statistics such as the device type (PC, XBox, or PS4), partner status24 and the
playback bitrate and resolution of source quality, for a total of more than 1.5 million
broadcasters (2% outliers have been eliminated).

• in stream dataset: each trace records the number of viewers every five minutes and
other properties including the start time, duration, game name, etc., for a total of
more than 9 million streams (0.3% outliers have been removed).

3.2 Characteristics of Crowdsourced Live Broadcasters

Broadcasters can stream their game playthroughs from XBox, PS4, and PC/Laptop. XBox
and PS4 connect to Twitch’s ingesting servers through built-in applications directly, and
PC/Laptop captures the live contents from the monitor by various hardware (e.g., Roxio
Game Capture HD Pro) or software (e.g., XSplit25 and OBS26). We measure the percentage
of each type of devices in the broadcaster dataset. The result shows that: the most popular
device is PC/Laptop, at 65%-85%; the second is PS4, at 5%-25%; the third is XBox, at
5%-15%. Figure 3 exhibits the proportion of three types of devices during one day.
In our broadcaster dataset, we also record the time when each broadcaster starts, so we

can closely examine the inter-arrival time and arrival rate of the broadcasters during the
one-month period. Figure 4 plots the Probability Density Function (PDF) of broadcasters’
inter-arrival time. As can be seen, the inter-arrival time of more than 60% of XBox broad-
casters is less than two seconds. The percentages are 75% and 90% in PS4 and PC/Laptop,

18http://marketingland.com/marketers-paying-attention-twitch-202984
19http://dev.twitch.tv/
20Our multi-threaded crawler does not need Twitch’s API client-ID and avoids the limitation for the maxi-

mum number of objects to return in each request.
21The official system dashboard provides the statistics of current broadcasters, viewers, and games. Link:
https://stats.twitchapps.com/
22The multi-threaded crawler and data are available at: https://clivecast.github.io/
23We remove a broadcaster or a stream from the datasets, if its trace is incomplete due to network outage
or other connection/terminal problems.
24There are two types of broadcasters: partner and non-partner. Twitch enables quality options for partners,
whose viewers can select the preferred streaming quality from the source quality (1080p) to 720p, 540p, etc.
25https://www.xsplit.com/
26Open Broadcaster Software, https://obsproject.com/

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:6 C. Zhang, J. Liu, and H. Wang

0 5 10 15 20 25

The daily pattern on FEB.16 (EST)

0

0.5

1

1.5

2

2.5

of

 b
ro

ad
ca

st
er

s

×104

XBox
PS4
PC/Laptop

Fig. 3. The distribution of three types of devices
(Eastern Standard Time)

0 10 20 30 40 50 60 70
0

0.2

0.4

Crawled Data (XBox)
Poisson (λ = 2.08)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

P
D

F

Crawled Data (PS4)
Poisson (λ = 1.20)

0 2 4 6 8 10 12 14 16

Broadcasters' inter-arrival time (seconds)

0

0.5

1

Crawled Data (PC/Laptop)
Poisson (λ = 0.41)

Fig. 4. Broadcasters’ inter-arrival time

0 20 40 60 80 100 120
0

0.01

0.02 Crawled Data (XBox)
N&N (0.30,12.17,36.15,4.70,12.52)

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

PD
F Crawled Data (PS4)

N&N (0.23,24.28,57.51,7.77,21.37)

0 100 200 300 400 500 600 700 800 900 1000
Broadcasters arrival rate (per minute)

0

5

×10-3

Crawled Data (PC/Laptop)
N&N (0.16,81.06,157.70,14.10,48.00)

Fig. 5. Broadcasters’ arrival rate

respectively. Note that a Poisson Distribution can be used to fit the inter-arrival time of
three platforms with different parameters λ.
Figure 5 shows the PDF of broadcasters’ arrivals per minute. The crawled data in three

types of devices show similar distributions, which exhibit two peaks. These peaks are mainly
caused by the daily pattern of broadcasters. In particular, the whole streaming system has
the lowest workloads at midnight and the highest at noon; therefore, the first peak is
generated by the midnight workloads, and the second peak is caused by the noon workloads
in this figure. Besides, this figure also illustrates the different activities of broadcasters in
different types of devices. For example, the arrival peaks on the XBox platform are only
12 and 41 arrivals per minute, which is greatly lower than for the other two platforms.
This finding also proves the significant disparity of the inter-arrival time in three types of
devices in Figure 4 as well. The arrival PDF can be fitted by a bimodal distribution, which
is a mixture of two normal distributions. The parameters are also shown in Figure 5, in
which “N&N” indicates that the fitting curve is a component of two normal distributions
with parameters (p, µ1, µ2, σ1, σ2). Parameter p determines the weight of the two normal
distributions (i.e., the first normal distribution has a weight p, and the second one has a
weight (1− p), 0 < p < 1). µ1, µ2 show the means, and σ1, σ2 show the standard deviations.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:7

FEB03 FEB10 FEB17 FEB24
Days

0

5

10

15

of
 c

ro
w

ds
ou

rc
ed

 li
ve

 e
ve

nt
s

Crowdsourced live events 12 live events

(a) Daily patterns

FEB03 FEB10 FEB17 FEB24
Days

0

20

40

60

%
 o

f
to

ta
l v

ie
w

er
s Crowdsourced live events 52% of total viewers

(b) Effects of crowdsourced live events

Fig. 6. Characteristics of crowdsourced live events

3.3 Effects of Crowdsourced Live Events

Crowdsourced livecast enables event-related live streamings with different broadcasters. For
example, five players in one e-sports competition not only cooperatively play a game, but
also simultaneously broadcast their game playthroughs to fellow viewers. These streams may
be ingested by different streaming servers, and show the distinct contents for this e-sports
competition. These event-related live streams not only have the event-based correlation, but
also exhibit the broadcaster-related differences. We first use the broadcasters’ names and
game types to find these event-related live streams, and then explore their characteristics.
Figure 6a plots the number of live events during one month27. We can find that live events
exist in all data traces. Moreover, they attract up to 52% of total viewers in our dataset,
as shown in Figure 6b. If viewers switch live streams among these broadcasters to select
a preferred perspective, the extra latency will impact on the viewers’ QoE. As such, we
consider the event-related feature in the problem formulation and optimization in Section 5.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:8 C. Zhang, J. Liu, and H. Wang

Fig. 7. Broadcasters rank ordered by popularity

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Duration (minutes)

C
D

F

Unpopular streams
Popular Streams

83 minutes

255 minutes

Fig. 8. The distribution of duration

3.4 Popularity of Crowdsourced Live Broadcasters

We then focus on the distribution of broadcaster’s popularity, which is a key feature in
previous studies for multimedia systems [4][13], and is also critical to answer our first ques-
tion. We plot the highest number of concurrent viewers against the rank of the broadcasters
(in terms of the popularity) in log-log scale in Figure 7. From this figure, we observe that
the popularity of those broadcasters well exhibits a Zipf’s pattern28. We further find that
there exists such a high skewness, that is, the top-3% popular broadcasters account for
about 80% of total viewers at the peak time. Another interesting finding is that 90% of the
broadcasters only attract less than 8 viewers (labeled on the small figure in Figure 7) even
at their peak time. Based on these findings, if the peak number of concurrent viewers in all
live streams of a broadcaster is less than 8, we assume that this broadcaster is unpopular
and their streams are also unpopular.

3.5 Dynamics of Crowdsourced Live Broadcasters

In the stream dataset, the unpopular streams account for 89.5% of all streams. We next
try to answer two critical questions: (1) How long are these unpopular streams? (2) Is
there any difference between popular and unpopular streams in terms of live duration? We
compare the distribution of their duration with the popular streams, as shown in Figure 8.
This figure shows that the duration of about 80% of unpopular streams is less than 83
minutes. Because the number of unpopular streams is quite large (about 8.13 million), these
unpopular streams could occupy the resources frequently and dynamically in the dedicated
servers. We also calculate the total duration of all unpopular streams in one month to be
nearly 830 years, while the total duration of popular streams is only 310 years. A huge
amount of resources is not utilized effectively.
We also plot the PDF of the broadcasters’ arrivals per five minutes in Figure 9. This figure

shows that the arrivals of the popular broadcasters are clearly lower than 300, while the
unpopular broadcasters’ arrivals have a considerable range from 400 to 1800. To illustrate
the differences between the two types of broadcasters, we plot two typical broadcasters’
activities during ten days in Figure 10a and 10b. Figure 10a illustrates that broadcaster

27Due to the space limitation, only four date labels are displayed.
28We use the coefficient of determination, denoted R2, to illustrate how well our measured data fit the
Zipf’s law.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:9

0 500 1000 1500 2000 2500

Broadcaster arrivals per five minutes

0

0.5

1

1.5

2

2.5

3

PD
F

×10-3

Popular broadcasters

(a) Popular broadcasters

0 500 1000 1500 2000 2500

Broadcaster arrivals per five minutes

0

0.5

1

1.5

2

2.5

3

PD
F

×10-3

Unpopular broadcasters

(b) Unpopular broadcasters

Fig. 9. Broadcaster arrivals per five minutes

FEB01 FEB02 FEB03 FEB04 FEB05 FEB06 FEB07 FEB08 FEB09
0

0.5

1

1.5

2

2.5
x 10

4

of

 v
ie

w
er

s

Broadcaster A

(a) Popular broadcaster A

FEB01 FEB02 FEB03 FEB04 FEB05 FEB06 FEB07 FEB08 FEB09
0

1

2

3

of

 v
ie

w
er

s

Broadcaster B

(b) Unpopular broadcaster B

Fig. 10. Two examples in the broadcaster dataset

A has a regular schedule with a stable live duration, attracting a large number of viewers.
Figure 10b shows that the broadcaster B attracts a few viewers, but consumes the dedicated
resources continuously with the irregular schedule. Due to the frequent arrivals and irregular
resource consumption, it is necessary to optimize the dynamic workloads of these unpopular
broadcasters in current crowdsourced livecast systems.

3.6 Challenges of Hosting Unpopular Broadcasters

To understand the challenges in hosting these unpopular broadcasters, we use the playback
bitrate and resolution in the broadcaster dataset to estimate the consumption of band-
width/computational resources of live streams. The estimation is based on the work in [2],
which provides the empirical CPU cycles measurements under different transcoding settings.
Figure 11 shows the proportion of bandwidth/computational consumption of two types of

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:10 C. Zhang, J. Liu, and H. Wang

FEB14 FEB15
0

15

30

45

%
 o

f
to

ta
l i

ng
es

t b
an

dw
id

th

FEB14 FEB15
0

5

10

15

%
 o

f
to

ta
l v

ie
w

s

Bandwidth consumption (%) of broadcasters (0<# of views<8)

Bandwidth consumption (%) of broadcasters (no views)

Total views (%) of broadcasters (0<# of views<8)

(a) Bandwidth consumption

FEB14 FEB15
10

15

20

25

30

35

40

%
 o

f
to

ta
l c

om
pu

ta
tio

n
co

ns
um

pt
io

n

Computation consumption (%) of broadcasters (0<# of views<8)

Computation consumption (%) of broadcasters (no views)

(b) Computational consumption

Fig. 11. Different types of broadcasters’ resource consumptions

broadcasters when they stream live content to ingesting servers on Feb 14th/15th, 2015.
The broadcasters who do not have any viewers consume about 25% of bandwidth resources
and 28% of computational resources. In the meantime, about 33% of bandwidth resources
and 31% of computational resources are consumed by the broadcasters who only have less
than 8 concurrent viewers. Note that these broadcasters only attract less than 5% of online
viewers.

4 CACL: ARCHITECTURE AND DESIGN

The results from the Twitch-based measurement have illustrated that the dedicated re-
sources are not utilized effectively and motivated us to design a new crowdsourced livecast
framework. In this section, we first examine the feasibility of migrating certain workload
to public clouds through an EC2-based measurement, and then present the architecture of
our Cloud-assisted Crowdsourced Livecast (CACL) design, which targets on mitigating the
impacts of current dynamic, unpredictable, and irregular workloads cost-effectively.

4.1 EC2-based measurement

Due to the elastic resource provisioning and cost-effective scaling, public clouds have been
proven to be an effective complement of dedicated servers for streaming services [1]. For
instance, Netflix, the major streaming provider in America, has migrated its streaming
infrastructures to Amazon EC2 (EC2 for short) and the storage of master film copies to
Amazon S3 (Simple Storage Service) since 2010. For crowdsourced livecast, it remains to
identify which workloads to be migrated to the public cloud without sacrificing the QoE of
viewers. We next conduct the measurements to investigate this problem based on Amazon
EC2 and PlanetLab nodes. We focus on the Round-Trip Time (RTT) between broadcasters
and ingesting servers because this metric is mainly used to test the ingesting performance
in the broadcasting software (e.g., OBS).
To compare the ingesting performance (i.e., RTT) between the dedicated servers and

the public clouds, we deploy eight ingesting servers on EC2 using m3.medium instances

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:11

PlanetLab Nodes Public clouds (EC2)

Datacenters (Twitch)

Fig. 12. The diagram of EC2-based measurement

0 200 400 600 800 1000
RTT (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

EC2-Best
Twitch-Best
EC2-Worst
Twitch-Worst

0 20 40
0

0.2

0.4

0.6

0.8

Fig. 13. RTT comparison

with Ubuntu 14.0429 and Nginx-RTMP module30. Similar to Twitch’s dedicated ingesting
servers, these EC2 instances, which are located at eight locations (Virginia, Tokyo, Ireland,
etc.), can receive/transcode live streams using Nginx-RTMP module and deliver them to
geo-distributed viewers. We also set up 224 PlanetLab nodes (the maximum number of
available nodes during our study) to run as the broadcasters and measure the performance
of the ingesting connection between these broadcasters and ingesting servers, as shown in
Figure 12. We measure the RTTs between 224 PlanetLab nodes and 26 ingesting servers
(18 in Twitch31 and 8 on EC2) and acquire the following results.

4.1.1 Round-trip Time. Figure 13 shows the RTT comparison for the Twitch and EC2
cases. We can observe that about 60% of broadcasters in the Twitch-best case have a quite
low RTT (less than 35 ms), but the disparity between the two best cases is quite small, as
shown in the small figure in Figure 13. Moreover, nearly 40% of broadcasters can enjoy a
lower connection latency (with the maximum up to 150ms) when they choose EC2 instances
as the preferred ingesting servers. We also compare the worst cases and find that the RTTs
in the EC2-worst case are very similar to the results in the Twitch-worst case, which means
that EC2 instances do not increase RTTs significantly even in the worst situations. We,
therefore, can use EC2 instances to ingest broadcasters’ live streams with the comparable
performance. Note that the ingesting step is only the first part of livecast services, we still
need to consider the broadcast latency, which reflects the viewers’ QoE directly.

4.1.2 Broadcast Latency. Our previous work defined two types of latencies in crowd-
sourced livecast platforms [21]: (1) broadcast latency: the time lag of a live event when
viewers watch the live streaming from the source. (2) live messaging latency: the time differ-
ence when a message is sent from a viewer to other viewers. The viewers are more sensitive
to broadcast latency, because the disparity between broadcast latency and live messaging
latency will affect viewers’ QoE in terms of the participation and discussion.

29http://releases.ubuntu.com/14.04/
30https://github.com/arut/nginx-rtmp-module
31Twitch had only 18 ingesting regions during our study.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:12 C. Zhang, J. Liu, and H. Wang

Source 720P 480P 360P 228P
0

2

4

6

8

10

12

14

16

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
on

ds
)

Broadcast latency (m3.medium)

(a) Broadcast latency(m3.m)

Source 720P 480P 360P 228P
0

20

40

60

80

100

120

C
P

U
 u

sa
ge

 (
%

)

CPU usage (m3.medium)

(b) CPU usage (m3.m)

Source 720P 480P 360P 228P
0

2

4

6

8

10

12

14

16

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
on

ds
)

Broadcast latency (m3.large)

(c) Broadcast latency (m3.l)

Source 720P 480P 360P 228P
0

20

40

60

80

100

120

C
P

U
 u

sa
ge

 (
%

)

CPU usage (m3.large)

(d) CPU usage (m3.l)

Fig. 14. Broadcast latency in different instances

To measure the broadcast latency on public clouds, we lease two types of instances
(m3.medium and m3.large32) from Amazon’s Oregon data-center. We deploy a PC (Dell

32We lease on-demand instances. The configuration and price are m3.medium: 1vCPU, 2.5GHz, Xeon E5-
2670v2, 3.75G memory, $0.067/h; m3.large: 2vCPUs, 2.5GHz, Xeon E5-2670v2, 7.5G memory, $0.133/h

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:13

Initial Offloading Ingesting Redirection Transcoding Schedule

Stability

Index

Livecast

Popularity

Resources

Consumption
T

T+1

Fig. 15. The framework of Cloud-assisted Crowdsourced Livecast (CACL)

7010) with OBS as the broadcaster’s device and a laptop (Samsung NP355V5C) with VLC33

as the viewer’s device in a campus network. We stream the active window of a stopwatch
application from the broadcaster’s PC to the instance and play this live stream on the
viewer’s laptop. To calculate the time difference, i.e., broadcast latency, between them, we
set up a camera to record two monitors at the same time. The transcoding settings are
Source quality (i.e., 1080p, 3200kbps), 720p (1500kbps), 480p (800kbps), 360p (500kbps),
and 228p (200kbps). We plot the results in Figure 14 with the average values and stan-
dard deviations. Figure 14a and 14b show the broadcast latency and CPU usage on the
m3.medium instance in different transcoding settings. We can observe that this instance
cannot transcode the source RTMP stream to 1080p and 720p HLS streams due to the
overloaded CPU. Yet it can process another three workloads very well and acquire the
lower broadcast latency (about 5 seconds) than Twitch, which suffers from more than 10
seconds broadcast latency during live events[21]. Because another m3.large instance has two
vCPUs34, it has better performance, as shown in Figure 14c and 14d. From Figure 14c, we
observe that all broadcast latencies of various settings are decreased to about 5 seconds
with the sufficient computational capacity. From Figure 14d, we find that only the 1080p
transcoding task uses the computational resources of more than one vCPU. In summary, the
transcoding workloads can be migrated from dedicated servers to public clouds, provided
that the instances are carefully selected without increasing the broadcast latency.

4.2 CACL Architecture

The livecast broadcasters constantly utilize the streaming service, any interruption will
remarkably affect viewer’s QoE. Besides, crowdsourced live events, in which several broad-
casters simultaneously start live streams, have a more stringent restrictions on broadcast
latency.
To overcome these challenges, our design aims to systematically optimize the following

three steps, as shown in Figure 15: (1) Initial Offloading, for the broadcasters who already
have historical activities, including the duration and schedule information of live streams,
the system assigns an ingesting region to them from public clouds or dedicated servers ac-
cording to their stability index. (2) Ingesting Redirection, based on the broadcasters’ popu-
larity, the system allocates a proper ingesting area and redirects the broadcasters’ workloads;
(3) Transcoding Schedule, the system considers the broadcasters’ resource consumption and
the transcoding capacities in different service regions during the workload migration. Step
2 and 3 have to be designed together, because once a broadcaster’s workload is offloaded to
a certain ingesting region, the corresponding transcoding workload has to be processed in
the same region to reduce the broadcast latency.

33VLC is a free and open source multimedia player and framework, http://www.videolan.org/vlc/index.html
34Each of vCPUs is a hyperthread of an Intel Xeon core

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:14 C. Zhang, J. Liu, and H. Wang

4.3 Initial Offloading

In the CACL framework, the first challenge is how to allocate a proper ingesting server to the
broadcasters at the beginning of live-broadcast. We introduce a stability index (s-index) to
calculate a broadcaster’s degree of stability: an s-index close to zero means the broadcaster
is highly dynamic and close to 1 means it is likely stable and has a regular broadcasting
schedule. The s-index depends on the duration and schedule of a broadcaster’s historical
streams. For one broadcaster b who has activities in recent n days (n ≥ 2), we first divide
the ith day to m equal time slots, each time slot j has a value di,j is a binary variable that

indicates whether b has a live stream in current time slot. As such, we can use SI(b) to check
whether the broadcaster b regularly consumes the bandwidth/computational resources in
recent n days.

SI(b) =

 1
n

∑n
i=2

∑m
j=1 d

(b)
i,j ·d

(b)
i−1,j∑m

j=1 d
(b)
i−1,j

if
∑m

j=1 d
(b)
i−1,j ̸= 0

0 otherwise
(1)

Given the s-index SI(b) of a broadcaster b, a straightforward way to give the offloading
decision is to set a threshold H: if SI(b) ≥ H, broadcaster b will be assigned to the ingesting
servers in dedicated servers, otherwise, to public clouds. Using a firm threshold, however,
suffers from the following drawback: if the dedicated servers have a massive amount of spare
resources, leasing the instances on public clouds to specifically ingest unpopular workloads
will not be cost effective. We solve this problem by updating the value of H to the average
of existing broadcasters’ SI per time slot. Followed by the growth of broadcasters, more
and more stable broadcasters will be ingested into dedicated servers, and the dynamic
broadcasters are offloaded to public clouds. We will evaluate the effectiveness of s-index
in Section 6. In the next section, we first propose the problem formulations of Ingesting
Redirection and Transcoding Schedule, and then propose the cost-effective solution through
the heuristic algorithms.

5 PROBLEM FORMULATION AND SOLUTION

Due to the significance of broadcast latency for viewers’ QoE, there have been lots of
studies on latency minimization for the conventional streaming system, mainly focusing
on the transcoding efficiency inside the transcoding servers [12][14][2]. Nevertheless, the
latency of user’s interaction in crowdsourced livecast systems poses a stringent constraint
in the ingesting and transcoding stages of live streams, not to mention the interactions
in the live event. Considering the crowdsourced live events and latency disparity, we take
the decrease of broadcast latency as our objective and propose a formal description of this
optimization problem. Because the broadcasters are highly dynamic, our design is based on
the broadcaster’s popularity in real-time.

5.1 Basic Model with Ingesting Latency

We first focus on a basic model to optimize the ingesting latency in our CACL framework
cost-effectively. We target on maximizing the reduction of latency, when the ingesting region
is determined. To make the problem easy to discuss, we quantize time into discrete slots,
which may be a few minutes to several hours (e.g., five minutes in our experiment). We use
B(t) to denote the set of broadcasters and E(t) to denote the set of crowdsourced live events
in time slot t. (∀i = 1, 2, · · · ,m, ∀j = 1, 2, · · · ,m, ei ⊆ E(t), |ei| ≥ 1, ei ∩i̸=j ej = ∅, and

∪ei = B(t)). We define R as the set of ingesting areas where a broadcaster can be connected

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:15

to upload live contents and define set W
(t)
r as the bandwidth demand of ingesting area

r. We assume that the instance in public cloud areas are homogeneous and let W denote
the bandwidth capacity of each instance, assuming the intra-area workload allocation is

optimized [20][3][18]. We define L
(t)
(b,r) as the broadcast latency if b selects ingesting area r.

It can be calculated as:

L
(t)
(b,r) = l

(t)
(b,r) + l(t)r + l(r,v) (2)

where l
(t)
(b,r) is the link latency between b and r, l

(t)
r is the ingesting latency that is determined

by the instance type in r, and l(r,v) is the latency between ingesting server to a class of

viewers v. We aim to decrease L
(t)
(b,r) for each broadcaster cost-effectively.

To fulfill this target, we have to find an assignment A(t) that determines the mapping
from B to R in time slot t. We define a utility function U (t)(b, r) that indicates the effects

of L
(t)
(b,r) when b uploads live streaming to ingesting area r. In particular, U (t)(b, r) can be

calculated as follows:

U (t)(b, r) = G(t)(b, r) ·N (t)
b (3)

where N
(t)
b is the number of viewers who watch broadcaster b’s live streaming in time slot

t. G(t)(b, r) refers to the gain of latency decreasing. Without loss of generality, we assume
G(t)(b, r) is a non-negative, strictly concave, and twice continuously differentiable function.
The conventional choice is logarithmic function [11], we define G(t)(b, r) as follows:

G(t)(b, r) = α+ ln(1− βL
(t)
(b,r)) (4)

where α and β are two tunable parameters, which control the function shape. We employ
ln(1− ·) to make sure that the less the broadcast latency, the more the gain.
Based on the previous definitions, let I(r) be the indicator function which takes value 1

when area r belongs to the public cloud and value 0 otherwise. Given the broadcast latency
between b and r, our objective is to find an assignment A that can maximize the minimum
utility F (A(t)) among all broadcasters in a live event.

Maximize
e∈E(t)

F (A(t)) = min
b∈e
r∈R

{U (t)(b, r)} (5)

subject to:
Bandwidth Availability Constraint:

∀r ∈ R,W (t)
r ≤Wr (6)

Bandwidth Cost Constraint:∑
r∈R

W
(t)
r

W
· Costw(r) · I(r) ≤ Kw (7)

where Wr is the bandwidth capacity of ingesting area r. Costw(ri) is the bandwidth price
in the area ri. The bandwidth availability constraint (6) asks that at any given time, the
bandwidth demands have to be satisfied. The total budget constraint (7) asks that at any
given time, the total cost of leasing instances does not surplus total budget Kw.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:16 C. Zhang, J. Liu, and H. Wang

5.2 Enhanced Model with Transcoding Latency

We now extend our model by considering the transcoding workloads in different ingesting
areas. Similar to the definition of the previous problem, the objective is to optimize the

broadcast latency in the ingesting service regions. Yet we re-define L
(t)
(b,r) in the equation (8),

considering the transcoding step with multi-quality streams. For example, Twitch provides
five streaming quality options (Source, High, Medium, Low, and Mobile) to viewers. We
define V as the set of streaming quality.

L
(t)
(b,r,v) = l

(t)
(b,r) + l

(t)
(qb,qv)

+ l(r,v) (8)

where qb is the quality (i.e., bitrate) of b’s source streaming, qv is the quality of target

version v (v ∈ V). l
(t)
(qb,qv)

is the transcoding latency, which can be measured in advance.

We now extend utility function U (t)(b, r) as:

U (t)(b, r) =
∑
v∈V

G(t)(b, r, v) ·N (t)
(b,v) (9)

where N
(t)
(b,v) is the number of viewers who watch b’s v version streaming in this time

slot. This value is initially determined by b’s historical distribution of different versions.
G(t)(b, r, v) means the gain when b select r as the ingesting and transcoding area and is
calculated as follows:

G(t)(b, r, v) = α+ ln(1− βL
(t)
(b,r,v))

= α+ ln(1− β(l
(t)
(b,r) + l

(t)
(qb,qv)

+ l
(t)
(r,v)))

(10)

where l
(t)
(qb,qv)

denotes the transcoding latency. If the original quality qb is no more than the

target quality qv, the transcoding servers only transcode the original RTMP stream to the
HTTP-based stream, using the same resolution and bitrate settings. That is, the transcod-

ing latency l
(t)
(qb,qv)

= l
(t)
(qb,qb)

. The transcoding latency depends on the current computing

capacity of area r and monotonously increases based on both qb and qv [19].
Our objective is extended to a new version as:

Maximize
e∈E(t)

F (A(t)) = min
b∈e
r∈R

{U (t)(b, r)} (11)

subject to:
Previous Constraints: (6), (7)
Computational Availability Constraint:

∀r ∈ R,C(t)
r ≤ Cr (12)

Computational Cost Constraint:∑
r∈R

C
(t)
r

C
· Costc(r) · I(r) ≤ Kc (13)

where C
(t)
r is the computing demand of area r, C denotes the computing capacity of an

instance. Costc(r) is the price of an instance in r in terms of computing capacity. The

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:17

computing availability constraint (12) guarantees that at any given time t, the consump-
tion of computational resources in each transcoding task can be satisfied. The budget con-
straint (13) guarantees that the computational cost is lower than the budget Kc, which we
assume can at least serve all offloading workloads.

5.3 Solution

The objective function (11) has four constraints (6) (7) (12), and (13), the bandwidth
cost and computational cost are not independent due to the pricing criteria of instances
on public clouds. Previous studies on EC2 instances already reveal that the bandwidth
capacity is more than 700Mbps on m3.large instance [8]. Moreover, our measurement results
in Section 4.1 also reveal that generating low-latency live streams will consume a vast
amount of computational resources. If we relax constraints (6) and (7), other constraints
can still work for the optimization objective function (11). Assuming that the capacities
of the different service areas are given, our assignment problem can be transformed into a
0-1 Multiple Knapsack problem with a non-linear objective function, which is known to be
NP-hard [6].
We thus propose a heuristic solution, which includes two steps: scale decrease and resource

allocation. In the first step, as shown in Algorithm 1, we aim to eliminate the redundant
assignments based on the optimization target of maximizing the minimum utility in live
events. We first get the maximum value from the set of the minimum utility of each as-
signment (b, r) in crowdsourced live events (line 1-11). We then remove most parts of the
solution space (line 12-21) to improve the search efficiency. In the second step, as shown in
Algorithm 2, c(b) denotes the computational consumption of transcoding workloads b, we
define the new utility u(t)(b, r) of each broadcaster in all events using the equation (14) and
find the area r∗ in the equation (15), which is derived from [5]. Then, we sort them in de-
creasing order of u(t)(b, r∗), which allows the assignment with the higher resource utilization
being explored first. According to the sorted broadcasters, we assign them into available
service areas.

u(t)(b, r) =
C

(t)
r · U (t)(b, r)

c(b)
(14)

r∗b = argmin
r∈R

{u(t)(b, r)} (15)

6 PERFORMANCE EVALUATION

In this section, we conduct the trace-driven simulations and examine the performance of
our cloud-assisted crowdsourced livecast with the proposed algorithms.

6.1 Efficiency of Resource Allocation

We first evaluate the performance of our resource allocation algorithm using the traces in
the EC2-based measurement (Section 4.1). We used the measured RTTs of each PlanetLab
node to evaluate the proposed algorithms. Because we already have the distribution of
resolution and bitrate according to the Twitch datasets, we can assign the resolution and
bitrate settings to every PlanetLab node as a broadcaster and add it into a live event. In
the meantime, we set different arrival times and leave times to each node based on the
measurement results in the Twitch datasets. We randomly assign 224 PlanetLab nodes
(i.e., broadcasters) into 100 crowdsourced events and set the number of viewers and the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:18 C. Zhang, J. Liu, and H. Wang

Algorithm 1 ScaleDecrease()

1: for live event e ⊆ E do

2: U
(t)
1 ← ∅

3: for region r ∈ R do

4: U
(t)
2 ← ∅

5: for broadcaster b ∈ e do
6: Add U (t)(b, r) into set U

(t)
2 ;

7: end for
8: Add min{U2} into set U

(t)
1 ;

9: end for
10: U

(t)
e ← max{U (t)

1 };
11: end for
12: for live event e ⊆ E do
13: for region r ∈ R do
14: for broadcaster b ∈ e do
15: if (U (t)(b, r) < U

(t)
e) and (isPath(b) > 1) then

16: // isPath(b) returns the number of b’s assignments in A(t)

17: A(t) ← A(t) − (b, r);
// Remove this assignment from A(t)

18: end if
19: end for
20: end for
21: end for

Algorithm 2 ResourceAllocation()

1: for broadcaster’s assignment (b, r) in A(t) do

2: Add u(t)(b, r) into u
(t)
b ;

// Calculate u(t)(b, r) using the equation (14)
3: end for
4: Bsorted ← Sorted broadcasters in descendant order of u(t)(b, r∗b);

// Get r∗b from u
(t)
b according to the equation (15);

5: for broadcaster b ∈ Bsorted do

6: rsorted ← Sorted available area r of b in descendant order of u
(t)
b ;

7: for region r ∈ rsorted do

8: if C
(t)
r − c(b) ≥ 0 then

9: A(t) ← A(t) − (b, ·);
// Remove all assignment of b

10: C
(t)
r ← C

(t)
r + c(b);

11: A(t) ← A(t) + (b, r);
12: end if
13: end for
14: end for
15: return A(t)

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:19

10-1 100 101 102 103

Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

100%
80%
60%
40%
20%

Fig. 16. The impacts of computational capacity

resolution of every broadcaster according to the Twitch-based measurement in Section 3.
We assume that all service areas in dedicated servers and public clouds have the same
computational capacity. The consumption of computational resources is estimated according
to the measurement in [2]. To clearly demonstrate the effectiveness of our solution, we adjust
the computational capacity from 100% to 20%. Figure 16 demonstrates the impacts of
different settings in the computational capacity. From this figure, we can observe that a small
proportion of broadcasters suffers higher RTTs in 80%, 60%, and 40% of computational
capacity. Because 20% of computational capacity is less than the requirement of transcoding
all streams from the broadcasters, we can find a significant rise in the ingesting performance.
As such, our resource allocation algorithm achieves a similar result with a lower amount of
total computational resources.

6.2 Trace-driven Simulation

We then conduct the trace-driven simulation based on our Twitch datasets. We make a few
simplifications in the simulation based on realistic settings: first, as transcoding consumes
most of the computational resources from the instances on public clouds, as shown in our
EC2-based measurement, we use the computational resources as the constraint to decide
the assignment strategy; second, we consider that the EC2 instances are homogeneous and
latency l(r,v) is fixed for a certain quality level of HTTP Live Streaming; third, we ignore
the cost in dedicated servers and focus on the cost when workloads are offloaded into
the instances in public clouds. The following default settings are used in the simulation:
because the broadcast latency35 in Twitch is from 10 to 40 seconds [21], we set α = 1 and

β = 0.011 to make G(t)(·) ∈ [0, 1] when the broadcast latency L
(t)
(·) ∈ [0, 57]. We assume

that the instance type on public clouds is m3.large based on the EC2-based measurement
in Section 4.1. The algorithms are launched every five minutes, which also is the time slot
of crawling data.

35Readers can check your broadcast latency through activating “Show video stats” after clicking Options
button when you watch any live stream from Twitch.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:20 C. Zhang, J. Liu, and H. Wang

0 2 4 6 8 10 12 14 16 18 20 22 24
Hours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
he

 v
al

ue
 o

f
H

Feb03
Feb04
Feb05

(a) The evolution of H

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

Hours

%
 o

f
to

ta
l b

ro
ad

ca
st

er
s

Feb03
Feb04
Feb05

(b) Percentage of broadcasters (EC2)

Fig. 17. The impacts of threshold H

LB-C LB-V CACL
Approach

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 le
as

in
g

co
st

Feb03
Feb04
Feb05

(a) Lease cost of three approaches

0 5 10 15 20 25 30
Days

0

0.3

0.6

0.9

N
or

m
ai

liz
ed

 le
as

in
g

co
st

0

30

60

90

%
 o

f
br

oa
dc

as
te

rs
 o

n
pu

bl
ic

 c
lo

ud

Leasing cost
Percentage of migration

(b) Migration performance(Feb.03-28)

Fig. 18. The performance of proposed solutions

We first study the impacts of stability index SI and threshold H. To accelerate the
simulation, we calculate the stability index for each broadcaster and save the results in
advance. The simulation program can directly acquire the stability index of broadcasters
when they start live streams. According to our design, the parameter n is more than or equal
to 2. The default setting of n is 2 in our trace-driven simulation. We set the initial threshold
H = 0 and use it to classify the new broadcasters without any other strategies. We assume
that the offloading starts when the bandwidth consumption is up to 60% of dedicated
severs. Figure 17 illustrates the evolution of H and its impacts for the public cloud during
three days (Feb 3rd-5th, 2015). From Figure 17a, we observe that the value of H increases
dramatically at the beginning of that day, and then it stabilizes between 0.5 and 0.7. At
the peak traffic time (from 9:00AM to 13:00PM), a vast majority of the broadcasters arrive
at the streaming system; therefore, the value of H experiences a small decrease. However,

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:21

the limitation of H induces that the public cloud only hosts a small number (maximum
6.5%) of broadcasters. Thus, threshold H plays a beneficial role on the offloading process,
but other strategies, i.e., Ingesting Redirection and Transcoding Schedule, are still needed
to reduce the impacts of broadcasters’ dynamics.
With the previous parameter setting of H, we then conduct the extended simulation

to investigate how CACL perform with the real-world data traces. We also propose the
views-based (LB-V) migration and computation-based (LB-C) migration as two baseline
approaches for comparisons. The LB-V approach migrates the unpopular live stream to the
public cloud, considering the number of online viewers. While the LB-C approach migrates
workloads to the dedicated servers when the computational resources are still available.
Figure 18a compares the leasing cost of three workload provisioning approaches: LB-V, LB-
C, and CACL-based approaches in three days. For ease of comparison, the leasing cost in
each day is normalized by the corresponding cost of the LB-C approach. Our CACL-based
approach has the lowest cost, decreasing 16.9%-19.5% of LB-C approach and 17.8%-20.4%
of LB-V approach. Another observation is that the leasing cost on Feb03 is higher than those
of the other two days in all approaches, because the number of broadcasters on Feb03 is the
highest. We also plot the normalized leasing cost and the average percentage of migration
from dedicated servers to public clouds during our whole datasets in Figure 18b, we can
observe that the decreasing cost shows the weekly pattern and our approach provides the
elastic workload provisioning cost-effectively. Moreover, more than 30% of broadcasters are
migrated to public clouds in every day. Our simulation results show that compared with
hosting all broadcasters in dedicated servers, leasing flexible instances on public clouds to
migrate the workload of certain broadcasters is a cost-effective solution.

7 RELATED WORK

Some recent studies have already focused on the crowdsourced livecast service. Kaytoue et
al. [10] introduced the characteristics of Twitch from the perspective of web communities.
To address the transcoding problem for non-professional broadcasters, Aparicio-Pardo et
al. [2] first analyzed the Twitch dataset, and then proposed an optimal model to improve
the viewer’s satisfaction. Shea et al. [16] conducted an empirical performance study and pro-
file the architecture of Twitch. Their work further extended the Twitch framework through
bridging cloud gaming platforms and live streaming services. Essaili et al. [7] explored the
QoE-based uplink resource allocation of user-generated video content. The proposed solu-
tion improves resource utilization in mobile networks. Our work differs from these recent
studies in the following aspects: first, we focus on how to cost-effectively accommodate
the dynamic and irregular workloads in crowdsourced livecast platforms; second, our cloud-
assisted design utilizes the flexible resources from public clouds as a complement, with
minimum change to the existing architecture. This article is extended from our preliminary
conference version [22] in three ways. First, we have analyzed the characteristics of Twitch
broadcasters in different types of devices (i.e., PC/Laptop, PS4, and XBox) and measured
Amazon EC2 instance for transcoding. These motivate our design of the cloud-assisted
crowdsourced livecast. Second, we have added a basic model to explain the problem for-
mulation step by step, which provides the details in our design. In addition, the extended
trace-driven simulation exhibits the efficiency of our proposed algorithm based on the mea-
surement results from Amazon EC2 and PlanetLab nodes.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

39:22 C. Zhang, J. Liu, and H. Wang

On the other hand, cloud transcoding, as a critical component of live streaming, has
emerged in the current industrial market. For example, Amazon provides its online transcod-
ing service “Elastic Transcoder (ETS36)” that works with the master copy of contents in
Amazon S3, but does not support the transcoding tasks of live streaming. Another cloud
platform Bitmovin37 supplies both the on-demand and live transcoding service to customers.
Similar services also include Zencoder38, PandaStream39, EncoderCloud40, etc. There have
been significant researches on cloud-assisted transcoding in recent years. Most of these works
examine the characteristics of on-demand video and design the cloud-assisted transcoding
architectures in the practical scenarios. Li et al. [12] presented “Cloud Transcoder” to
transcode the high resolution and heterogeneous videos from mobile devices. Ma et al. [14]
proposed a scheduling strategy on video transcoding for DASH (Dynamic Adaptive Stream-
ing over HTTP) in a cloud environment through monitoring the workload on each virtual
machines. Different from these works, we deploy ingesting and transcoding services on pub-
lic clouds and optimize the resource allocation for the dynamic broadcasters’ workloads in
the crowdsourced livecast scenario.

8 CONCLUSION AND FUTURE WORK

In this article, we examined the crowdsourced livecast platforms, which provide live stream-
ing service and live chatting service to Internet users. The results from Twitch-based mea-
surement indicated the potential issues therein. In particular, a large number of unpopular
broadcasters consume the valuable dedicated resources continuously. Through Amazon EC2-
based measurement, we analyzed the feasibility of migrating a part of these broadcasters to
public clouds. To accommodate unpredictable workloads and realize the adaptive offloading
in demand, we proposed the Cloud-assisted Crowdsourced Livecast (CACL) for the initial
offloading, as well as the ingesting redirection and transcoding assignment. Our trace-driven
simulations demonstrated the cost-effectiveness of the CACL framework.
We are currently conducting more simulations to evaluate and improve CACL with the

datasets and traces from other cloud providers and crowdsourced livecast services. We
expect to develop a prototype for further verification and evaluation. We are also interested
in exploring other open issues such as designing better resource allocation mechanisms and
extending CACL to multiple cloud platforms, e.g., Microsoft Azure.

REFERENCES

[1] V.K. Adhikari, Yang Guo, Fang Hao, M. Varvello, V. Hilt, M. Steiner, and Zhi-Li Zhang. 2012. Un-
reeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In Proceedings of IEEE
INFOCOM.

[2] Ramon Aparicio-Pardo, Karine Pires, Alberto Blanc, and Gwendal Simon. 2015. Transcoding Live

Adaptive Video Streams at a Massive Scale in the Cloud. In Proceedings of ACM MMSys.
[3] Li Chen, Baochun Li, and Bo Li. 2016. Surviving Failures with Performance-Centric Bandwidth

Allocation in Private Datacenters. In Proceedings of IEEE IC2E.

[4] Xu Cheng, Jiangchuan Liu, and Cameron Dale. 2013. Understanding the Characteristics of Internet
Short Video Sharing: A YouTube-Based Measurement Study. IEEE Transactions on Multimedia 15,
5 (Aug 2013), 1184–1194.

36http://aws.amazon.com/elastictranscoder/
37http://www.bitmovin.net/
38https://zencoder.com/en/
39https://www.pandastream.com/
40http://www.encodercloud.com/

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

Cloud-assisted Crowdsourced Livecast 39:23

[5] C. Cotta and J. M. Troya. 1998. A Hybrid Genetic Algorithm for the 0–1 Multiple Knapsack Problem.
Springer Vienna, Vienna, 250–254.

[6] A. Drexl. 1988. A Simulated Annealing Approach to the Multiconstraint Zero-one Knapsack Problem.
Computing 40, 1 (Jan 1988), 1–8.

[7] Ali El Essaili, Zibin Wang, Eckehard Steinbach, and Liang Zhou. 2015. QoE-Based Cross-Layer Op-
timization for Uplink Video Transmission. ACM Trans. Multimedia Comput. Commun. Appl. 12, 1
(Aug 2015), 2:1–2:22.

[8] Mohammad Hajjat, Ruiqi Liu, Yiyang Chang, TS Eugene Ng, and Sanjay Rao. 2015. Application-

specific Configuration Selection in the Cloud: Impact of Provider Policy and Potential of Systematic
Testing. In Proceedings of IEEE INFOCOM.

[9] Adele Lu Jia, Siqi Shen, Dick H. J. Epema, and Alexandru Iosup. 2016. When Game Becomes Life:
The Creators and Spectators of Online Game Replays and Live Streaming. ACM Trans. Multimedia

Comput. Commun. Appl. 12, 4 (Aug 2016), 47:1–47:24.
[10] Mehdi Kaytoue, Arlei Silva, Löıc Cerf, Wagner Meira, Jr., and Chedy Räıssi. 2012. Watch Me Playing,

I Am a Professional: A First Study on Video Game Live Streaming. In Proceedings of ACM WWW.
[11] F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. 1998. Rate Control for Communication Networks: Shadow

Prices, Proportional Fairness and Stability. Journal of the Operational Research Society 49, 3 (1998),
237–252.

[12] Zhenhua Li, Yan Huang, Gang Liu, FuchenWang, Zhi-Li Zhang, and Yafei Dai. 2012. Cloud Transcoder:

Bridging the Format and Resolution Gap Between Internet Videos and Mobile Devices. In Proceedings
of ACM NOSSDAV.

[13] Zimu Liu, Chuan Wu, Baochun Li, and Shuqiao Zhao. 2009. Why Are Peers Less Stable in Unpopular
P2P Streaming Channels? In NETWORKING 2009. Lecture Notes in Computer Science, Vol. 5550.

274–286.
[14] He Ma, Beomjoo Seo, and Roger Zimmermann. 2014. Dynamic Scheduling on Video Transcoding for

MPEG DASH in the Cloud Environment. In Proceedings of ACM MMSys.
[15] Yipei Niu, Bin Luo, Fangming Liu, Jiangchuan Liu, and Bo Li. 2015. When Hybrid Cloud Meets Flash

Crowd: Towards Cost-Effective Service Provisioning. In Proceedings of IEEE INFOCOM.
[16] Ryan Shea, Di Fu, and Jiangchuan Liu. 2015. Towards Bridging Online Game Playing and Live

Broadcasting: Design and Optimization. In Proceedings of ACM NOSSDAV.
[17] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha, and Mahadev Satyanarayanan.

2013. Scalable Crowd-sourcing of Video from Mobile Devices. In Proceedings of ACM MobiSys.
[18] Feng Wang, Jiangchuan Liu, Minghua Chen, and Haiyang Wang. 2016. Migration Towards Cloud-

Assisted Live Media Streaming. IEEE/ACM Transactions on Networking 24, 1 (Feb 2016), 272–282.
[19] Yu Wu, Chuan Wu, Bo Li, and Francis C.M. Lau. 2013. vSkyConf: Cloud-assisted Multi-party Mobile

Video Conferencing. In Proceedings of ACM SIGCOMM Workshop on MCC.
[20] Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li, and Baochun Li. 2014. iAware: Making Live

Migration of Virtual Machines Interference-Aware in the Cloud. IEEE Trans. Comput. 63, 12 (Dec

2014), 3012–3025.
[21] Cong Zhang and Jiangchuan Liu. 2015. On Crowdsourced Interactive Live Streaming: A Twitch.Tv-

based Measurement Study. In Proceedings of ACM NOSSDAV.
[22] Cong Zhang, Jiangchuan Liu, and Haiyang Wang. 2016. Towards Hybrid Cloud-assisted Crowdsourced

Live Streaming: Measurement and Analysis. In Proceedings of ACM NOSSDAV.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article

39. Publication date: March 2010.

