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Abstract—WiFi-based human activity recognition explores the correlations between body movement and the reflected WiFi signals to

classify different activities. State-of-the-art solutions mostly work on a single WiFi channel and hence are quite sensitive to the quality of

a particular channel. Co-channel interference in an indoor environment can seriously undermine the recognition accuracy. In this paper,

we for the first time explore wideband WiFi information with advanced deep learning toward more accurate and robust activity

recognition. We present a practical Channel Selective Activity Recognition system (CSAR) with Commercial Off-The-Shelf (COTS)

WiFi devices. The key innovation is to actively select available WiFi channels with good quality and seamlessly hop among adjacent

channels to form an extended channel. The wider bandwidth with more subcarriers offers stable information with a higher resolution for

feature extraction. Conventional classification tools, e.g., hidden Markov model and k-nearest neighbors, however, are not only

sensitive to feature distortion but also not smart enough to explore the time-scale correlations from the extracted spectrogram. We

accordingly explore advanced deep learning tools for this application context. We demonstrate an integration of channel selection and

long short term memory network (LSTM), which seamlessly combine the richer time and frequency features for activity recognition. We

have implemented a CSAR prototype using Intel 5300 WiFi cards. Our real-world experiments show that CSAR achieves a stable

recognition accuracy around 95 percent even in crowded wireless environments (compared to 80 percent with state-of-the-art solutions

that highly depend on the quality of the working channel). We have also examined the impact of environments and persons, and the

results reaffirm its robustness.

Index Terms—Human activity recognition, deep learning, LSTM, channel hopping
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1 INTRODUCTION

AS an essential service of Internet of Things (IoT),
human activity recognition has attracted significant

attention in the past decade due to its great value in such
applications as fall detection, health diagnosis and smart
home. A rich set of sensing systems utilize cameras [1],
wearable sensors [2], [3] and RFIDs [4], [5] for activity recog-
nition. Recently, sensing using commodity WiFi devices has
seen its success in this context as well [6], [7], [8], [9], [10],
[11]; given the ubiquity, low cost and touchless operations
of WiFi, it opens a promising venue toward pervasive and
cost-effective activity recognition.

The basic idea for activity recognition using WiFi is that a
human body movement will affect the surrounding WiFi

signals, and the reflected WiFi signals by a particular activ-
ity exhibit distinct characteristics. Through analyzing the
signal patterns, particularly the dynamics of the fine-
grained channel state information (CSI), different activities
can be distinguished. State-of-the-art works have demon-
strated quite good recognition accuracy in experiments
with clean WiFi channels [6], [7], [8], [9], [10], [11]. The real
world WiFi channels however are far from being clean.
Today, such indoor spaces as home, workplace and shop-
ping mall are usually filled up with background wireless
signals, including those from crowded public WiFi access
points (APs), not to mention private APs. Nearby WiFi sig-
nals in the same channel can conflict with each other [12].
Existing systems mostly use a fixed WiFi channel for activ-
ity sensing and CSI collection, and as such their perfor-
mance are sensitive to co-channel interference, which
greatly affects the received signal quality and distorts the
extracted features for recognition. Typical classification
models used in the existing systems, such as hidden Mar-
kov model (HMM) [9] and k-nearest neighbors (kNN) [11],
can be dramatically affected by such distortions when clas-
sifying the activities.

In this paper, we for the first time explore wideband WiFi
information with advanced deep learning toward more
accurate and robust activity recognition. We present a prac-
tical Channel Selective Activity Recognition system (CSAR)
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with Commercial Off-The-Shelf (COTS) WiFi devices. The
key innovation is to constantly evaluate the quality of avail-
able WiFi channels and seamlessly hop among adjacent
channels to form an extended channel. The extended channel,
which has a wider bandwidth with more subcarriers, offers
stable information with a higher resolution for feature
extraction. Conventional classification tools, e.g., HMM and
kNN, however, are not only sensitive to distortion but also
not smart enough to explore the time-scale correlations
from the extracted spectrogram. We explore advanced deep
learning tools, in particular, long short term memory net-
work (LSTM) [13], for this application context. We demon-
strate an integration of channel selection and LSTM, which
seamlessly combine the richer time and frequency features
for activity recognition.

We have implemented CSAR using COTS WiFi devices
(Intel 5300 WiFi cards, in particular). With the CSI tools
developed by Halperin et al. [14], we have collected 3,350
real-world activity traces from volunteers in different envi-
ronments, which, after feature extraction, have been used to
train the learning engine. Our experiments have demon-
strated that CSAR achieves a stable recognition accuracy
around 95 percent even in crowded wireless environments.
With the same setting, the state-of-the-art solution, which
highly depends on the quality of the working channel, has
an accuracy of 80 percent only. We have closely examined
the performance of different system modules. The results
suggest that both channel selection and deep learning
improve the recognition accuracy, and their combination
enables the largest performance gain. We have also exam-
ined the impact of environments and persons, and the
results reaffirm the robustness of CSAR.

The rest of this paper is organized as follows. Section 2
introduces the background of activity recognition and the
overview of our system. Section 3 describes the channel
selection mechanism, including channel quality evaluation,
channel hopping and channel combination. We introduce
the data denoising and activity detection in Section 4, fol-
lowed by the LSTM-based recognition method in Section 5.
The implementation and evaluation are presented in
Section 6. Finally, we list the related works in Section 7 and
conclude the paper in Section 8.

2 BACKGROUND AND SYSTEM OVERVIEW

As shown in Fig. 1, a typical WiFi-based activity recognition
system consists of the following cascaded modules [9], [11]:

� Channel status monitoring and filtering. Given a pair of
WiFi sender and receiver, a human body in between
becomes as a reflector; his/her body movement will
affect the WiFi signals, which can be observed by the
pair. The first step of an activity recognition system
is thus to monitor the raw signals and denoise them
to reveal the changes caused by human activities. A
low-pass filter and/or principal component analysis
(PCA) is commonly used.

� Feature Extraction. Having the denoised signal, fea-
tures related to human activities are to be extracted.
This is typically done by such time-frequency trans-
forms as short-time Fourier transform (STFT) or dis-
crete wavelet transform (DWT), which convert the
signal to a time-frequency dimension spectrogram.
The wave shapes and patterns of different activities
have also been used [8], [10].

� Training and Recognition. An initial training will be
performed using the extracted features and the set of
associated activities. Afterward, the newly extracted
features will be used to identify new activities for
recognition. Such machine learning tools for classifi-
cation as k-nearest neighbors, support vector
machine (SVM) and hidden Markov machine have
been used in this context.

State-of-the-art activity recognition systems using the
flow above have achieved promising results; in the ideal
experimental environment, more than 90 percent accuracy
can be expected [11], [15]. In a real-world environment,
however, the accuracy remains to be improved for practical
use. We now try to identify the issues in each and every
step, which also motivate our design of CSAR.

2.1 Signal Reflection Model for Activity Recognition

Typically, the Channel State Information is used to character-
ize the Channel Frequency Response (CFR) of a communica-
tion link [14], so for most WiFi-based activity recognition
systems. CSI combines the information of the time of delay,
amplitude attenuation, and phase shift for a signal propa-
gated from a sender to a receiver [8]. Given the frequency
domain representation Xðf; tÞ at the sender and Y ðf; tÞ at
the receiver with frequency f and time t, we have

Y ðf; tÞ ¼ Xðf; tÞ � Hðf; tÞ; (1)

where Hðf; tÞ ¼ Y ðf; tÞ=Xðf; tÞ is the CFR of the correspond-
ing wireless channel. Note that channel noise is implicitly
included in it.

Modern WiFi devices with Multi-Input Multi-Output
(MIMO) have multiple transmitting and receiving antennas.
Each transmitting-receiving antenna pair (Tx-Rx) can trans-
mit a signal that consists of multiple subcarriers based on
the OFDM channelization. Most off-the-shelf WiFi cards,
however, report only a subset of the subcarriers, e.g., 30 by
Intel 5300 [14]. As in previous studies [9], we define the
time-series CSI values from a given OFDM subcarrier of
one antenna pair as a CSI stream. Let MT and MR be the
number of transmitting and receiving antennas, respec-
tively, and assume that each WiFi card reports Nsc subcar-
riers, there are a total of Nsc � MT � MR CSI streams. By

Fig. 1. The typical framework of WiFi-based activity recognition systems.
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grouping the CSI streams of all the reported subcarriers of a
transceiver pair, we have a CSI stream group.

In an indoor environment, the paths that the received sig-
nal traverses include both static paths and dynamic paths. The
static paths include the line of sight (LoS) path and the
reflected paths by such static objects as walls, the ceiling
and furnitures, whose lengths do not change in the presence
of human activities; The dynamic paths include those
reflected by the human action, whose lengths change with
the human movement. Hðf; tÞ can be then represented as

Hðf; tÞ ¼ e�j2pDftðHsðfÞ þ
XPd

k¼1

akðf; tÞe�j2pftkðtÞÞ; (2)

where HsðfÞ is the aggregate CFR of the static paths, Pd is
the number of dynamic paths, and akðf; tÞ and tkðtÞ are the
complex channel attenuation and time of flight for path k,
respectively.

Note that most COTS WiFi devices have carrier fre-
quency offset (CFO) between the transmitting signal and
the receiving signals [16], which is e�j2pDft. For each path,
the signal propagation distance is dkðtÞ ¼ ctk ¼ f�tkðtÞ,
where � is the wave length and c is the light speed. It fol-
lows ftkðtÞ ¼ dkðtÞ=� ¼ ðR t

�1 vkðuÞduÞ=�, where vkðuÞ is the
rate of path length change. The CFR power can then be
expressed as

jHðf; tÞj2 ¼ jHsðfÞ þ
XPd

k¼1

akðf; tÞe
�j2p

�

R t

�1 vkðuÞduj2: (3)

The CFR power can be used to mitigate the impact of
CFO [9], [15]. The frequency characteristics of CFR power
are a combination of sinusoids and depend on the signal
path length change rate. The different path length changes
are caused by different human activities, which have
diverse speed. For example, the running activity has a high
reflected path length change rate, showing wave features
with high frequency, while the walking activity has a rela-
tively low path length change rate, showing features with
low frequency. As mentioned above, the feature extraction
and activity recognition methods are then applied to distin-
guish different activities.

2.2 CSAR: Exploring Wider Band and Deep
Learning

Most existing activity recognition systems employ a single
WiFi channel for CSI data collection [8], [9], [10], [11], [15].
The recognition accuracy then highly depends on the quality
of this particular channel. Even if a good quality channel is
selected initially, it can get worse over time. Our experiments
show that the state-of-the-art recognition system only achie-
ves 80 percent accuracy using a channel with poor channel
quality (more details are presented in Fig. 13 and Section 6.4).
Hence, a channel-quality-aware collection in the early stage
can greatly benefit the recognition in the later stage.

Besides the channel quality, the effectiveness of activity
recognition is also affected by the WiFi channel bandwidth.
For 802.11n, the typical bandwidth of each subcarrier is
312.5 KHz when the total channel bandwidth is 20 MHz [17].
Given a certain reported subcarrier number Nsc, the available
CSI values are limited (e.g., even a channel can be divided

into 64 spacing, only 30 available subcarriers are reported
for Intel 5300 NICs). Even under the MIMO mode where
MT � MR antenna pairs can be constructed to obtain multiple
CSI streams, these CSI streams are actually correlated: From
the frequency aspect, different subcarriers have a very small
difference in wavelength given the subcarrier frequency.
For example, the biggest gap between two subcarriers in a
20 MHz channel is about 17 MHz, which is only a 0.3 percent
difference in the 5 GHz band. Such a small difference actually
provides limited information for activity recognition. From
the spatial aspect, the antennas in one wireless card are closely
placed, which often observe similar multipath reflections.
Only if the transceivers communicate on multiple channels
can we obtain truly richer CSI values for activity recognition.

To overcome these limitations, we develop CSAR, a
novel broadband Channel Selective Activity Recognition
system. As illustrated in Fig. 2, CSAR extends the state-of-
the-art activity recognition by incorporating channel quality
evaluation, hopping and combination. It dynamically scans
all the available channels and selects a set of adjacent chan-
nels with the best channel quality. It evaluates the qualities
of selected channels from two aspects, the CSI amplitude
and CSI stability, based on the collected CSI values. The
channel hopping module then drives the transceivers to
synchronously hop among the selected target channels, so
as to obtain the CSI values from multiple channels. Their
information is then combined for activity recognition. To
our best knowledge, CSAR is the first to use information of
multiple channels for activity monitoring with WiFi. It not
only captures more clear and stable features with the best
set of channels, but also constructs a wider extended channel
with much richer information for further processing.

The richer information from the broad frequency and
time domains however also calls for advanced machine
learning beyond such conventional tools as kNN and HMM
for classification. We demonstrate that a powerful deep
learning tool, the long short term memory network [13],
works best toward processing the extracted features from
the time-frequency spectrogram of received signals. LSTM
is effective with a massive scale of data input, i.e., the fine-
grained spectrogram in CSAR. As a recurrent neural net-
work, the current output in LSTM is decided by not only
the current input but also the past states. As illustrated in
Fig. 3, each network represents the processing of a time slot.
The processed states in the previous stage can be stored and
passed to the current stage. Connecting the past and the cur-
rent events, it seamlessly integrates the features from the
time dimension for more comprehensive classifications.

Fig. 2. Channel selection mechanism in CSAR system.
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3 HOPPING-BASED CHANNEL SELECTION AND

COMBINATION

In this section, we first describe how we evaluate the quality
of a WiFi channel and select target channels for activity
monitoring. Then we introduce the channel hopping and
channel combination mechanisms.

3.1 Channel Quality Evaluation and Channel
Selection

To select the best set of channels, we first need to evaluate
the quality of channels. The first important consideration is
CSI amplitude, which directly reflects the signal strength.
Given NT sample time points from Ts to Te, we first collect
all the CSI values across the selected channels within the
time range. For a particular subcarrier sj in channel hi, we
calculate the mean CSI amplitude value Aij as

Aij ¼
P

t AijðtÞ
NT

; t 2 samples in ½Ts; Te�; (4)

where AijðtÞ is the CSI amplitude at time point t.
Since each channel reports Nsc subcarriers, we can calcu-

late the average CSI amplitude As of a selected set of chan-
nels fh1; . . . ; hng as

As ¼
Pn

i¼1

PNsc
j¼1 Aij

Nsc � n
: (5)

Fig. 4 plots the average CSI amplitude of subcarriers in
two channel sets. We can see that the average amplitude of
the good channel always keeps at 15. In contrast, the poor
channel affected by the co-channel interference has a rela-
tively low amplitude at about 12.3. With such a low signal
strength, this channel is hardly useful for feature extraction
and activity recognition.

Besides the CSI amplitude, the stability of CSI is also an
important consideration. We observe that in some channels
the received signals have explicit impulse noises or errors,
which are hard to eliminate by conventional denoise

mechanisms. Fig. 5 shows the CSI amplitude of 30 subcar-
riers of different channels in a time period in the same envi-
ronment. We can observe that different subcarriers show
different amplitude levels, e.g., the amplitude from 10th
subcarrier to 16th subcarrier is high (indicated with brighter
yellow color) while the amplitude from 1st subcarrier to
10th subcarrier is pretty low (indicated as darker blue). In
Fig. 5a, the CSI values of every subcarrier are clean with
good stability, offering reliable information for later recog-
nition. On the contrary, the channel in Fig. 5c is very unsta-
ble, with impulse noises across all the 30 subcarriers, which
can cause uncertain result in the recognition stage. Fig. 5b
shows another channel with only one impulse noise. Such
noise can be occasional and the corresponding channel is
also acceptable.

CSAR considers both CSI amplitude and CSI stability as
the quality indicators for a channel. Among these two met-
rics, CSI stability plays a more important role. The impulse
noises in an unstable channel can generate abnormal high-
energy frequency components in the subsequent spectrum
analysis, which will shelter the normal features of activities
and seriously undermine the recognition accuracy. For this
reason, CSAR first selects those channel sets with the least
impulse noises. When there are multiple channel sets that
have the same CSI stability, CSAR then chooses the one
with the highest average CSI amplitude as the final channel
set for activity monitoring.

3.2 Channel Hopping and Combination

Once the channels are selected, CSAR circularly hops
among these channels after sending one packet. Each packet
contains the next hopping channel so that the transceivers

Fig. 3. The architecture of LSTM network.

Fig. 4. The comparison of CSI values from two channels with different
qualities.

Fig. 5. CSI subcarriers of different channels with different quality.
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can switch to the same destination channel. We have devel-
oped a complete channel hopping mechanism to guarantee
the synchronous hopping between the transceivers. The
hopping time from one channel to another channel is about
2 ms. With a sampling rate of 3,000 Hz using COTS WiFi
devices, the system can at most use 3 channels for hopping,
so that the sampling rate for each channel is enough for rec-
ognizing the common activities (e.g., running, falling down
and waving hand).

According to the IEEE 802.11 standard, in a 20 MHz
bandwidth channel, the occupied bandwidth is 16.6 MHz in
total and the remaining 3.4 MHz is unused to avoid interfer-
ence. Even there is a gap between subcarriers of two adja-
cent channel, we find that the bandwidth shift (3.4 MHz) is
very small compared to the carrier frequency (in 5 GHz fre-
quency band), which is only 0.07 percent and is even one-
fifth of the gap between the first and last subcarrier in a
channel. Such a small difference has a little impact on the
channel combination. Thus, given the hopping channel list
fh1; . . . ; hng, for each hopping round, we stitch the corre-
sponding CSI stream group collected from the same
antenna pair together as ~h. In this way, we combine these
adjacent channels together as an extended channel with
higher bandwidth. Each CSI stream group of such channel
has n � Nsc subcarriers.

4 DATA DENOISING AND ACTIVITY DETECTION

4.1 CSI Denoising

With the channel hopping and combination, CSAR can
obtain the raw CSI values of the extended channel ~h. For
this extended channel, we have n � Nsc � MT � MR CSI
streams, where n is the actual number of measured physical
channels. The raw CSI streams collected from COTS devi-
ces, however, cannot be directly used for processing, for
two reasons. First, each CSI stream contains too much noise,
especially the high-frequency noise not related to human
activities (see Fig. 6a for a sample segment of the raw CSI
stream). The major noise of CSI streams comes from the
internal state transitions of the transceivers, such as trans-
mission power change and rate adaptation. Second, the raw
collected data includes large scales of CSI values from many
antenna pairs and different channels, which add a signifi-
cant overhead to the later learning module. Even though
the CSI streams in a CSI stream group have a slight differ-
ence from each other, they are actually correlated in spatial

domain and frequency domain. Thus these CSI streams con-
tain much similar information.

To address these issues, CSAR first utilizes a low-pass fil-
ter for CSI denoising. Based on the signal reflection model
described in Section 2.1, the CSI amplitude changes caused
by common human activities are mostly lower than 100 Hz.
Hence, we only need to reserve those low-frequency signals.
Before filtering, each CSI stream substracts the mean value
to remove the direct-current component. Then we apply a
low-pass filter (i.e., the Butterworth filter) to all CSI streams.
Fig. 6b describes the same CSI stream in Fig. 6a after passing
the low-pass filter with a cut-off frequency of 100 Hz. We
can find that the filtered CSI stream contains much less
noise but still not so smooth compared to the raw signal.

CSAR then uses PCA for data dimensionality reduction
and extracts the common characteristics from multiple
channels and subcarriers. In particular, we use 2 antennas
for sending, 3 antennas for receiving, and set circular chan-
nel hopping number as 3. Given the reported subcarrier
number as 30, we then have 540 dimensions for the signals.
After PCA processing, we obtain a set of principal compo-
nents. Given that the first principal component contains
much of the noises [9], we calculate the average of the next
three components as the representative component
(denoted as p-stream) of the received signal. As illustrated
in Fig. 6c, the processed p-stream contains little noise and
extracts the wave features clearly.

4.2 Activity Detection

Before classifying activities from the denoised data, we first
need to detect the start and the end of an activity. Given
that the activity affects signal paths, the variance of the CSI
amplitude during an activity is generally much higher than
that with no activity. Such a high variance should last for a
period, i.e., the time duration of the activity.

Based on such observations, we use the denoised p-
stream of CSI for activity detection. CSAR obtains the
denoised p-stream pb and pa when the target person is sta-
tionary and is active, respectively. Their average variances
of a short time period are then calculated as db and da. We
set an activity indication threshold as uH ¼ ðda þ dbÞ=2.
Besides, we also set a threshold uT , representing the mini-
mum time duration that an activity should have. Thus we
have the following activity detection strategy: 1) When the
current state is no activity, if the p-stream of the signal starts
having a variance over uH with a duration over uT , then we

Fig. 6. Denoising results of the original CSI signals. We can observe that the original signal contains much high-frequency noise. The signal through
low-pass filter is still not smooth. After PCA processing, the signal conserves most of common features and is smooth for processing.
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change the state of the following period as in activity and the
corresponding time marks the start of the activity. 2) When
the current state is in activity, if the p-stream of the signal
starts having a variance below uH with a duration over uT ,
the state is then changed to no activity and the correspond-
ing time is the end of the activity.

Fig. 7 shows the p-stream of the signals of a hand waving
activity. We can observe that the signal has two obvious
parts (as highlighted in the rectangles) with strong wave
variance compared to other parts. In these two parts, the
average variance is far beyond the threshold uH with time
duration exceeding uT . From an empirical study on our
dataset, we set the time threshold uT as 200 ms so that we
can detect 98 percent of activities in our dataset. The detec-
tion mechanism can adapt to the environment changes and
different activities by automatically adjusting the variance
threshold dH . CSAR calculates the current variance of an
activity and updates the threshold so that the threshold can
fit different activities.

5 DEEP-LEARNING-BASED ACTIVITY RECOGNITION

We now introduce the last piece of activity recognition, the
learning model, starting from the feature extraction for the
learning engine in CSAR.

5.1 Feature Extraction

To feed a learning engine to classify different activities from
the processed CSI values, we first need to extract the repre-
sentative features. Although the p-stream compresses the
data dimension and reveals the common wave patterns
from the correlated CSI streams, it only reflects the time and
amplitude of a waveform, whereas the frequency domain

characteristics remain hidden. As such, it can hardly be
directly used to classify activities. For example, running
and walking can exhibit quite similar waveforms though
running contains much higher frequencies.

CSAR chooses Discrete Wavelet Transform to extract the
time-frequency features from the p-stream as in previous
studies [7], [9], [18]. Extracting different frequency range at
different time scale resolutions, DWT achieves a great
trade-off between the frequency-scale and the time-scale
resolution. Specifically, it groups the frequency component
at different levels. In the high-frequency part, it provides
high time resolution to distinguish subtle changes in a short
time, and in the low-frequency part, it provides high fre-
quency resolution to achieve a fine-grained classification for
low-speed activities.

In our system, the sampling rate for each physical chan-
nel is about 200 Hz given the channel hopping overhead.
We choose the frequency scale level number to be 8, so that
the extracted frequency ranges from 0.4 to 100 Hz (the first
level is from 50 to 100 Hz, and the last level is from about
0.4 to 0.8 Hz). Such a frequency range is enough to cover
common activities. Empirically, we group the value of every
20 ms of the DWT results to reduce the time-scale dimen-
sions. For every 1 second CSI data, our extracted feature
contains 8 frequency-scale dimensions and 50 time-scale
dimensions. Fig. 8 shows the extracted DWT spectrograms
of typical activities. We can observe that the spectrogram of
walking in Fig. 8a has an obvious high energy part at level 2,
corresponding to 25 to 50 Hz (speed from 0.75 to 1.5 m/s).
On the other hand, in Fig. 8b, the spectrogram of falling
presents a unique pattern where the frequency first incre-
ases to a high level and then suddenly drops to a low level.
This feature matches well with the movement of falling
activity, i.e., falling fast from standing posture to lying
down posture and then keeping motionless for a while.
Fig. 8c also shows the spectrogram of two consecutive push-
ing forward activities, where the two crests represent the
two pushing motions.

5.2 Why LSTM (Long Short Term Memory)

Existing WiFi-based activity recognition systems mostly use
conventional learning models such as hidden Markov
model (HMM) [9] and k-nearest neighbours (kNN) [11] to
process the extracted features. These models, however, face
challenges when processing the spectrogram data from our
channel hopping and combination.

Fig. 7. An example to illustrate the detection process for the waving hand
activity. The boxed part are detected as activity parts.

Fig. 8. Comparison of the DWT spectrograms of different activities.
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First, as discussed, the DWT spectrograms of different
activities present different features in both frequency
dimensions and time dimensions. We need to comprehen-
sively consider the spectrogram for a period of time rather
than just a time slot. The kNN model [11] largely ignores
the time dimension. The HMM model [9], though considers
the time, is based on a strong assumption that the feature
vectors of an activity are subject to a finite state machine,
which changes state once a time.

Second, with channel hopping and combination, the data
from the early stages of our CSAR contain much richer and
fine-grained information. Existing works with the kNN
model use only 10 features per virtual sample for classifica-
tion [11]; those using the HMM model rely on coarse-
grained data, e.g., 200 ms time interval [9]. They also require
intensive parameter settings that are often experience-
based, e.g, difference of each energy level in the DWT spec-
trogram and initial parameter estimation such as the state
distribution and state transition matrix. These become quite
difficult when the data size grows.

Third, different activities usually last various length of
time duration, e.g., waving hand often lasts less than 1 s
while walking usually takes more than 1 s. Even for the
same activity, different people can also have different time
durations. The kNN model needs to specify a fixed length
of input, and HMM lacks flexibility in this aspect, too.

To address these challenges, CSAR uses a Long Short
Term Memory network [13] to classify different activities
from the extracted features. LSTM is an advanced deep arti-
ficial neural network, which has recently seen success in
such real-world applications as hand-writing recognition,
speech recognition and video recognition. Different from
the convolutional neural network (CNN) that mainly exploits
the spatial correlations of inputs, LSTM is designed to clas-
sify and predict the inherent relationships of time series. It
combines the current inputs and the past states stored in the
memory cell to exploit the time scale relationships and
achieves a comprehensive classification. As an improved
architecture of the recurrent neural network (RNN), it is able
to learn long-term dependencies, aligning well in our activ-
ity recognition context.

Specifically, LSTM supports fine-grained data input and
does not need initial state estimation. To build up our net-
work model, we just need to construct the network architec-
ture and specify how each layer is connected. Then we
input the extracted features from DWT as described in
Section 5.1. It also supports various length of input in time
dimensions and can integrate such inputs together.

5.3 Building LSTM Model

In CSAR system, we build a typical four-layer LSTM net-
work to classify different activities, as shown in Fig. 3. The
first layer is the input layer, consisting of 8 input nodes,
which corresponds to the number of frequency levels in the
DWT processing. The next layer is the LSTM layer, consist-
ing of 100 LSTM nodes. To fully explore the hidden time
series features in the DWT spectrogram, here we use more
than 10 times of LSTM nodes compared to the input layer.
As is observed from the figure, the LSTM layer has a direct
flow connecting to itself. Therefore, the decision of this net-
work at time t is the integrated results of both the current

input at time t and the previous temporal state at time t � 1.
The key of LSTM is the cell state with multiple control gates.
These gates optionally let information pass through, decid-
ing which information can be passed to the next time and
which information should be blocked. With such control
ability, LSTM can remember the past information even
long-term events and combine them with the current input
for a comprehensive classification.

The third layer is a fully connected layer with 200 nodes.
Each node is fully connected to the previous LSTM layer.
We use ReLU as the activation function instead of sigmoid
to reduce the likelihood of vanishing gradient. And to pre-
vent the overfitting in the training process, we randomly
ignore nodes in the LSTM layer and the fully connected
layer, and set the dropout rate as 0.5 in the experiment. The
last layer is an output layer with 8 nodes, corresponding to
the classification category. In the last layer, we calculate
the cross-entropy of every activity and choose the one
with the largest likelihood as the classification category. We
set the maximum time length of the input as 2 s in the
LSTM model based on the observation that all the activities
in our dataset last less than 2 s.

6 IMPLEMENTATION AND EVALUATION

In this section, we introduce how we implement CSAR with
COTS WiFi devices and evaluate its performance with
diverse configurations.

6.1 Prototype Implementation

We implemented CSAR on COTS hardware, in particular,
Intel 5300 Wireless Card with three antennas. Our prototype
implementation consists of two DELL latitude D820 laptops
installed Ubuntu system with Linux 4.2 kernel as the trans-
ceivers, each equipped with an Intel 5300 Wireless Card.
For each laptop, we also install the CSI tools developed by
Halperin et al. [14] to collect the CSI reported by the wire-
less cards.

We implemented the channel hopping mechanism based
on the iwlwifi driver and Loss Of Radio CONnectivity (LOR-
CON) project [19], which is an open source IEEE 802.11 packet
injection library. We modify the library so that CSAR can
achieve fine-grained channel hopping and packet handling in
microsecond granularity. A key challenge for CSAR is to build
a complete communication mechanism that enables the trans-
ceivers to always work on the same channel synchronously.
Given the unreliable wireless environment, a transmitted
packet in one particular channel can be lost. The transceivers
will then lose connection if they don’t know in which channel
the other transceiver stays. To address this problem, we have
designed an acknowledgement and retransmission mecha-
nism to guarantee the synchronous transmission. For conve-
nience, we call one transmitter as the client and the other as
the server. The client first sends a packet indicating the next
channel to hop to and meanwhile starts a timer. The server
replies with a packet as acknowledgement and hops to the tar-
get channel also with a timer started. When the acknowledge-
ment packet is received, the client then hops to the same
channel as the server for next sending. Once any packet is
lost, both the client and server turn to the default channel after
a given time-out duration.
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In our experiment, we use two antennas in the sender and
three antennas in the receiver (i.e., MT ¼ 2 and MR ¼ 3). The
transceivers in our system work and hop in the 5 GHz fre-
quency band rather than 2.4 GHz frequency band, with the
channel bandwidth of 20 MHz. This is because, in the 2.4 GHz
frequency band, every channel has significant overlap with
its neighboring channels, so that the system can only hop
between some particular channels with no interference.
Instead, the 5 GHz frequency band has much more effective
channels for hopping. Considering the channel hopping time
(about 2 ms in our measurement), we set the channel hopping
number as 3 so that each channel has a sampling rate at
200 Hz, which is enough for recognizing common activities.

The activity movement speed perceived by different
transceiver pairs can be slightly different. This is because
the reflected signal is determined by both the locations and
orientations of the transceiver pairs as relative to the target
human [11]. Although the experiments involve only one
transceiver pair, our CSAR can be easily scaled to multiple
transceiver pairs for human activity recognition. With mul-
tiple transceivers, the activity features can be captured from
different orientations for recognition.

It is also worth noting that CSAR requires channel hop-
ping in the monitoring mode to select channels with good
quality, and hence unable to reuse the data communication
channels. However, since the monitoring process is inde-
pendent, it will not affect the normal data communication
and device (the laptop) usage. We just need to install
another wireless card or use the wired cable for net service.

6.2 Evaluation Setup

In our experiment, we collect a total of 3,350 training sam-
ples by asking six volunteers to perform eight different
activities in a pre-configured environment (a lab as illus-
trated in Fig. 9a). These volunteers are both undergraduate
and graduate students varying in genders, heights and
weights. The training samples are collected in the lab of size
12.5 m � 9 m, with the activity performing location being
labeled as a star. The names and sample numbers for each

activity is described in Table 1. When the volunteers begin
to perform activities, the body movement will affect the
reflected signals and we therefore can collect the corre-
sponding sampling data for different activities. We then
evaluate the recognition accuracy of CSAR in different
environments, including the lab, a large lobby of size
25 m � 8 m (as shown in Fig. 9c), and a small office of size
18 m2 (as shown in Fig. 9b). The testing locations are labeled
in the corresponding figures as the triangle shapes.

We conduct the deep learning process using a testbed
equipped with a Nvidia Geforce GTX 1060 6GB Xtreme Gam-
ing VR Ready Graphics Card. The total training time is about
12 minutes. Though the training time is slightly longer than
such traditional methods as Hidden Markov Model [9], the
training process is one-off and the time cost is negligible.
Given the emerging online deep learning approaches [20], we
also plan to implement the online deep-learning-based recog-
nition in the future.

6.3 Sensitivity of Activity Detection

We first evaluate the activity detection in CSAR, in particular,
the detection distance, which reflects the sensitivity of the
detection mechanism. We treat a successful detection as cor-
rectly detecting both the start and the end of an activity. Fig. 10
plots the detection accuracy of two typical activities in the
lobby where the configuration is illustrated in Fig. 9c. For each
distance, we measured 20 samples and the test locations were
randomly selected with the same distance to ensuring the gen-
erality. The general detection distance of walking is much far-
ther than hand waving. Such a difference is mainly due to the
different reflection areas: walking represents the torso-based
activity that the reflected signal can be captured more clearly;
hand waving represents the gesture-based activity generating

Fig. 9. The floor plans of different testing environments.

TABLE 1
Activity Dataset and the Collected Samples

Activity # Samples Activity # Samples

Walking (Wa) 470 Picking (Pk) 290
Falling (Fa) 220 Pushing (Ps) 540
Running (Rn) 440 Waving (Wv) 580
Sitting (St) 230 Boxing (Bx) 580

Fig. 10. The detection distance of the walking and the waving hand activ-
ities. Walking is a torso-based activity that has a large reflection area,
while waving is a gesture-based activity that has a small reflection area.
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weaker reflected signals. On the other hand, our channel-selec-
tion-based detection method reveals a higher detection accu-
racy than that without the channel selection mechanism. For
walking, our method can achieve an accuracy of 90 percent
even at a distance of 14 m, while without channel selection, the
accuracy falls quickly to only 60 percent at this distance. The
result is same when detection the gesture-based activity with
much smaller movement. This indicates that compared to the
conventional activity approach, CSAR is able to utilize a better
channel for activity detection, achieving more sensitive and
reliable detection.

6.4 Accuracy of Activity Classification

We next evaluate the performance of CSAR for activity clas-
sification. To achieve a comprehensive analysis, we employ
the following metrics widely used in statistics: 1) False posi-
tive rate (FPR), indicating the ratio of selecting negative
samples as the positive samples, 2) Precision (PR), defined
as TP

TPþFP , where TP (true positive) means the positive sam-
ples that are correctly predicted as the actual activities, and
3) Recall (RE), defined as TP

TPþFN where FN is the positive
samples that are falsely labelled as other activities. Fig. 11
shows the statistical results of the three metrics for the 8
activities using our deep learning and channel selection
methods. We can observe that the false positive rates of all
activities are below 10 percent. The walking and running
activities have the lowest FPR, indicating that their features
are very distinguishable. CSAR achieves an average preci-
sion of 94 percent with a standard deviation of 3 percent,
which means that our system can correctly classify the
majority of corresponding activities. The recall shows a
large variance among different activities, e.g., the running
activity achieves about 99 percent while the picking up
activity is only 90 percent. Yet the average recall still keeps

a high level at 95 percent. The statistical results indicate that
CSAR has a complete and accurate recognition performance
over all activities.

To explore a fine-grained performance, we show the con-
fusion matrix across the 8 activities in Fig. 12, where each
element gives the ratio that we classify the actual activity
(labeled by the corresponding row) to the predicted activity
(labeled by the corresponding column). We can see that the
correct classification ratio of each activity is more than 93
percent, indicating that CSAR achieves a high and stable
classification accuracy over all activities. The falling activity
achieves a 100 percent classification accuracy, as its features
are quite distinguished from others. The sitting down activ-
ity and the picking up activity may be easily misclassified
into each other as they are indeed similar in nature.

We also compare our method with the HMM model in
CARM [9], which is served as the baseline. To understand
the impact of different modules in CSAR, we consider
three combinations, i.e., deep learning with channel selec-
tion (DL+CS), deep learning only (DL), and HMM with
channel selection (HMM+CS). For DL only and the basic
HMM, since they can not switch channels themselves, we
randomly select five channels in the testing environment
and use the average recognition accuracy of such channels
as the result.

Fig. 13 shows the comparison of recognition accuracy
between our CSAR (i.e., DL+CS) and others. DL+CS
achieves an average accuracy of 95 percent, revealing an
obvious advantage over the basic HMM, which has an 80
percent accuracy only. When HMM is enhanced with CS,
the gap shrinks to 4 percent, showing the strength of chan-
nel selection. On the other hand, comparing DL with HMM
(both with no channel selection), the difference in terms of
recognition accuracy becomes 8 percent. This suggests that
the advanced deep learning method better exploits the
inherent relationship within the time series and frequency
components of the extracted features. In short, both DL and
CS play important roles, and their combination works the
best for recognition than they are used individually.

6.5 Impact of Environment and People

To examine the impact of different environments, we evalu-
ate the activity recognition accuracy of CSAR in the lab,
lobby and office, respectively, as shown in Fig. 14. The lab is
a trained environment while the lobby and the office are
untrained environments. The average recognition accura-
cies in the lab, lobby and office are 95, 97 and 88 percent,
respectively. The accuracies for both lab and lobby are quite

Fig. 11. Precision (PR), Recall (RE) and false positive rate (FPR) of all
activities.

Fig. 12. Confusion matrix of activity recognition.

Fig. 13. Recognition accuracy using different models.
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high. This is because they are relatively open spaces with
less multipath effect, and hence less impact on feature
extraction. The compact office space incurs much stronger
multipath; yet the accuracy is still acceptable, suggesting
that CSAR is robust to environment change.

We further examine the impact of human diversity on
activity recognition. We test the activity recognition accuracy
for 6 volunteers at three random locations in the lab. Three of
them (volunteer 1-3) participated in the training process and
the other three (volunteer 4-6) are new for testing. Given the
differences in speeds, ranges and styles, the average accuracy
becomes diverse over different people. Fig. 15 shows the box-
plot of the average activity recognition accuracy for these vol-
unteers in the lab. We can observe that the overall accuracy
for the 6 volunteers still stays in a high level with CSAR. The
average accuracy of most volunteers are higher than 90 per-
cent and only the 6th volunteer falls below 90 percent. The rec-
ognition accuracy does not show an obvious difference
between trained volunteers and new volunteers. This result
indicates that CSAR is robust to different people and can
achieve a high and stable recognition accuracy.

7 RELATED WORK

WiFi-based human activity recognition has attracted
remarkable attention in recent years. Previous works exam-
ine the diverse impact of human activities on transmitted
signals to distinguish different activities. Based on the usage
of sensing devices, these activity recognition systems can be
generally divided into two categories, i.e., specialized-hard-
ware-based systems and COTS-device-based systems. The
former utilizes such advanced devices as custom analog cir-
cuits and specialized antennas with software defined radios.
In contrast, the COTS-device-based systems rely on com-
modity devices such as common wireless cards, laptops
and normal antennas to capture the wireless signal changes.
They are readily available but, compared to specialized
hardware, face more challenges in accurately capturing sig-
nal changes during human activities.

Specialized-Hardware-Based System. Specialized hardware
with software defined radios has been used to capture fine-
grained signal metrics for activity recognition and other
related applications. Pu et al. [6] developed a whole-home
gesture recognition system that used USRP to capture the
micro-level Doppler shifts in wireless signals. With two wire-
less sources in an indoor environment, it achieves an average
of 94 percent recognition accuracy. Kellogg et al. [21] utilized
a special low-power analog envelope-detection circuit to

obtain the strength of received signals. By profiling the wave
patterns caused by different gestures, AllSee achieves 97 per-
cent accuracy over eight gestures within a very short range
(less than 2.5 feet). Huang et al. [22] analyzed the reflected
wireless signals to construct images of objects and humans.
Adib et al. [23] utilized FMCW radios to detect the micro-
movement of breathing and heart rate with a median accuracy
of 99 percent. There have also been recent works on special-
ized hardware for human tracking [24], [25], [26].

COTS-Device-Based System. Solutions in this category have
to accommodate the limitations imposed by COTS devices,
including the limited and coarse-grained channel informa-
tion that can be captured. In this context, CSI has been widely
used. Wang et al. [8] explored the CSI wave pattern changes
caused by human falling and analyzed such different pat-
terns to detect the human falling. Wang et al. [10] proposed
to recognize both in-home activities and walking movements
by profiling the CSI changes across multiple subcarriers.
Wang et al. [9] built up a novel model that correlates the
human movement velocity and the CSI dynamics, and lever-
ages the frequency level difference to distinguish different
activities. Virmani and Shahzad [11] proposed a gesture rec-
ognition system with a translate function that can automati-
cally estimate the target user’s location and then classify
the different gestures. Besides human activity recognition,
COTS-WiFi-based sensing technology has also been widely
used in many scenarios, such as recognizing the in-air draw-
ing [27], hearing a predefined of spoken words [28], recog-
nizing the keyboard typing [18], recognizing the dancing
steps [29], passive tracking [30], [31] and multi-target
localization [32].

Using COTS wireless devices for activity recognition has
its inherent benefit in terms of cost-effectiveness and com-
patibility. Our interest in this paper also lies in this direc-
tion. We however reveal the challenges of state-of-the-art
single-channel-based solutions in a dynamic real-world
environment, and address them by a channel selective activ-
ity recognition system integrating the advanced LSTM net-
work model to achieve accurate and reliable recognition.

8 CONCLUSION

In this paper, we proposed CSAR, a deep learning-based
channel selective activity recognition system using COTS
WiFi devices. The key novelty lies in its channel selection
and combination mechanism, which automatically detects
the quality of available channels and hops among a set of

Fig. 14. Recognition accuracy in different environments.

Fig. 15. Average recognition accuracy for different people.
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adjacent channels. This effectively constructs an extended
wideband channel, offering much richer and more stable
channel status information for activity recognition. CSAR
then employed an LSTM network for fine-grained activity
recognition, which seamlessly integrates both the time
dimension and the frequency dimension information. We
have implemented CSAR in commodity WiFi devices and
our extensive experiments showed that CSAR can achieve
an average 95 percent recognition accuracy even in a
crowded wireless environment.
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