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Abstract—Recently, datacenter carbon emission has become an emerging concern for the cloud service providers. Previous works

are limited on cutting down the power consumption of datacenters to defuse such a concern. In this paper, we show how the spatial and

temporal variabilities of the electricity carbon footprint can be fully exploited to further green the cloud running on top of geographically

distributed datacenters. Specifically, we first verify that electricity cost minimization conflicts with carbon emission minimization, based

on an empirical study of several representative geo-distributed cloud services. We then jointly consider the electricity cost, service level

agreement (SLA) requirement, and emission reduction budget. To navigate such a three-way tradeoff, we take advantage of Lyapunov

optimization techniques to design and analyze a carbon-aware control framework, which makes online decisions on geographical load

balancing, capacity right-sizing, and server speed scaling. Results from rigorous mathematical analysis and real-world trace-driven

evaluation demonstrate the effectiveness of our framework in reducing both electricity cost and carbon emission.

Index Terms—Carbon reduction, load balancing, capacity right-sizing, geo-distributed datacenters, three-way tradeoff, online control
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1 INTRODUCTION

GEOGRAPHICALLY distributed datacenters [1] that host
cloud applications such as web search, social networks

and video streaming have quickly ascended to the spotlight
in terms of the enormous power demand and carbon emis-
sion. It is estimated that datacenters will consume about
8 percent of the worldwide electricity by 2020, and produce
2:6 percent of the global carbon emission [2]. As one of the

leading cloud service providers, Google emitted 1:68� 106

tons of carbon in 2011 [3], 15:86 percent more than the emis-
sion of 2010, which is on par with the carbon emission of
the United Nations headquarter [4].

Intuitively, carbon emission may be reduced by cutting
down the energy consumption [5], [6], [7], [8], [9], [10], [11].
Existing approaches toward this direction fall into the fol-
lowing three categories at different spatial levels: Geographi-
cal load balancing at the geographic level, which utilizes the
heterogeneity of energy/cooling efficiency of geo-distrib-
uted datacenters, and distributes more workload to data-
centers with higher energy/cooling efficiency, thus to
reduce the cooling power [11]. Capacity right-sizing at the
datacenter level, which dynamically turns off redundant

servers when demand decreases, thus to eliminate the
power consumption of idle servers [8]. Finally, server speed
scaling at the server level, which adjusts the CPU frequency
based on the amount of workload served, thus to reduce the
running power of the server [10].

While these pioneer works are effective in reducing
energy consumption and cost, the savings do not necessar-
ily translate into carbon emission reduction, particularly for
geographically distributed datacenters. As illustrated in
Fig. 1, the electricity carbon footprint exhibits strong spatial
and temporal variability: different regions generate electric-
ity with their respective fuel mixes, and have different car-
bon footprints. The time-varying fuel mix also leads to
temporal differences in carbon footprint even for the same
location. Therefore, by routing more requests to Alberta
that has colder weather and thus higher cooling efficiency,
the total energy consumption can be reduced. However, the
total carbon emission would increase since Alberta has a
high carbon emission rate. Our empirical study in the next
section further demonstrates that greener energy is gener-
ally more expensive, and hence there is a tradeoff between
electricity cost and carbon emission minimization. Specifi-
cally, for real world geo-distributed cloud platforms, e.g.,
Google, Amazon and Microsoft, electricity cost minimiza-
tion often conflicts with carbon emission minimization.

The notion of carbon tax has been explored for accommo-
dating such variability and diversity, and it has been found
that 10 percent carbon emission reduction can be achieved
without extra cost [2]. Unfortunately, current carbon tax
remains low to effectively motivate providers to reduce
carbon output, and the carbon tax itself is only one of the
three key policies to inhibit carbon emission. The other two
policies, “Cap and Trade” and “Baseline and Credit” that
enforce a carbon source to operate within an allowance or
budget [12], are yet to be explored. Moreover, carbon neu-
trality (i.e., reducing the net carbon footprint to zero) has
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been increasingly set as a strategic goal by companies such
as Google, Microsoft and Facebook, which is generally
achieved by offsetting the carbon footprint with the pur-
chased renewable energy certificates (RECs). Given a bud-
get on RECs, the carbon emission needs to be capped. The
challenge toward this target however is enormous: given
limited prior knowledge of the bursty workload, how can a
cloud operator make dynamic decisions to minimize the
energy cost, while maintaining the long-term emission bud-
get? Since the future information is hard to be accurately
predicted in practice, an online algorithm that can make
dynamic decisions based on the historical and current infor-
mation is needed.

In this paper, we provide strong evidence that the electric-
ity cost, service level agreement (SLA) requirement, and
emission reduction budget must be jointly considered
towards reducing carbon emission for geographically dis-
tributed datacenters. We present a coherent carbon-aware
online control framework that navigates such a three-way
tradeoff. We rigorously design and analyze the control
mechanism using Lyapunov optimization [13], [14], which
effectively incorporates the long-term carbon emission con-
straints into real-time optimization. Our framework dynami-
cally makes decisions across different levels for geographical
load balancing, capacity right-sizing, and server speed scal-
ing. Specifically, in the service level, we determine how to
distribute user requests to appropriate datacenters according
to the current electricity prices and carbon emission rates; in
the datacenter level, we determine howmany servers to acti-
vate at each datacenter; and in the server level, we determine
how to set the service rate of each activated server.

Our framework is easily tunable by a control parameter
V that represents the relative importance of cost minimiza-
tion versus emission enforcement, and facilitates a provable
½Oð1=V Þ; OðV Þ� cost-emission tradeoff. With such a tradeoff,
the geo-distributed cloud can achieve a time-averaged elec-
tricity cost arbitrarily close to the optimum, while still main-
taining the long-term carbon emission budget. Through an
empirical evaluation using the real-world electricity genera-
tion and price data and workload traces from Microsoft’s
enterprise storage systems [15], we show that our solution
is practical to achieve a specified long-term emission reduc-
tion target, without incurring excessive cost.

The rest of this paper is organized as follows. Different
from and complementary to our preliminary work [16], we

conduct an empirical study on the cost-emission tradeoff
in realistic geo-distributed cloud services in Section 2. In
Section 3, we improve the three-way tradeoff model by
replacing the queuing delay in our preliminary work [16]
with the wide-area network latency, since the latter domi-
nates user-perceived latency in practice. We further develop
a new carbon-aware online control framework and demon-
strate its effectiveness in Section 4. Compared to our prelim-
inary work [17], convex optimization technique is newly
introduced to address the more complicated optimization
model. The framework is evaluated in Section 5 with more
comprehensive trace-driven simulations than our prelimi-
nary work [16]. Finally, Section 6 surveys the related work
and Section 7 concludes the paper.

2 EMPIRICAL STUDY OF GEO-DISTRIBUTED

CLOUD SERVICES

To motivate the joint optimization on energy cost and car-
bon emission, we take empirical study to demonstrate the
tradeoff between energy cost and carbon emission for geo-
distributed cloud services. We begin our study with an
empirical analysis of the annual electricity generation and
price data from 48 states in the continental US, (including
the District of Columbia). In Fig. 2, we plot the carbon emis-
sion rates and the electricity prices according to data in
Electric Power Annual 2012 from the US Energy Information
Administration‘s website [17], [18]. It clearly shows that
there is a negative correlation between carbon emission and
electricity price (correlation coefficient �0:43), implying
the existence of a long-term cost-emission tradeoff at the
national level. In particular, the electricity in regions such as
West Virginia is cheap but dirty (as it is depicted in the
upper-left quarter of Fig. 2), while regions such as California
have expensive but clean energy. There are a few exceptions
however: states like Oregon and Washington enjoy both
cheap and clean electricity; yet the District of Columbia has
both expensive and dirty electricity. Intuitively, Oregon and
Washington are preferred locations to host datacenters
when considering electricity and environmental costs.

We now look into datacenters from five representative
cloud service providers, including Google [19], Microsoft
[20], Amazon [21], Facebook [22], and Apple [23]. In Fig. 3,
we depict their datacenter locations in the US All of them
have geo-distributed datacenters; Google deploys the largest
number of datacenters (5), whereas Amazon, which has the

Fig. 2. Carbon emission versus electricity price in the continental US We
can observe a clear negative correlation between the two.

Fig. 1. Carbon emission per kWh electricity at three different locations in
north America on September 30th 2012. Data is provided by each
Regional Transmission Organization (RTO) [12].
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least number, deploys 3 still (not including GovCloud).
Half of the 20 datacenters are located in “clean” regions
with carbon footprint lower than 400 g/kWh. 18 datacen-
ters are located in regions with carbon footprint lower
than 600 g/kWh, and no datacenter is located in “dirty”
regions with carbon footprint higher than 800 g/kWh.
Overall, the datacenter locations of the five cloud services
are highly concentrated in states such as California, Ore-
gon, North Carolina, and Virginia, which either enjoy
very clean electricity as we have shown, or have world-
class network infrastructures.

To further understand the existence of the cost-emission
tradeoff in the geo-distributed cloud services, we plot the
yearly carbon emission rate versus the electricity price of dif-
ferent clouds’ datacenters in Fig. 4, together with their corre-
lation coefficients. The results show that there are strong
negative correlations between the annual carbon emission
rate and the electricity price for Google and Microsoft data-
centers. The correlation coefficients are �0:842 and �0:84,
respectively, much higher than the national level (�0:43).

On the other hand, the same tradeoff is not clearly
observable for Amazon, Facebook and Apple datacenters. A
further examination shows that these three providers each
builds a datacenter in Oregen where the electricity is both
cleanest and cheapest, thus offsetting the negative correla-
tions exhibited by the remaining datacenters. Excluding
Oregon and focusing on the remaining datacenters in Fig. 5,
we can observe a strong negative correlation between
carbon emission and electricity price. This observation

indicates that, after routing much traffic to Oregan to mini-
mize both electricity cost and carbon emission, routing the
remaining traffic to the remaining datacenters would also
induce a cost-emission tradeoff.

To summarize, we have quantitatively verified the exis-
tence of long-term cost-emission tradeoff in realistic geo-
distributed cloud services. This strongly suggests that, for
geo-distributed cloud services, it needs a joint optimization
on energy cost and carbon emission, rather than the naive
cost reduction approach which can deteriorate the carbon
emission. We are now ready to propose the carbon-aware
online control framework for geo-distributed cloud services,
which jointly optimizes energy cost and carbon emission, to
achieve a delicate ½Oð1=V Þ; OðV Þ� cost-emission tradeoff.

3 THE THREE-WAY TRADEOFF MODEL

We consider a provider running cloud services with N geo-
distributed datacenters, denoted by D ¼ f1; 2; . . . ; Ng. Each
datacenter j 2 D deploys Mj servers. For ease of exposition,

we assume that all the servers in one datacenter are homo-
geneous. The cloud deploys M front-end proxy servers,
denoted by S ¼ f1; 2; . . . ;Mg in various regions to direct
user requests to the appropriate datacenters. Inspired by
[5], we consider a discrete time model. In every time slot
t ¼ ð0; 1; 2; . . . ; t; . . .Þ, user requests arrive and aggregate at
each front-end proxy server. We use AiðtÞ; 8i 2 S to denote
the request arrival rate at front-end proxy server i during
time slot t. In practice, the time slot length matches the time
scale at which the electricity price or carbon emission rate is
updated. A typical setting is 10 minutes (a value that well
exploits the temporal diversity of both electricity price and
carbon footprint, without incurring excessive overhead of
switching the servers on/off frequently), which is also used
in our trace-driven performance evaluation. Table 1 sum-
marizes the key notations used throughout this paper.

Fig. 3. Carbon emission rate of each state and the datacenter locations
of five clouds in the US Darker colors imply higher carbon footprint of
electricity generation.

Fig. 4. Carbon emission rate versus electricity price in states hosting
geo-distributed datacenters of Google, Microsoft, Amazon, Facebook
and Apple.

Fig. 5. Carbon emission rate versus electricity price in states hosting
geo-distributed datacenters of Amazon, Facebook and Apple (excluding
Oregon).
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3.1 Control Decisions

Our online control framework has three levels of control
decisions.

3.1.1 Geographical Load Balancing

In the geographical level, the energy cost and the carbon
emission can be reduced by balancing the workload across
the datacenters, according to the spatial variability of energy
price and carbon output. In each time slot t, given the request
arrival rate AiðtÞ at the proxy server i, the control decision is
to update the request routing from the proxy i to datacenter
j, denoted asRijðtÞ; 8i 2 S; 8j 2 D. Therefore, we haveXN

j¼1

RijðtÞ ¼ AiðtÞ; 8i 2 S; (1)

RijðtÞ � 0: (2)

3.1.2 Datacenter Right Sizing

In the datacenter level, energy cost and carbon emission can
be reduced by dynamically adjusting the number of active
servers, known as “right sizing” [5]. Let mjðtÞ denotes the
number of servers to be activated in datacenter j in time slot
t. Since a cloud datacenter typically contains thousands of
active servers, the integer constraints onmjðtÞ; 8j 2 D; 8t can
be relaxed and we can treat mjðtÞ as a continuous variable.
Therefore,mjðtÞ should satisfy the following constraint:

0 � mjðtÞ � Mj; 8j 2 D: (3)

3.1.3 Server Speed Scaling

In the server level, energy cost and carbon emission can be
reduced by adjusting the CPU frequency, known as “speed
scaling” [10]. Let mjðtÞ denotes the service rate of each active

server in datacenter j. Typically, for each mjðtÞ, it cannot

exceed the maximum service rate sj, which follows

0 � mjðtÞ � sj; 8j 2 D: (4)

Besides, to ensure that the workload routed to each datacen-
ter could be completely served, the following datacenter
capacity constraint (5) should be enforced, i.e., the amount of
workload

P
i RijðtÞ assigned to each datacenter j cannot

exceed the later’s total service capacitymjuj:

XM
i¼1

RijðtÞ � mjmj; 8j 2 D: (5)

3.2 Power Consumption Model

It has been demonstrated that [7], the amount of power con-
sumed by a server running at speed m can be characterized
by amn þ b, where a is a positive factor, b represents the
power consumption in the idle state, and the exponent
parameter n is empirically determined as n � 1, with a typi-
cal value of n ¼ 2 in practice [7].

Given the number of active servers mjðtÞ, parameters
aj;bj; nj, and the power usage efficiency metric PUEj in

datacenter j, the power consumption of datacenter j in time
slot t can then be quantified by EjðtÞ as follows:

EjðtÞ ¼ PUEj �mjðtÞ � ½ajm
nj
j ðtÞ þ bj�; (6)

PUE is defined as the ratio of the total amount of power
used by the entire facility to the power delivered to the com-
puting equipment [24].

Though many datacenters are investing renewable
power to power themselves, here we assume that each data-
center is completely powered by the power grid. Note that
this is realistic, specifically, internet giants such as Google
[25], Microsoft [26] and Facebook [27] are both investing
large-scale wind or solar farms to “clean up” their cloud ser-
vice. However, the carbon reduction is realized by signing
power purchase agreements (PPAs) [25] with renewable
energy operators, yet the renewable power is not really
transmitted to the datacenters. Instead, the renewable
power is sold back to the power grid, and the datacenters
still completely rely on the power gird. By applying those
renewable energy credits (RECs) [25] realised from the
renewable generation, the carbon emission of the consumed
grid power can be partially or fully offset.

3.3 Latency SLA Model

For interactive applications as web search and social net-
working services, latency is the most critical performance
metric [28]. In this paper, we focus on the end-to-end request
latency from a front-end proxy server to a processing data-
center in wide-area network, as it largely accounts for the
user-perceived latency and overweighs other factors such as
queuing or processing delays at datacenters [29]. We assume
that the geo-distributed datacenters are connected by a pri-
vate backbone network [30]. Specifically, the round-trip
times within large datacenters with tens of thousands of
servers are typically 200�500 ms, while with the long-term
advances in operation system and hardware, datacenter
round-trips low to 1ms can be also achievable [31]. However,

TABLE 1
Key Parameters in our Model

Notations Definitions

M The number of front-end proxy servers S
N The number of geographically

distributed datacenters D
AiðtÞ The request arrival rate at front-end

proxy server i during time slot t
RijðtÞ The amount of request routing from the

front-end server i to the datacenter j
mjðtÞ The number of servers to be activated

in datacenter j at time slot t
mjðtÞ The service rate of each active server

in datacenter j at time slot t
EjðtÞ The power consumption of datacenter

j at time slot t
Lij The round-trip network latency between

the front-end server i and datacenter j
CjðtÞ The carbon emission rate in location

j at time slot t
Cj The long-term time-averaged carbon

emission budget for datacenter j
PjðtÞ The electricity price in location j at

time slot t
QjðtÞ The backlog of the virtual queue for

datacenter j at time slot t
V Lyapunov control parameter
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in a sharp contrast, the wide-area network latency that
involves propagation, queuing, transmission, and nodal
processing times in geo-distributed system is far longer, typi-
cally tens or hundreds ofmilliseconds. For example, a typical
round-trip time between datacenters from California to
Texas is about 31:8 ms, and that from California to New Jer-
sey is about 73:5ms [32].

The round-trip network latency Lij between the front-
end server i and datacenter j can be obtained through active
measurements or other means in practice [33]. Empirical
studies have also demonstrated that, in backbone networks,
the round-trip network latency Lij can be approximated by
geographical distance dij between the front-end server i and
datacenter j as: Lij ¼ dij � 0:02ms/km [30].

The average network latency of the front-end proxy
server i is then Li ¼

P
j2D RijðtÞLij=Ai. To provide satisfi-

able experience to users, we enforce the following constraint
that Li � Lmax

i , where Lmax
i is the maximal tolerable

response delay at the front-end server i. Therefore, we have
the following SLA constraint:P

j2D RijðtÞLij

Ai
� Lmax

i : (7)

3.4 Long-Term Carbon Reduction Model

To characterize the spatial and temporal variability of the
carbon emission rate, we use the electricity generation data
from each Regional Transmission Organization (RTO)’s
website. We retrieve the real-time electricity fuel mix of all
states for the seven major types of fuel (e.g., the real-time
data of New England is updated every 5 minutes in [34]).
Summing up the weighted contribution from each fuel
type, we can estimate the carbon emission rate in location j
at time slot t as follows

CjðtÞ ¼
P

ekjðtÞ � ckP
ekjðtÞ ; (8)

where ekjðtÞ represents the electricity generated from fuel
type k in location j at time slot t, and ck (measured in
g=kWh) is the carbon emission rate of fuel type k given in
Table 2.

Given CjðtÞ and power consumption EjðtÞ in Eq. (6), the
corresponding carbon emission becomes EjðtÞ � CjðtÞ. In
practice, most datacenters are operated within a certain car-
bon emission budget in a given long time interval (usually
one year or longer). We therefore impose a long-term time-
averaged carbon emission budget Cj for each datacenter j

to reduce the carbon emission

lim sup
T!1

1

T

XT�1

t¼0

EfEjðtÞ � CjðtÞg � Cj: (9)

3.5 Characterizing the Three-Way Tradeoff

With the SLA constraint and the long-term carbon reduction
constraint, our objective is to minimize the long-term elec-
tricity cost. Specifically, given the power consumption EjðtÞ
and electricity price PjðtÞ in datacenter j, the total electricity
cost of N datacenters at time slot t can be quantified byPN

j¼1 EjðtÞPjðtÞ. The optimization of the three-way tradeoff,

which jointly considers the electricity cost, the SLA require-
ment, and the carbon emission reduction under the control
decisions RijðtÞ;mjðtÞ and mjðtÞ, can then be formulated as

the following stochastic program

min lim sup
T!1

1

T

XT�1

t¼0

XN
j¼1

EfEjðtÞPjðtÞg; (10)

subject to (1), (2), (3), (4), (5), (7), and (9).

Remark 1. The above three-way tradeoff model is more
amenable to practical implementation when compared to
the models in [2]. These earlier works transform both the
carbon emission and the workload latency to monetary
cost, and arbitrate the three-way tradeoff by minimizing
the aggregated cost. It is however nontrivial to precisely
map the carbon emission, especially the workload
latency to economic cost. In our model, capping the long-
term carbon emission and real-time workload latency is
more practical and accessible in realistic cloud service.

Since the datacenters’ workload as well as the carbon
emission rate is time-varying and unpredictable, the
challenge of solving problem (10) is that, how can we
guarantee the current control decisions are able to mini-
mize the time-averaged electricity cost, while still main-
taining the long-term carbon emission budget?

4 CARBON-AWARE ONLINE CONTROL

FRAMEWORK

To solve stochastic programming problems involving uncer-
tainly, various approaches have been proposed in literature.
For example, by assuming a perfect knowledge of the
near-future information within a look-ahead window, the
randomized fixed horizon control (RFHC) [35] method can
approximately decompose the long-term optimization into a
series of deterministic optimization problems. Besides, given
the statistical distribution of the uncertain information,
genetic algorithm [36] can be applied to maximize the expec-
tation of the objective. Unfortunately, in a cloud computing
environment with bursty workload, neither the near-further
information nor the statistical distribution of the workload
can be accurately obtained.

The challenge of the optimization problem (10) is mainly
posed by the time-coupling carbon emission constraint (9).
Intuitively, from the view of queuing theory, the constraint
(9) can be interpreted as the queue stability control, i.e., the
time-averaged arrival lim supT!1 1

T

PT�1
t¼0 EfEjðtÞ � CjðtÞg

cannot exceed the service rate Cj. Fortunately, the queue sta-
bility problem has been well studied in queue theory [14],
and Lyapunov optimization is a powerful technique tomain-
tain the stability in an online manner, without requiring any
future knowledge or statistical distribution of the uncertain
information. With this insight, we design a Carbon-aware

TABLE 2
Carbon Dioxide Emission Per Kilowatt-Hour

for the Most Common Fuel Types [2]

Fuel Type Nuclear Coal Gas Oil Hydro Wind

CO2 g/kWh 15 968 440 890 13:5 22:5
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Online Control Algorithm (COCA), which explicitly trans-
forms the long-term objective and constraints to a series of
real-time optimizations at each time slot. COCA is provably-
efficient to achieve time-averaged electricity cost arbitrarily
close to the optimum, while still maintaining the long-term
carbon emission budget.

4.1 Problem Transformation Using Lyapunov
Optimization

We first transform the long-term carbon emission constraint
(9) into a well-studied queue stability problem. To this end,
we introduce virtual queues QjðtÞ for each datacenter j. Ini-
tially, we define Qjð0Þ ¼ 0; 8j 2 D, and then update the
queues per each time slot as follows

Qjðtþ 1Þ ¼ max½QjðtÞ � Cj þ EjðtÞCjðtÞ; 0�; (11)

where Cj, EjðtÞ, and CjðtÞ are defined in Section 3.4. 8j 2 D,
EjðtÞCjðtÞ can be viewed as the “arrivals” of virtual queue
QjðtÞ, and the constant Cj can be viewed as the service rate
of such a virtual queue.

Intuitively, the value ofQjðtÞ is the historical measurement
of the backlog between the time-averaged emission during
the interval ½0; t� 1� and the emission budget Cj. A large
value of QjðtÞ implies that the emission during the interval
½0; t� 1� exceeds the budget Cj. In fact, the carbon emission
constraint (9) for each datacenter is enforced on the condition
that the virtual queue QjðtÞ is stable, i.e., limT!1 EfQj

ðT Þg=T ¼ 0. Specifically, from Eq. (11) it is clear that
Qjðtþ 1Þ � ½QjðtÞ � Cj þ EjðtÞCjðtÞ�: Given this inequality
over time slots t 2 f0; 1; . . . ; T � 1g and then dividing the
result by T , we have

QiðT Þ �Qjð0Þ
T

þ Cj � 1

T

XT�1

t¼0

EjðtÞCjðtÞ:

With Qjð0Þ ¼ 0, taking expectations of both sides yields

lim
T!1

EfQjðtÞg
T

þ Cj � lim
T!1

1

T

XT�1

t¼0

EfEjðtÞCjðtÞg: (12)

If the virtual queues QjðT Þ are stable, then limT!1 E

fQjðT Þg=T ¼ 0 (the proof of the strong stability of virtual

queues QjðT Þ can be found in Theorem 1 later). Subtracting

this into (12) yields the inequality (9).

4.1.1 Characterizing the Emission-Cost Tradeoff

Let QðtÞ ¼ ðQjðtÞÞ denotes the vector of all the virtual
queues. We define the Lyapunov function as follows

LðQðtÞÞ ¼ 1

2

XN
j¼1

Q2
j ðtÞ: (13)

This represents a scalar metric of the congestion
level [14] in all virtual queues. For example, a small
value of LðQðtÞÞ implies that all the queue backlogs are
small. The implication is that all the virtual queues have
strong stability.

To keep the virtual queues stable (i.e., to enforce the
emission budget) by persistently pushing the Lyapunov
function towards a lower congestion state, we introduce
DðQðtÞÞ as the one-step conditional Lyapunov drift [14]:

DðQðtÞÞ ¼ EfLðQðtþ 1ÞÞ � LðQðtÞÞjQðtÞg:

Under the Lyapunov optimization, the underlying objective
of our optimal control decisions RijðtÞ;mjðtÞ and mjðtÞ; 8i 2
S; 8j 2 D; 8t is to minimize a supremum bound on the fol-
lowing drift-plus-cost expression in each time slot:

DðQðtÞÞ þ VE
XN
j¼1

EjðtÞPjðtÞ
( )

: (14)

Remark 2. The control parameter V ð� 0Þ represents a design
knob of the emission-cost tradeoff, i.e., how much we
shall emphasize the cost minimization (Problem (10))
compared to emission budget (Constraint (9)). It empow-
ers datacenter operators to make flexible design choices
among the various tradeoffs between the carbon emis-
sion and the electricity cost. For example, one may pre-
fer to incur an expected cost as small as possible, while
keeping DðQðtÞÞ small to avoid exceeding the carbon
emission budget.

4.1.2 Bounding Drift-Plus-Cost

To derive the supremum bound of the drift-plus-cost expres-
sion given in Eq. (14), we need the following lemma.

Lemma 1. In each time slot t, given any possible control decisions
mjðtÞ;mjðtÞ and RijðtÞ, the Lyapunov drift DðQðtÞÞ can be

deterministically bounded as follows:

DðQðtÞÞ � B�
XN
j¼1

QjðtÞEfCj �EjðtÞCjðtÞjQðtÞg; (15)

where the constant B , 1
2 ð
PN

j¼1 C
2
j þNC2

maxÞ, and Cmax ¼
maxj;tfEjðtÞCjðtÞg.
The proof of this lemma can be found in Appendix A,

which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2015.2504978.

Based on Lemma 1, adding expression VEfPN
j¼1 EjðtÞ

PjðtÞjQðtÞg to both sides of Eq. (15) yields an upper bound
of drift-plus-cost expression of the datacenter system

DðQðtÞÞ þ VE
XN
j¼1

EjðtÞPjðtÞjQðtÞ
( )

� B�
XN
j¼1

QjðtÞCj

þ
XN
j¼1

EfEjðtÞ½VPjðtÞ þQjðtÞCjðtÞ�jQðtÞg:
(16)

4.2 Carbon-Aware Online Control Algorithm

Directly minimizing the drift-plus-cost expression in
Eq. (14) involves implicit max½	� terms in Eq. (11). Without
undermining the optimality, we seek to minimize the
supremum bound, which is equivalent to maximizing the
right side of inequality (16)), as in [14].
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The long-term optimization (10) is now transformed to
the following optimization at each time slot t

min
XN
j¼1

EjðtÞ½VPjðtÞ þQjðtÞCjðtÞ�;

s:t:ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ; ð7Þ are satisfied:

(17)

Algorithm 1. Carbon-aware Online Control Algorithm
(COCA)

1) In the beginning of each time slot t, observe the current
queue backlog QjðtÞ and other information PjðtÞ and CjðtÞ at
each datacenter j.
2) Determine the control decisions mjðtÞ;mjðtÞ and RijðtÞ;
8i 2 S; 8j 2 D to minimize the term

PN
j¼1 EfEjðtÞ½VPjðtÞ þ

QjðtÞCjðtÞ�jQðtÞg in the right-hand-side of inequality (16).

3) Update the queues Qðtþ 1Þ according to Eq. (11) and the
newly determined control decisions.

Remark 3. The transformed problem (17) embodies an eco-
nomic interpretation. At each time slot t, it strives to min-
imize the total cost of current power consumption and
the penalty of carbon emission, as priced by the queue
backlog QðtÞ. This balances our interest in minimizing
the long-term electricity cost and enforcing the long-term
carbon emission within the predefined budget, and V is
the control knob to adjust our emphasis on cost minimiz-
ing compared to emission enforcement.

In fact, the transformed problem that minimizes the
supremum bound of the drift-plus-cost may still be compli-
cated. As in our case, the problem (17) is nonlinear and non-
convex, mixed with variables that can not be easily decom-
posed. Then, a natural question to ask is, what happens
when COCA does not accurately minimize the transformed
Problem (17). Excitingly, we find that COCA is robust
against the minimization errors of the problem (17). Specifi-
cally, the following theorem shows the optimality of the
COCA algorithm under a minimization error d, in terms of a
tradeoff between the cost minimization and emission
enforcement. The minimization error d of the Problem (17)

means that, 8t; bSðtÞ � eSðtÞ � d, where bSðtÞ and eSðtÞ repre-
sent the solution to the problem (17) obtained by COCA and
the optimal solution to the problem (17).

Theorem 1. Suppose the carbon emission rate CjðtÞ; 8j 2 D is
i.i.d over time slots, for any control parameter V > 0 (the sta-
bility-cost tradeoff parameter defined in Section 4.1), imple-
menting the COCA algorithm under a minimization error d of
the minimization Problem (17) can achieve the following per-
formance guarantee

lim sup
T!1

1

T

XT�1

t¼0

XN
j¼1

EfEjðtÞPjðtÞg � P 	 þBþ d

V
; (18)

lim sup
T!1

1

T

XT�1

t¼0

XN
j¼1

EfQjðtÞg � Bþ dþ VP 	

�
: (19)

where P 	 is the optimal solution to the optimization prob-
lem (10), representing the theoretical lower bound of the time-
averaged electricity cost, � > 0 is a constant which represents

the distance between the time-averaged carbon emission
achieved by some stationary control strategy and the carbon
emission budget, and B is a finite constant parameter defined
in Lemma 1.

Remark 4. The theorem demonstrates an ½Oð1=V Þ; OðV Þ�
cost-emission tradeoff. By using the COCA algorithm
with an arbitrarily lager V , we can make the time-aver-
aged electricity cost arbitrarily close to the optimum P 	

while maintaining the emission budget, as virtual queues
QjðtÞ; 8j 2 D are stable according to Eq. (19). Such cost
reduction is achieved at the cost of a larger emission, as
Eq. (19) implies that the time-averaged queue backlog
grows linearly with V . If the emission budget ðC1;
C2; . . . ; CNÞ is too tight, i.e., it may be insufficient to serve
all the requests. In this case, COCA will strive to reduce
the actual emission as much as possible in a best-effort
manner while serving all of the requests. Also, COCA can
be extended to strictly enforce the emission budget by
denying an appropriate amount of requests [37], which is
known as request admission control. Interested readers
are referred to our Appendix B, available in the online
supplementalmaterial, for a complete proof of Theorem 1.

Also note that Theorem 1 does not depend on the assump-
tion of the long-term cost-emission tradeoff which indeed
has been empirically verified in Section 2. This observation is
particularly interesting: as datacenter demand response [38]
is a promising approach for mitigating operational instabil-
ity faced by power grids, datacenters can receive discounted
electricity price if they response to the smart grids. Under
this scenario, the long-term cost-emission tradeoff verified in
Section 2 may not hold for geo-distributed datacenters. For-
tunately, since COCA does not assume the cost-emission
tradeoff, it is still applicable when datacenters participate in
demand response programs.

Theorem 1 further indicates that, when with inaccurate
minimization of the problem (17), we can set V to a larger
value to obtain the same time-averaged electricity cost as
with accurate minimization. Thus, instead of making exces-
sive effort to accurately minimize the problem (17), we
propose a practically efficient decomposition using a Gener-
alized Benders Decomposition (GBD) method [6], [39],
which minimizes the problem (17) with an error d that can
be arbitrary close to 0. The detailed methodology is pre-
sented in Section 4.3.

4.3 Solving Problem (17) with Generalized
Benders Decomposition

For better scalability and performance in terms of time com-
plexity, it is desirable that the problem (17) can be solved in
a distributed manner. A classic approach to distributed
algorithm design is the dual decomposition [40] method
that decomposes the problem into many sub-problems.
Recently, the alternating direction method of multipliers
(ADMM) has been demonstrated to be powerful in develop-
ing distributed geo-graphical load balancing algorithm [29].
Unfortunately, both dual decomposition and ADMM
require the objective to be (strictly) convex, the non-convex-
ity of problem (17) rules out the direct application of these
methods. The difficulty can be further observed from the
product of the decision variables mjðtÞ and mn

jðtÞ in the
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objective, which disables the decomposition of them.
Instead, we propose a centralized algorithm, with trace-
driven simulations in Section 5.5, we shown that it is com-
putationally efficient, with tens of iterations to converge
and a running time less than 0:2 second.

The transformed problem (17) is still a non-convex prob-
lem, mixed with complicating [41] variable vector m. When
m is temporarily held fixed, it renders the original problem
(17) a convex problem, which is much easier to solve. More-
over, the projection of problem (17) onto m is a linear prob-
lem (LP), and can be obtained explicitly using non-linear
duality theory and relaxation technique. Fortunately, these
features of the problem (17) can be fully utilized by General-
ized Benders Decomposition [6], [39] method.

In this section, an efficient decomposition algorithm
based on Generalized Benders Decomposition method is
provided. We first analyze the derivation of the master
problem, i.e., the product of the Generalized Benders
Decomposition, and then focus on the key technique for
solving the master problem. The GBD procedure for the
original problem is given at the end of this section.

4.3.1 Derivation of the Master Problem

Since our focus is to solve problem (17) at each single time
slot t, for convenience, we would omit the variable t in the
following problem formulation. Due to space limit, the
details for deriving the master problem MGBD with GBD
method is omitted here, interested readers are referred to
Appendix C, available in the online supplemental material,
for a complete description of the derivation. The obtained
master problem is given as follows.

Problem MGBD. Using the transformations V and v
shown in Appendix C, available in the online supplemental
material, and taking the definition of supreme as the least
upper bound, we obtain the master problemMGBD:

min
m2Y;m0

m0; (20)

s:t: m0 � L	ðm;’Þ; 8’ � 0; (21)

L	ðm;�Þ � 0; 8� 2 L; (22)

where L	ðm;’Þ 
 infR;m2X fðm;R;mÞ þPN
j¼1 ’jgjðm;R;mÞ;

L	ðm;�Þ 
 infR;m2X½
PN

j¼1 �jgjðm;R;mÞ�.
We will show later that the master problem MGBD satis-

fies property P: for each ’ � 0, the infimum of fðm;R;mÞ þPN
j¼1 ’jgjðm;R;mÞ over X can be taken independently of m,

so that the function L	ðm;’Þ on Y can be obtained explicitly
with little or no more effort than is required to evaluate it at
a single value ofm; the same goes for L	ðm;�Þ.

4.3.2 Solving the Master Problem

The most natural strategy for solving the master problem
MGBD is relaxation, since MGBD has a very large number
of constraints. Begin by solving a relaxed version of mas-
ter problem that ignores all but a few of the constraints
(21) and (22); if the resulting solution does not satisfy all
of the ignored constraints, then generate and add to the
relaxed problem one or more violated constraints and
solve it again; continue in this fashion until a relaxed

problem solution which satisfies all of the ignored con-
straints has been obtained.

As mentioned in Section 4.3.1, the subproblem CVP(m̂)
can be used to test the feasibility of a solution to a relaxed
version of MGBD with respect to the ignored constraints,
and to generate an index ’ of a violated constraint in the
event of infeasibility. If CVP(m̂) is infeasible, we can design a
feasible-check problem CVPF(m̂) [6] corresponding to it

which generates an index � of a violated constraint. Due to
space limit, the detailed dual-based solution for the master
problem MGBD is omitted here, interested readers are
referred to Appendix D, available in the online supplemental
material, for a complete description of the proposed solution.

4.3.3 Statement of the GBD Based Algorithm for MGBD

The Generalized Benders Decomposition procedure can
now be stated formally. It can be easily shown that V has a
representation in terms of a finite collection of constraints,
so our algorithm can achieve a finite d-convergence [39],
which means for any given error d > 0, the Generalized
Benders Decomposition procedure terminates in a finite
number of steps.

Algorithm 2. GBD based Algorithm for MGBD

Step (0). Let a point m 2 Y be known, and select the conver-
gence tolerance parameter d > 0. Solve the subproblem CVP
(m).
Step (0A). If the subproblem CVP(m) is feasible, obtain the

optimal solution ðR;m;’Þ and the function L	ðm;’Þ. Put

p ¼ 1, q ¼ 0, and ’1 ¼ ’.
Step (0B). If the subproblem CVP(m) is infeasible, solve the

problem CVPF(m), and obtain the optimal solution ðR;m;’Þ
as well as the function L	ðm;�Þ. Put p ¼ 0, q ¼ 1, and �1 ¼ �.
Step (1). Solve the current relaxed master problem

min
m2Y;m0

m0;

s:t: m0 � L	ðm;’kÞ; k ¼ 1; . . . ; p;

L	ðm;�kÞ � 0; k ¼ 1; . . . ; q;

by any applicable LP algorithm. Let ðm̂; m̂0Þ be an optimal
solution; m̂0 is an lower bound on the optimal value of
MGBD. Put LB ¼ m̂0.
Step (2). Solve the revised subproblem CVP(m̂).
Step (2.A). If CVP(m̂) is feasible, solve it and obtain the opti-

mal solution ðR̂; m̂; ’̂Þ as well as the function L	ðm; ’̂Þ. If

fðm̂; R̂; m̂Þ � LBþ d, terminate and obtain the optimal solu-

tion ðm̂; R̂; m̂Þ. Otherwise, increase p by 1, and put ’p ¼ ’̂;
return to Step (1).
Step (2.B). If CVP(m̂) is infeasible, solve the problem CVPF

(m̂), and obtain the dual optimal multiplier �̂ as well as the

function L	ðm; �̂Þ. Increase q by 1, and put �q ¼ �̂. Return to
Step (1).

5 PERFORMANCE EVALUATION

In this section, we conduct numerical studies to evaluate the
performance of our carbon-aware online control algorithm.
Our trace-driven simulations are based on real-world work-
load traces, electricity price data, and electricity generation
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data. To fully exploit the temporal diversity of both electric-
ity price and carbon footprint, while still reducing the over-
head of switching the servers ON/OFF frequently, we use
10-min time slots as in [42].

5.1 Simulation Setup

We simulate a cloud with M ¼ 4 front-end proxy servers
located at Oregon, Iowa, Pennsylvania, and Florida. We
deploy N ¼ 3 datacenters in three locations in North Amer-
ica: California, Alberta1 andOklahoma.We now describe the
real-world data sets and system parameters inmore details.

Workload data. In this simulation, the workload we use is
a set of traces taken from four RAID volumes of an enter-
prise storage cluster in Microsoft [15]. The trace includes the
timestamp, hostname, disknumber, etc. Specifically, we use
the trace of each RAID volume to represent the workload of
each front-end proxy server, and we can calculate the
arrival rate AiðtÞ at each time slot according to the time-
stamp information. The workload traces are plotted in the
first 4 subfigures of Fig. 6. To evaluate the long-term effec-
tiveness of COCA, we repeat the original one-week trace to
get a 3-week workload trace.

Electricity Price Data. We download the locational mar-
ginal prices (LMP, in unit of $/MWh) in real-time electricity
markets of the three locations from the regional transmis-
sion organization or independent system operator (ISO)
website. Specifically, the LMP for California and Alberta is
hourly, while the LMP for Oklahoma is 5-min data. Based
on this data, we obtain the average electricity price over
each time slot with a 10-minute interval. The time period of
this data is from August 1, 2012 to August 21, 2012, includ-
ing three weeks or 3;024 time slots. This trace is plotted in
the fifth subfigure of Fig. 6, and one can observe that DC#3
(Oklahoma) enjoys a relatively cheaper price.

Electricity generation data. To estimate the carbon emission
rate of each datacenter location, we first download the elec-
tricity generation data from the RTO or ISO website. They
report the hourly electricity fuel mix for generating electric-
ity. We then calculate the hourly carbon emission rates (in
unit of g/KWh) of the three locations according to Eq. (8)
given in Section 3.4. The time period of this data is also
from August 1, 2012 to August 21, 2012. This trace is shown
in the last subfigure of Fig. 6. It is clear that the electricity
generated in California (DC#2) is “greener” than that of the
other two regions.

System parameters. We first choose a high energy efficiency
level, i.e., PUEj ¼ 1:3, for all three datacenters. We also
choose a typical setting [7] of exponent parameter nj ¼ 2. The
other server parameters at each datacenter are presented in
Table 3. We calculate the round-trip network latency Lij

according to the empirical approximationLij ¼ 0:02ms=km�
dij. The geographical distance dij can be obtainedviamapping
applications such as Google Maps. The average network
latency perceived by each front-end proxy server i is enforced
to bewithin 50ms, thus,Lmax

i ¼ 0:05 s; 8i 2 S.
Platform. We conduct the numerical study on Mat-

lab2014R, which runs on a Intel Xeon E5-2,670 server with
8-core CPU (2.6G) and 8 GB DDR3 memory. The server
runs Linux 2.6.32 kernel.

5.2 Performance Benchmark

To analyze the performance improvement of our COCA
framework, and set an appropriate carbon emission budget
for each datacenter, we use the following benchmark
schemes that represent the two extreme tradeoff points
between cost minimization and emission minimization: (1)
Carbon-oblivious scheme (COS) [6], which only minimizes
the electricity cost at each time slot, without considering the
carbon emission; and (2) Electricity-oblivious scheme (EOS),
which solely focuses on carbon emission minimization.

The overall electricity cost and time-averaged carbon
emission of EOS and COS are shown in Fig. 7. We observe
that: (1) Under EOS, DC#2 (California) dominantly outputs
68:5 percent of the total carbon emission and consumes 79:4
percent of the total electricity cost. This is because the car-
bon emission rate in California is much lower than other
regions (revealed in Fig. 6), and it attracts more workload.
(2) Similarly, under COS, DC#3 (Oklahoma) chiefly contrib-
utes 60:6 percent of the total electricity cost and emits
65:0 percent of the total emission, as Oklahoma provides the
cheapest electricity price. (3) When compared with EOS,
COS consumes 43:7 percent less electricity cost, at the
expense of producing 16:4 percent more carbon emission.

5.3 Cost-Emission Tradeoff

Intuitively, total carbon emission can be reduced by migrat-
ing workload from DC#1 and DC#3 to DC#2, since DC#2

Fig. 6. The total workload trace, and the electricity price trace, carbon
emission rate trace at each datacenter.

TABLE 3
Server Parameters in Three Datacenters

Location sj (requests/s) aj bj (Watt) Mj (servers)

Alberta 20 0.3 120 1,250
California 25 0.2 125 1,800
Oklahoma 20 0.25 100 1,500

Fig. 7. Total electricity cost and time-averaged carbon emission of each
datacenter under electricity-oblivious scheme (EOS) and carbon-oblivious
scheme (COS).

1. Currently, most of the Independent System Operators in America
do not release fine time-scale (i.e., hourly) electricity generation data on
their websites. In order to fully diversify the carbon emission rates of
the sampled datacenters, we place a datacenter in Alberta, Canada,
where the hourly electricity generation data is assessable.
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enjoys the greenest electricity supply. In this section, we eval-
uate the cost-emission tradeoff achieved by COCA under dif-
ferent configurations of workload migration. Specifically, we
first set the time-averaged carbon reduction target to be
3:04 Kg, meaning that the total time-averaged emission bud-
get of the three datacenters is equal to 47 Kg. Then, we set
three different migration configurations corresponding to dif-
ferent amounts of workload migrated to DC#2: Low (6, 13,
28) Kg,Medium (5, 16, 26) Kg, High (4, 20, 23) Kg.

Optimality of electricity cost. Fig. 8 plots the time-averaged
electricity cost for different values of the control parameter
V in our COCA algorithm under various emission configu-
rations. We make the following observations. First, as V
increases, cost achieved by COCA decreases significantly
and converges to the minimum level. This quantitatively
confirms Theorem 1 in that COCA can approach the optimal
cost with a diminishing gap ð1=V Þ (captured by Eq. (18)).
The cost reduction diminishes as V increases, however, as
cost will eventually achieve the minimum. Second, as a
comparison, we plot the time-averaged electricity cost
under COS and EOS. Fig. 8 shows that cost achieved by
COCA is always between that achieved by COS and EOS,
and gets closer and closer to that achieved by COS as V
increases. This demonstrates that COCA is cost-effective
when reducing carbon emission. Third, comparing electric-
ity cost under different emission configurations, we find
that the more emission migrated to DC#2, the higher the
cost would be, since DC#2 is the most expensive region.

Queue stability. Fig. 9 plots the total time-averaged queue
backlog for different values of V under various emission con-
figurations. As V increases, the total backlog increases
almost linearly, which is captured by Eq. (19) in Theorem 1.
Along with Fig. 8, this reflects the tradeoff between queue
stability and cost minimization. Further, when V is relatively

small, i.e., the emphasis is on emission budget enforcement,
migrating emission to DC#2 alleviates the congestion of the
virtual queuing system simply because DC#2 is most effec-
tive in reducing carbon emission.

Carbon emission. Fig. 10 plots the total time-averaged car-
bon emission of the three datacenters for various values of
V under different emission configurations. Observe that
though carbon emission under the tightest budget configu-
ration – Low emission budget configuration – is not
enforced within the budget as V changes, it is still far below
the emission of EOS. These demonstrate that COCA would
strive to reduce the emission as much as possible, which
has been discussed in the remark of Theorem 1.

In order to avoid the case that an emission configuration is
too tight to serve all requests, and to show the effectiveness
of our COCA framework, we redefine QðtÞ to limit the emis-
sion of the cloud rather than that of each datacenter. That is,

Qðtþ 1Þ ¼ max QðtÞ � C þ
XN
j¼1

EjðtÞCjðtÞ; 0

" #
;

where C represents the emission budget of the cloud, and
QðtÞ is the historical measurement of the backlog between
the total time-averaged emission during the interval
½0; t� 1� and the cloud’s emission budget C. Then, the objec-
tive of COCA is now transformed to minimize the termPN

j¼1 EjðtÞ½VPjðtÞ þQðtÞCjðtÞ� at each time slot.

Electricity cost versus carbon emission. To explore the deli-
cate tradeoff between the electricity cost and the actual car-
bon emission, we vary the emission budget C from 43 to 50
Kg, with a step size of 1 Kg. Fig. 11 illustrates the tradeoff
curves under different values of V . We observe the following
interesting trends. First, for a given V , the actual emission of
the cloud decreases with the decline of emission budget C.

Fig. 8. Time-averaged electricity cost versus different values of the
control parameter V under different emission configuration.

Fig. 9. Time-averaged queue backlog versus different values of the con-
trol parameter V under different emission configuration.

Fig. 10. Time-averaged carbon emission versus different values of the
control parameter V under different emission configuration.

Fig. 11. Time-averaged electricity cost versus time-averaged carbon
emission under different values of the control parameter V.
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On the other hand a marked increase of the electricity cost is
also incurred. Second, under the same level of actual carbon
emission, a larger V brings a lower cost, since the control
parameter V represents how much we emphasize the cost
compared to the emission. Third, when comparing to COS,
COCA is effective in reducing carbon emission without
incurring excessive cost increase, especially under a large
value of V . The performance changes of points A–D are plot-
ted in Fig. 11, andmore details are listed in Table 4.

Enforcement of carbon emission. In Fig. 11, we observe that
as long as the emission budget C is relatively small, the
actual emission is not enforced within the budget. We dem-
onstrate in Fig. 12 the effectiveness of the emission enforce-
ment by tuning the length of simulated period from 3;024
time slots to 21;168 (i.e., 147 days). It clearly shows that, the
actual emission diminishes significantly and gradually
approaches the emission budget. In a real-world cloud, the
emission reduction target is usually set out for a period of
several years. Hence, COCA is efficient to enforce the emis-
sion of a practical cloud system.

5.4 Inside of the Cost-Emission Tradeoff

To further understand how COCA works to arbitrate the
emission-cost tradeoff, we continue to explore the effect of
various parameters.

Carbon migration.We individually tune the emission bud-
get C and the control parameter V , and then compare the

carbon emission of each datacenter. The results are illus-
trated in Figs. 13 and 14, respectively. Fig. 13 suggests that,
when relaxing the emission budget, a larger proportion of
the actual emission would be migrated from the low-carbon
datacenter DC#2 to the low-price datacenters DC#1 and
DC#3. We also observe from Fig. 14 that, with the increase
of the control parameter V , more emission would be
migrated from the low-carbon datacenter DC#2 to the low-
price datacenters DC#1 and DC#3 to meet the stronger
emphasis on cost minimization. Meanwhile, the total emis-
sion of the cloud also deteriorates as V increases, demon-
strating the important role of the control parameter V as the
design knob of the emission-cost tradeoff.

SLA requirement. To investigate the impact of SLA on the
electricity cost, we adjust the SLA requirements while fixing
other control and system parameters. We also use heteroge-
neous SLA requirements for different front-end proxy serv-
ers. Specifically, we choose Lmax ¼ f½25 30 50 32�; ½30 35
55 37�; ½35 40 60 42�gms and fix the control parameter
V ¼ 100, under the medium emission configuration. As
expected in Fig. 15, the relaxation of the maximal tolerable
network latency Lmax gives more opportunity to cut down
the total electricity cost, since a loose SLA requirement gives
more feasibility to route requests to remote datacenters with
cheap electricity price, and thus to reduce the electricity bill.

Adaptive queue backlog management. To further understand
the role of queue backlog in the control of emission budget,
we depict the fluctuation of the total queue backlog during
the 3;024 time slots under different values of V in Fig. 16. It is
clear that the real-time total queue backlog fluctuates fre-
quently. The explanation to this frequent fluctuation is that
when the queue backlog is large and thus increasing the possi-
bility of violating the emission budget, COCA will strive to
reduce the queue backlog, in order to prevent the actual

TABLE 4
Changes of Performance Brought by COCA

Point A B C D

Cost Rising (%) 0.57 2.20 3.53 6.17
Emission Reduction (%) 2.75 4.61 6.44 8.11

Fig. 12. Time-averaged electricity cost and carbon emission versus the
length of simulated period, with C ¼ 47Kg, V ¼ 900.

Fig. 13. Percentage of carbon emission of each datacenter under
different emission budget, with V ¼ 100.

Fig. 14. Time-averaged carbon emission of each datacenter under
different values of the control parameter V, with C ¼ 47Kg.

Fig. 15. Total electricity cost at each time slot under different SLA
requirements, with the Medium emission configuration, and V ¼ 100.
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emission from violating the emission budget.When the queue
backlog is small, COCA will primarily minimize the electric-
ity bill, resulting in the growth of the queue backlog. A closer
look at Fig. 16 also shows that the real-time total queue back-
log fluctuatesmore frequentlywith a smaller value of V , since
it puts a stronger emphasis on emission enforcement.

5.5 Additional Advantages of COCA

Having understood the cost-emission tradeoff, we further
examine other advantages of our algorithm, including fast
convergence and power proportionality.

Convergence and running time. The convergence speed of
the inner GBD-based algorithm under different control
parameter V is critical when putting COCA into practical
implementation. Fig. 17 plots the CDF of the number of iter-
ations that our algorithm takes to achieve convergence for
the 3;024 runs under different values of V . Interestingly, we
find that the curves under different values of V are highly
overlapped, which suggests that our GBD-based algorithm is
robust to the selection of V . Furthermore, it clearly shows
that our algorithm is able to converge within 40 iterations for
90 percent of the total runs. For more than half of the total
runs, it can converge within 20 iterations. The fastest run
uses only 3 iterations to converge, and all the runs converge
in no more than 60 iterations. These facts demonstrate the
fast convergence of our GBD-based algorithm. We further
examined the running time of COCA under different values
of V , for V ¼ 1; 10; 100 and 500, the total running time are
527:52; 519:31; 531:77 and 535:04 seconds, respectively.
Since there are 3; 024 time slots in total, solving the real-time
problem at each time slot takes around 0:17 seconds, which
demonstrates the computational efficacy of COCA.

Power proportionality. The enormous energy demand and
carbon emission of cloud computing have forced a growing

push to improve the energy efficiency of the datacenters. A
guiding focus for research into “green” data centers is the
goal of designing datacenters that are “power-proportional”,
i.e., using power only in proportion to the workload. Excit-
ingly, we find that, with the help of dynamic datacenter right
sizing and server speed scaling, COCA could achieve an
ideal power-proportionality. Fig. 18 plots the strict propor-
tionality between power consumption and workload at
each datacenter. Specifically, the proportionality factor (i.e.,
per-request power consumption) of each datacenter equals
to the per-resquest power consumption when the respective
servers in each datacenter running at full load and
maximal service rate (e.g., for DC#2, the per-resquest power
consumption 0:0036 W equals to 1:3� 250W=ð25� 3;600Þ ¼
0:0036W). Besides, we also observe that the DC#2 and DC#3
aremore energy efficient than the DC#1.

6 RELATED WORK

The enormous energy consumption and carbon emission in
datacenters have motivated extensive research [43]. Existing
works have mainly focused on reducing energy consump-
tion or electricity bill [5], [6], [7], [8], [10], which, as we have
demonstrated earlier, does not necessarily translate to car-
bon emission reduction. Our work differs from them in that
we directly examine carbon emission.

In terms of Lyapunov optimization, the concept is not new
and it was applied to navigate the intuitive tradeoff between
the energy cost and capacity of energy storage in [42], [44],
[45]. However, the long-term cost-emission tradeoff incurred
by the spatial and temporal variability of carbon footprint is
non-inherent, and has not been extensively explored for geo-
distributed clouds. Thus, we first take empirical studies to
demonstrate that energy cost minimization conflicts with the
minimization of carbon emission in realistic geo-distributed
cloud services. Then, we apply Lyapunov optimization, gen-
eralized benders decomposition and convex optimization to
arbitrate the long-term cost-emission tradeoff.

Our work is inspired by the pioneer work on managing
carbon emission of datacenters in [2]. We complement it by
considering alternative policies, namely, “Cap and Trade”
and “Baseline and Credit”. Moreover, in [2], the availability
of power-proportional datacenters is assumed. Our frame-
work considers multiple levels, and is able to dynamically
shut off unnecessary servers and adjust CPU speed to
build power-proportional datacenters. The work [2] also
discusses the relation between energy cost and carbon emis-
sion from the national level, but it does not observe the

Fig. 16. Queue backlogs of datacenter under different values of the
control parameter V, with the Medium emission configuration.

Fig. 17. Number of iterations under different values of the control
parameter V, with the Medium emission configuration .

Fig. 18. Power consumption versus workload of each datacenter in each
time slot.
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conflict between energy cost minimization and carbon emis-
sion reduction. Our work substantially complements to it,
since our empirical study is based on the latest updated
electricity price and emission data [18]. By further studying
five representative clouds, we reveal that energy cost mini-
mization conflicts to carbon emission reduction.

A closely related work is [46], which also targets a speci-
fied carbon emission target. Our study is different in the fol-
lowing aspects. First, [46] considers renewable energy
capacity planning for a single datacenter to reduce emission.
Our work is based on the spatial and temporal variabilities of
the carbon footprint to green geo-distributed datacenters.
These two complement with each other. For example, our
framework can be extended to incorporate the use of renew-
able energy [47] to further green the cloud. Second, the data-
center is treated as a black box in [46], whereas our proposed
framework, with capacity right-sizing and server speed scal-
ing, can efficiently cut down the power consumptionwithout
violating the SLA of user requests. Third, an initial prediction
of the entire future workload is needed in the earlier work,
which however can be difficult to obtain, particularly for
bursty and nonstationary workloads. Our framework does
not rely on such a predictor, and instead makes online deci-
sions to enforce the long-term emission budget.

7 CONCLUSION

In response to the enormous energy demand and carbon
emission of geo-distributed datacenters, this paper explored
the spatial and temporal variabilities of carbon footprint to
cut down the carbon emission of the cloud. We first demon-
strated the existence of the cost-emission tradeoff, through
an empirical study on leading geo-distributed clouds. We
then designed and analyzed a carbon-aware online control
framework to balance the three-way tradeoff between elec-
tricity cost, SLA requirement and emission reduction bud-
get. Applying Lyapunov optimization, our carbon-aware
online control framework makes decisions dynamically
across different levels, including geographical load balanc-
ing, capacity right-sizing, and server speed scaling. We
proved that our control framework approaches a delicate
½Oð1=V Þ; OðV Þ� cost-emission tradeoff. It allows a cloud to
achieve a time-averaged electricity cost arbitrarily close to
the optimum, while maintaining the long-term carbon emis-
sion budget. Performance evaluation with empirical data
demonstrates the effectiveness of our proposed framework.

ACKNOWLEDGMENTS

The research was supported in part by a grant from the
National Natural Science Foundation of China (NSFC)
under grant No. 61520106005, by a grant from National 973
Basic Research Program under grant No. 2014CB347800.
The corresponding author is Fangming Liu.

REFERENCES

[1] X. Yi, F. Liu, J. Liu, and H. Jin, “Building a network highway for
big data: architecture and challenges,” IEEE Netw. Mag., vol. 28,
no. 4, pp. 5–13, Jul./Aug. 2014.

[2] P. X. Gao, A. R. Curtis, B. Wang, and S. Keshav, “It’s Not Easy
Being Green,” in Proc. ACM SIGCOMM, 2012, pp. 211–222.

[3] (2014). Google Green. [Online]. Available: http://www.google.
com/green/bigpicture/#/intro/infographics-1

[4] (2011). The Guardian. [Online]. Available: http://www.guardian.
co.uk/environment/2011/sep/08/google-carbon-footprint

[5] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
Right-Sizing for Power-Proportional Data Centers,” in Proc. of
IEEE INFOCOM, 2011.

[6] L. Rao, X. Li, M. D. Ilic, and J. Liu, “Distributed coordination of
internet data centers under multiregional electricity markets,” in
Proc. IEEE, vol. 100, no. 1, pp. 269–282, Jan. 2012.

[7] Y. Yao, L. Huang, A. Sharma, L. Golubchik, andM. J. Neely, “Data
centers power reduction: A two time scale approach for delay tol-
erant workloads,” in Proc. IEEE INFOCOM, 2012, pp. 1431–1439.

[8] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew,
“Greening geographic load balancing,” in Proc. ACM ACM
SIGMETRICS Joint Int. Conf. Meas. Modeling Comput. Syst., 2011,
pp. 233–244.

[9] Z. Zhou, F. Liu, H. Jin, B. Li, and H. Jiang, “On arbitrating
the power-performance tradeoff in SaaS clouds,” in Proc. IEEE
INFOCOM, 2013, pp. 872–880.

[10] A. Wierman, L. Andrew, and A. Tang, “Power-aware speed scal-
ing in processor sharing systems,” in Proc. IEEE INFOCOM, 2009,
pp. 2007–2015.

[11] H. Xu, C. Feng, and B. Li, “Temperature aware workload manage-
ment in geo-distributed datacenters,” in Proc. ACM SIGMETRICS/
Int. Conf. Meas. Modeling Comput. Syst., 2013, pp. 373–374.

[12] (2013). Federal Energy Regulatory Commission. [Online]. Avail-
able: https://www.ferc.gov/

[13] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource Allocation
and cross-layer control in wireless networks,” Found. Trends
Netw., vol. 1, no. 1, pp. 1–149, 2006.

[14] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. San Mateo, CA, USA: Mor-
gan Kaufmann, 2010.

[15] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Pratical power management for enterprise storage,” in Proc.
USENIX Conf. File Storage Technol., 2008, pp. 253–267.

[16] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. Lui, and H. Jin, “Carbon-
aware load balancing for geo-distributed cloud services,” in Proc.
IEEE 21st Int. Symp. Modeling, Anal. Simul. Comput. Telecommun.
Syst., Aug. 2013, pp. 232–241.

[17] (2013). U.S. Energy Information Administration. [Online]. Avail-
able: http://www.eia.gov

[18] (2012). Electric Power Annual. (2012). [Online]. Available: http://
www.eia.gov/electricity/annual/?src=Electricity-f4

[19] (2014). Google Datacenter Locations. [Online]. Available: http://
www.google.com/about/datacenters/inside/locations/index.html

[20] (2014). Global Datacenters. [Online]. Available: https://www.
microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.
aspx

[21] (2014). Global Infrastructure. [Online]. Available: https://aws.
amazon.com/about-aws/global-infrastructure/

[22] (2014). The Facebook Data Center FAQ. [Online]. Available:
http://www.datacenterknowledge.com/the-facebook-data-center-
faq/

[23] (2014). The Apple Data Center FAQ. [Online]. Available: http://
www.datacenterknowledge.com/the-apple-data-center-faq/

[24] (2015). The Green Grid. [Online]. Available: http://www.
thegreengrid.org

[25] (2013). Googles Green PPAs: What, How, and Why. [Online].
Available: www.google.com/green/pdfs/renewable-energy.pdf

[26] (2014). Microsoft Environment. [Online]. Available: www.
microsoft.com/environment

[27] (2014). Facebook Environment. [Online]. Available: www.
facebook.com/iloveenvironment

[28] Y. Chen, R. Mahajan, B. Sridharan, and Z. Zhang, “A provider-
side view of web search response time,” in Proc. ACM SIGCOMM,
2013, pp. 243–254.

[29] H. Xu and B. Li, “Joint request mapping and response routing for
geo-distributed cloud services,” in Proc. IEEE INFOCOM, 2013,
pp. 854–862.

[30] A. Qureshi, “Power-demand routing in massive geo-distributed
systems,” Ph.D. dissertation, Massachusetts Instit. Technol.,
Cambridge, MA, USA, 2010.

[31] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. Ous-
terhout, “It’s time for low latency,” in Proc. 13th USENIX Conf. Hot
Topics Oper. Syst., 2011, p. 11.

[32] Y. Xiang, T. Lan, V. Aggarwal, and Y. Chen, “Joint latency and
cost optimization for erasure-coded data center storage,” in arXiv
1404.4975, 2014.

2518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2016



[33] M. Szymaniak, D. Presotto, G. Pierre, and M. van Steen, “Practical
large-scale latency estimation,” Comput. Netw., vol. 52, no. 7,
pp. 1343–1364, 2008.

[34] (2013). ISO Express. [Online]. Available: http://isoexpress.iso-ne.
com/guest-hub

[35] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. Lau, “Moving big
data to the cloud: an online cost-minimizing approach,” IEEE J.
Sel. Areas Commun., vol. 31, no. 12, pp. 2710–2721, Dec. 2013.

[36] Y. Jin and J. Branke, “Evolutionary optimization in uncertain envi-
ronments-a survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3,
pp. 303–317, Jun. 2005.

[37] M. J. Neely, “Delay-based network utility maximization,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[38] Z. Zhou, F. Liu, Z. Li, and H. Jin, “When smart grid meets geo-dis-
tributed cloud: An auction approach to datacenter demand
response,” in Proc. IEEE INFOCOM, 2015, pp. 2650–2658.

[39] A. M. Geoffrion, “Generized benders decomposition,” J. Optimiza-
tion Theory Appl., vol. 10, no. 4, pp. 237–260, 1972.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[41] (2015). Primal and Dual Decomposition Notes. [Online]. Avail-
able: http://www.stanford.edu/class/ee364b/lectures.html

[42] Y. Guo and Y. Fang, “Electricity cost saving strategy in data cen-
ters by using energy storage,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 6, pp. 1149–1160, Jun. 2013.

[43] Z. Zhou, F. Liu, B. Li, B. Li, H. Jin, R. Zou, and Z. Liu, “Fuel cell gen-
eration in geo-distributed cloud services: A quantitative study,” in
Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., 2014, pp. 52–61.

[44] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubrama-
niam, “Optimal power cost management using stored energy in
data centers,” in Proc. ACM SIGMETRICS Joint Int. Conf. Meas.
Modeling Comput. Syst., 2009, pp. 221–232.

[45] W. Deng, F. Liu, X. Liu, and H. Jin, “MultiGreen: Cost-minimizing
multi-source datacenter power supply with online control,” in
Proc. ACM e-Energy, 2013, pp. 149–159.

[46] C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam,
“Carbon-aware energy capacity planning for datacenters,” in
Proc. IEEE 20th Int. Symp. Modeling, Anal. Simul. Comput. Telecom-
mun. Syst., 2012, pp. 391–400.

[47] W. Deng, F. Liu, H. Jin, B. Li, and D. Li, “Harnessing renewable
energy in cloud datacenters: Opportunities and challenges,” IEEE
Netw. Mag., vol. 28, no. 1, pp. 48–55, Jan./Feb. 2014.

Zhi Zhou received the BS and ME degrees from
the School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST), Wuhan, China. He is currently working
toward the PhD degree in the School of Com-
puter Science and Technology, HUST. His pri-
mary research interests include green cloud
computing and smart grid.

Fangming Liu received the BEngr degree in
2005 from the Department of Computer Science
and Technology, Tsinghua University, Beijing; and
the PhD degree in computer science and engi-
neering from the Hong Kong University of Sci-
ence and Technology, Hong Kong, in 2011. He is
a full professor in the Huazhong University of Sci-
ence and Technology, Wuhan, China. His
research interests include cloud computing and
datacenter, mobile cloud, green computing, SDN,
and virtualization. He is selected into National

Youth Top Talent Support Program of National High-level Personnel of
Special Support Program (The “Thousands-of-Talents Scheme”) issued
by Central Organization Department of CPC. He is a youth scientist of
National 973 Basic Research Program Project of SDN-based Cloud
Datacenter Networks. He was a StarTrack visiting faculty in Microsoft
Research Asia in 2012 to 2013. He has been the editor-in-chief of EAI
Endorsed Transactions on Collaborative Computing, a guest editor for
IEEE Network Magazine, an associate editor for Frontiers of Computer
Science, and served as a TPC for ACM Multimedia 2014, e-Energy
2016, IEEE INFOCOM 2013-2016, ICNP 2014, IWQoS 2016, and
ICDCS 2015-2016. He is a member of the IEEE.

Ruolan Zou received the BS degree from the
School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, in 2014. She is currently working
toward the MS degree in the School of Comput-
ing Science at Simon Fraser University, British
Columbia, Canada. Her primary research inter-
ests include datacenter, networking, and cloud
computing.

Jiangchuan Liu (S’01-M’03-SM’08) received the
BEng degree (cum laude) from Tsinghua Univer-
sity, Beijing, China, in 1999, and the PhD degree
from The Hong Kong University of Science and
Technology in 2003, both in computer science.
He is a full professor in the School of Computing
Science, Simon Fraser University, British Colum-
bia, Canada, and an EMC-Endowed visiting chair
professor of Tsinghua University, Beijing, China
from 2013 to 2016. From 2003 to 2004, he was
an assistant professor at The Chinese University

of Hong Kong. He is a corecipient of ACM TOMCCAP Nicolas D. Geor-
ganas Best Paper Award 2013, ACM Multimedia Best Paper Award
2012, IEEE Globecom 2011 Best Paper Award, and IEEE Communica-
tions Society Best Paper Award on Multimedia Communications 2009.
His research interests include multimedia systems and networks, cloud
computing, social networking, online gaming, big data computing, wire-
less sensor networks, and peer-to-peer and overlay networks. He has
served on the editorial boards of IEEE Transactions on Multimedia,
IEEE Communications Surveys and Tutorials, IEEE Access, IEEE Inter-
net of Things Journal, Elsevier Computer Communications, and Wiley
Wireless Communications and Mobile Computing. He is a senior mem-
ber of the IEEE.

Hong Xu received the BEng degree from the
Department of Information Engineering, The Chi-
nese University of Hong Kong, in 2007, and the
MASc and PhD degrees from the Department of
Electrical and Computer Engineering, University
of Toronto. He joined the Department of Com-
puter Science, City University of Hong Kong in
August 2013, where he is currently an assistant
professor. His research interests include data
center networking, cloud computing, network
economics, and wireless networking. He

received an Early Career Scheme Grant from the Research Grants
Council of the Hong Kong SAR, 2014. He also received the best
paper award from ACM CoNEXT Student Workshop 2014. He is a
member of ACM and the IEEE.

Hai Jin received his PhD degree in computer
engineering from HUST in 1994. He is a Cheung
Kung Scholars chair professor of computer sci-
ence and engineering at the Huazhong University
of Science and Technology (HUST), China. He
was awarded the Excellent Youth Award from the
National Science Foundation of China in 2001.
He is the chief scientist of ChinaGrid, the largest
grid computing project in China, and chief scien-
tist of the National 973 Basic Research Program
Project of Virtualization Technology of Computing

Systems. His research interests include computer architecture, virtuali-
zation technology, cluster computing and grid computing, peer-to-peer
computing, network storage, and network security. He is a senior mem-
ber of the IEEE and a member of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHOU ETAL.: CARBON-AWARE ONLINE CONTROLOF GEO-DISTRIBUTED CLOUD SERVICES 2519



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


