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Abstract— The explosion of online shopping brings great
challenges to traditional logistics industry, where the massive
parcels and tight delivery deadline impose a large cost on the
delivery process, in particular the last mile parcel delivery.
On the other hand, modern cities never lack transportation
resources such as the private car trips. Motivated by these
observations, we propose a novel and effective last mile parcel
delivery mechanism through car trip sharing, to leverage the
available private car trips to incidentally deliver parcels during
their original trips. To achieve this, the major challenges lie
in how to accurately estimate the parcel delivery trip cost and
assign proper tasks to suitable car trips to maximize the overall
performance. To this end, we develop Car4Pac, an intelligent
last mile parcel delivery system to address these challenges.
Leveraging the real-world massive car trip trajectories, we first
build up a 3D (time-dependent, driver-dependent and vehicle-
dependent) landmark graph that accurately predicts the travel
time and fuel consumption of each road segment. Our prediction
method considers not only traffic conditions of different times,
but also driving skills of different people and fuel efficiencies of
different vehicles. We then develop a two-stage solution towards
the parcel delivery task assignment, which is optimal for one-to-
one assignment and yields high-quality results for many-to-one
assignment. Our extensive real-world trace driven evaluations
further demonstrate the superiority of our Car4Pac solution.

Index Terms— Intelligent transportation system, trajectory
data mining, route planning, travel cost prediction.

I. INTRODUCTION

RECENT years have witness the rapid development of
e-commerce, which also brings unprecedented challenges
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to the traditional logistics industry. US e-commerce sales are
estimated to be 409.2 billion dollars in 2017 and increase to
561.5 billion dollars by 2020 [1], which accordingly gener-
ates massive parcels for delivery. The parcels generated in
China’s 2017 online Singles’ Day are estimated to achieve
1.5 billion and have to be delivered in a few days [2].
Such a massive parcel delivery demand obviously surpasses
the regular logistical capability, delaying the eventual parcel
delivery time for days or even weeks [3]. Considering the
entire logistics chain, last mile delivery [4] accounts for the
most expensive component, ranging from 13 percent to even
75 percent of the entire delivery cost [5]. This is mostly due
to the diverse delivery destinations where large-scale parcel
consolidation via train or planes no longer applies, leading
to expensive human cost. Amazon’s annual shipping cost
achieved 7.2 billion in 2016 [6], and it proposed AmazonFlex1

that hires part-time drivers for parcel delivery. Post service
providers in some countries (e.g., Canada Post [7]) even plan
to stop the home delivery service to reduce this last mile cost.
On the other hand, McKinsey, an international famous consult
company confirms again that the majority of consumers prefer
the to-door delivery and the same day delivery [8].

The key problem lies in the mismatch between the limited
logistics capability and the ever increasing parcel delivery
demand. Improving logistics capacity to catch the delivery
demand no doubt is costly. Furthermore, it is usually the
burst of demand in holiday periods that greatly challenges the
delivery services, leading to accumulative delivery delay for
customers. It is also not cost-efficient to over-provision the
delivery capacity to meet such transient demand. We there-
fore turn to other approaches to dynamically fill in the gap
between the limited logistics capability and the increasing
delivery demand. As a matter of fact, modern cities are full
of transportation resources. We further examine a citywide
private car trajectory dataset and observe that everyday car
trip is rich enough and covers all the citywide main roads.

Motivated by these observations, in this paper we propose
a novel and efficient parcel delivery mechanism through car
trip sharing, to address the mismatched logistics capacity
and ever-increasing parcel delivery demand. Different from
existing car sharing solutions (such as ZipCar2 and Car2Go3)

1https://flex.amazon.com/
2http://www.zipcar.com/
3https://www.car2go.com/US/en/
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Fig. 1. A toy example of parcel delivery through car trip sharing. A driver is
planning to travel from location S to D through the dashed red route. Assume
a parcel delivery is scheduled from A to B. Then the driver can deliver this
parcel incidentally during the trip through the new solid blue route.

that treat cars as sharing resources, we treat car trips as sharing
resources, where the parcel delivery can be completed through
such a resource sharing. Fig. 1 illustrates an example of parcel
delivery through car trip sharing. Assume that a driver is
planning to have a trip from the source S to the destination
D. A parcel delivery is scheduled from A to B, where A is
very close to S and B is close to D. Note that A and B can be
any user-designated locations, including home addresses or a
storage station. If we can ask the driver to deliver this parcel on
the trip with a reasonable amount of reward for compensation,
then the parcel delivery can be completed more promptly
and economically compared to the traditional logistics
service.

In general, we view the delivery of each parcel as a task
with a monetary delivery reward upon completion by the given
arrival deadline. Given the relatively lower cost on the delivery
reward compared to the cost of sending couriers for delivery
and the extra income for each driver, parcel delivery through
car trip sharing is a win-win solution for all parties.

Although desirable, it is challenging to turn this idea into a
practical system. First, since each parcel delivery has an arrival
deadline, we need to guarantee that a driver can deliver a parcel
before its deadline. Given the complex and time-dependent
traffic conditions, it is difficult to accurately estimate when a
delivery can be completed with a car trip. Second, once taking
a task, the driver may have to pay an extra cost (e.g., extra time
cost and fuel consumption) as the parcel delivery task may
inevitably change the driver’s trip route. A driver is unlikely
to take a task with a higher extra cost than reward. Given
that multiple car trips may be available to deliver a particular
parcel, how to select the best choice remains a problem. Last
but not least, such a schedule system requires a fast allocation
process, considering the number of parcel delivery tasks and
potential car trips can be massive.

To this end, we develop Car4Pac, a novel citywide last
mile parcel delivery system through intelligent car trip sharing,
and closely examine the opportunities and challenges therein.
We first construct a 3D4 (time-dependent, driver-dependent
and vehicle-dependent) landmark graph to accurately estimate
the travel time cost and fuel consumption cost of each road
segment. Mining from more than 25,978 car trips in a citywide

4In this paper, “3D” always indicates “time-dependent, driver-dependent and
vehicle-dependent”.

road network from our dataset, we learn the travel time
and fuel consumption characteristics of each road segment
in each time period. Given the different driving skills of
drivers (e.g., skilled driver may drive faster and cause less
trip time) and different fuel efficiencies of vehicles, we design
a mechanism to calibrate their impacts and estimate the costs
on each road segment at a particular time using a Gaussian
mixture model (GMM) [9]. With the constructed fine-grained
3D landmark graph, we can further calculate the 3D travel
cost for each potential car trip.

We then formulate the parcel delivery task assignment as a
task-trip matching problem that aims to maximize the social
welfare, i.e., finding a solution to assign tasks to proper car
trips so that the sum utilities of the platform and all drivers
taking delivery tasks are maximized. As the general task
assignment problem can be very complex and challenging
to solve, we first consider a simpler case, where one-to-one
assignment takes place. We then proceed to discuss the general
many-to-one assignment situation. Specifically, we formulate
the one-to-one task-trip assignment as a maximum weighted
matching problem and solve it optimally in polynomial time.
For the many-to-one case, we design a heuristic algorithm that
conducts assignment iteratively based on the one-to-one case.
To our best knowledge, Car4Pac is the first to explore the
opportunities of having parcels hitchhiking private car trips
and propose comprehensive models and solutions.

We conduct extensive evaluations to verify the effectiveness
of Car4Pac based on a citywide real-world massive
vehicle trajectory data in Vancouver, Canada. Our dataset
collects more than 8,634,000 vehicle driving records from
09 June 2016 to 30 June 2016, each record detailing the GPS
information, remaining fuel, car type, driver identification
and so on. The result shows that our 3D trip cost prediction
can reduce the prediction error by up to 60 percent when
compared to the approach without considering different
driving skills and fuel efficiencies. In a typical car trip
sharing context, Car4Pac can complete more than 90 percent
delivery tasks and achieve 40 percent higher social welfare
than the state-of-the-art method.

II. RELATED WORK

In this section, we first introduce some related research
fields about the last mile parcel delivery. According to their
own focus, we divide these related works into three categories,
i.e., car trip sharing, last mile parcel delivery, and route
planning and recommendation.

A. Car Trip Sharing

Car trip sharing or carpooling has attracted a lot of
researches in recent years due to its unique advantages in
reducing the traffic congestion, improving resource utilization
and satisfying the ever increasing travel and delivery demands.
The main focus of car trip sharing is trying to find an
optimal car trip scheduling to satisfy a proposed target such
as minimizing the distance and maximize the utility. For
instance, Guidotti et al. [10] conducted a real data-driven
analysis and constructed the network of potential carpooling to
minimize the single occupancy vehicles. Berlingerio et al. [11]
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Fig. 2. The framework of Car4Pac.

proposed a carpooling system that not only minimized the
number of cars needed at the city level, but also maximized
the enjoyability of people sharing a trip. Ferrari et al. [12]
mainly designed a greedy algorithm for trip matching to reduce
the computational complexity, while they only considered the
metrics of distance. Ferreira et al. [13] proposed a system-
atical business model for collaborative carpooling. Yet they
mainly focused on the module design, credit mechanism and
payment strategy rather than the optimal matching. Some
related works [14]–[17] also designed model to find optimal
carpool routing for urban ridesharing. These works above
mostly focused on finding suitable matching between trips and
passengers with specific travel plans, which is not dedicated
to parcel delivery.

B. Last Mile Parcel Delivery

Last mile parcel delivery has also become a hot topic
in recent years and many works are proposed to improve
this service. Punakivi et al. [18] analyzed the cost saving
between using reception box and delivery box through exten-
sive simulation, and discussed the suitability under different
consideration. Boyer et al. [19] mainly investigated the impact
of customer density and delivery window size on the delivery
costs. Some existing works particularly focused on using car
trip sharing to improve the last mile delivery. Balcik et al. [20]
proposed a mixed integer programming model for vehicle
schedule between local distribution centers and target locations
with practical considerations, while it is not a general point-
to-point delivery mechanism and can be inefficient when
the scale is large. Wang et al. [21] modeled the last mile
delivery model as a network min-cost flow problem with some
pruning techniques. Yet it still simplified many constraints and
mainly considered the delivery distance. Sadilek et al. [22]
proposed a crowdsourced parcel delivery mechanism that one
user delivers the assigned parcel to another user nearby.
Each package is passed from person to person according to
the overlaps in time and space until it is delivered to the
destination. Wang et al. [23] proposed a ridesharing based
package delivery approach that mainly exploited the online

package and trip matching. Chen et al. [24] exploited the
relays of taxis with passengers to deliver parcels along with
the passenger transportation process. As to such hop-by-
hop solutions, the platform needs to build many interchange
stations to store the parcels when the former delivery has
finished yet the latter trip has not begun, which can introduce
huge extra cost. In our Car4Pac system, each parcel delivery
task only relies one trip, even though one driver during a trip
is allowed to take multiple parcels.

C. Route Planning and Recommendation

The route planning and recommendation through trajectory
data mining are the foundations of such trip sharing and
play important roles in our Car4Pac system. Many recent
works have mined massive trajectory based data [25]–[30] and
proposed intelligent route planning model towards different
targets. Ding et al. [31] considered the dynamic road network
with the cost varying from time to time and studied the
problem of finding the best departure time to minimize the
total travel time from the source to the destination. Winter [32]
particularly considered the costs of turns in route planning
and reduced this problem as a pseudo-dual graph. Similarly,
Szczerba et al. [33] also considered multiple mission scenarios
such as minimum route length and maximum turning angle.
However, these works are not involved with complex real-time
traffic conditions.

Baum et al. [34] focused on the key problem of electric
vehicle route planning, i.e., finding a routing path that min-
imizes the energy consumption, and developed a practical
algorithm achieving fast computation. Besides previous rout-
ing plans that focused on a single target (e.g., minimizing
the travel time or the fuel consumption), many works also
exploited more diversified navigation models. Fan et al. [35]
claimed that local drivers had a better knowledge of last mile
road information and chose the most preferred last mile route
as the recommendation to drivers. Some works [28], [29]
further exploited more comprehensive routing targets consid-
ering distance, fuel cost, time cost, weather, etc., to achieve
personalized routing recommendation based on the individual
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preference of drivers. Different from these aforementioned
works, we take a holistic approach towards the last mile parcel
delivery based on effective route planning.

III. OVERVIEW OF CAR4PAC

In this paper, we mainly consider how to fully utilize
the car trip resources for parcel delivery so as to achieve
maximized social welfare.5 The Car4Pac system consists of
three modules, including 3D Landmark Graph Construction,
3D Travel Cost Estimation, and Delivery Task Assignment,
as illustrated in Fig. 2. Given the collected historical trajectory
data, the parcel delivery tasks and the car trip plans, Car4Pac
calculates the tasks assignments.

A. 3D Landmark Graph Construction

Rather than simply using the static road network infor-
mation from open source maps, we build up a 3D (time-
dependent, driver-dependent and vehicle-dependent) landmark
graph based on the collected massive car trip trajectory data,
where each intersection is represented as a vertex and each
road connecting two intersections is viewed as an edge. Differ-
ent from existing works [24] that only considered time-varying
traffic conditions, we comprehensively analyze the impact
of different time, different drivers and different vehicles on
the cost of each edge. We further estimate the edge cost
employing a Gaussian mixture model (GMM) based algorithm
and construct a fine-grained landmark graph considering all
these factors.

B. 3D Travel Cost Estimation

When deciding whether to assign a task to a trip, we need to
estimate the arrival time of each parcel and the travel cost of
each target trip. To do so, we first need to calculate the optimal
travel route for a trip. Given that the cost of a trip is affected
by different departure time, different drivers’ driving skills and
different vehicle types, we construct a time-expanded graph
to solve this dynamic trip routing problem efficiently and
calibrate the cost of each trip considering individual driving
skill and vehicle type.

C. Task Assignment via Car Trip Sharing

We develop a two-stage algorithm towards the parcel deliv-
ery task assignment. For the first stage, we consider the one-to-
one allocation and convert it into a bipartite weighted matching
problem. We can solve it optimally in polynomial time. For
the second stage, we generalize the problem to the many-
to-one case and design a heuristic algorithm to update the
assignment in an iterative manner.

IV. 3D LANDMARK GRAPH CONSTRUCTION

A. Data Driven Graph Topology Construction

We start from constructing a routable graph from the
collected massive historical car trip trajectories to represent

5The price design is beyond the scope of this work and is left for future
work.

the complex citywide road network. We calibrate the GPS
locations of each trajectory using Google SnapToRoads API6

and get uniform GPS samples for each trajectory given that
raw GPS records of trajectories are usually skewed and not
perfectly mapped to roads. After this processing, we are able to
determine whether two trajectories have an intersection. When
two trajectories intersect, we identify the point of intersection
as a landmark, indicating a vertex in our graph. Note that
we use the trajectory intersections rather than the physical
road intersections to construct the landmark graph for the
following reasons. First, it does not rely on specific road infor-
mation, making our model adaptive to different cities. Second,
it enables the further edge cost calibration (in the following
subsections) since each edge have historical trajectory data.
Moreover, the graph derived from the trajectories can be more
practical than that from physical road information as it can
naturally avoid roads that are under maintenance, hard to drive
and too remote, etc. Given the massive trajectories cover all
the citywide main roads, we can construct such a landmark
graph with the following formal definition:

Definition 1 (Landmark Graph): A landmark graph is
defined as a directed graph G = (V, E), where V and E are
a vertex set and an edge set, respectively. A vertex vi ∈ V is
a landmark representing the intersection of at least two roads.
A directed edge ek = (vi , v j ) ∈ E denotes a directed road
segment, indicating there is a road from vi to v j .

With the calibrated GPS records of each trajectory, a car
trip can be mapped into the landmark graph and represented
by a sequence of consecutive edges,7 which is defined as:

Definition 2 (Trip): A car trip T describes a
trip plan from one place to another, defined as
< T .s,T .e,T .t,T .dr,T .ve >, where T .s is the trip
start location, T .e is the trip end location, T .t is the trip
start time, T .dr is the driver identification and T .ve is the
vehicle type of this trip. A trip T includes a consecutive edge
sequence < e1, e2, ..., eA >, where e j ∈ E.

When assigning a parcel delivery task to a trip, a key
consideration is whether this task is worth taking. Thus we
need to estimate the cost of a trip, which is defined as follows:

Definition 3 (Trip Cost): The cost of a trip is defined by a
trip cost function. We consider two main factors, i.e., the time
cost and the fuel cost. Given a particular trip with the edge
sequence in definition 2, we can calculate trip cost as C(T ) :
(CT (T ), CF (T )) → R, where CT and CF represent the travel
time cost and fuel consumption cost, respectively.

Definition 4 (Parcel Delivery Task): A parcel delivery task
P includes five properties: a pick up location P .p, a drop off
location P .d , a task submission time P .t a required arrival
deadline P .ddl, and a reward P .rew for completing this task.
A parcel delivery task should be completed by its deadline.

Since a trip route contains a sequence of edges, to calculate
the trip cost, we need to know the travel cost (including the
travel time cost and fuel consumption cost) of each edge at

6https://developers.google.com/maps/documentation/roads/snap
7In reality, a vehicle can start or stop in the middle of a road instead of the

intersection. For ease of exposition, we merge the trip source and destination to
the nearest landmark, which only introduces marginal errors as demonstrated
by our data analysis.
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Fig. 3. The distribution of time periods in work days and rest days.

a particular time. Car4Pac obtains the edge costs from the
collected trace data and learns the features therein to estimate
the future edge cost. We next analyze different factors that
affect the cost estimation and introduce the 3D landmark graph
construction mechanism.

B. Time-Dependent Partition

The time and fuel costs of traveling an edge usually highly
depend on the traffic conditions, which are closely related
to different departure time. For example, roads are usually
much more crowded during rush hours and one can spend
more time and fuel driving to the same destination than
usual.

Previous works [24], [25] usually adopted coarse-grained
time slot division, e.g., a day is divided into several equal
segments, and predict specific features for each segment.
This method is however not accurate enough in this context.
Car4Pac adopts a fine-grained two-level partition to accurately
capture the time-dependent features for travel time cost and
fuel cost on each edge, as illustrated in Fig. 3. The first level
is day level partition. We divide a week into work days W and
rest days R, where we also include holidays and weekends in
the rest days. For the work days, we divide a day into three
time period: rush hours Wr , day-time hours Wd and night-time
hours Wn ; and for the rest days, we can roughly divide a day
into two time period: day time Rd and night time Rn . Thus,
the first level partition has five time period types. The second
level is minute level partition, dividing a day into L = [ 24∗60

α ]
time slots, where α indicates the interval minutes between two
consecutive slots, e.g., 15 minutes.

Given an edge ek and a time slot l, we select the car trips
whose trajectory passes through this edge during this particular
time slot as Sl

ek
. Since traffic flow usually exhibits periodic

features, we consider extending the time slot in one day to
the corresponding time slots in a time cycle (e.g., a week or
a month) with the same day level type (i.e., work days or
rest days). For example, car trips of time slot l of work days
on edge ek can be calculated as Sl

ek
(Mon) + ... + Sl

ek
(Fri)

if the time cycle is a week. In the rest of the paper, all time
slots mean the extended time slots unless otherwise specified.
Based on Sl

ek
, we can obtain the cost-count set Cl

T ,ek
and Cl

F,ek
as {(cost, count)}, where cost means the travel time or fuel
consumption, and count means the number of such trips that
are observed.

Fig. 4. The count of different travel time through an edge w and w/o
driver-dependent calibration.

C. Driver-Dependent Calibration

Besides the time-dependent traffic conditions, people’s dif-
ferent driving skills also impose an obvious impact on the cost
of travel time for a particular edge. Even departure at the same
time, people with different driving skills can go through a road
using different time. For example, skilled or senior drivers
may prefer to change lanes and overtake other cars frequently
so as to drive faster. As a contrast, those unskilled or junior
drivers usually tend to drive strictly following the speed limit
and only change lane when necessary (e.g., turning left or
right in the next intersection), leading to a longer travel time
on the same road. Such different behaviors can accumulate
to a large variance in Cl

T ,ek
. Fig. 4(a) illustrates the count of

different travel time through an edge. We can observe that the
travel time distribution is relatively dispersed and the fastest
trip uses only one-third time compared to the slowest trip,
which is possibly due to the large diversity in driving skills.
Thus, the actual benchmark travel cost of each edge is quite
driver-dependent and we need to calibrate it for accurate cost
estimation.

We thus try to identify the drivers for each trip and calibrate
the costs based on their individual driving skills. We define the
driving skill index based on their average trip time, as follows:

Definition 5 (Driving Skill Index): Assume that each car in
our dataset is used by the same driver and the driver keeps
his/her driving skill consistent. Then the driving skill index
DSu related to a particular driver u is represented as the mean
ratio between his/her travel time through every road and other
drivers’ average travel time through the same road.

DS is calculated for each driver as the following steps. For
a particular driver u, all the edges he/she has driven in all
time slots are first extracted. Since each car has a unique ID
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Fig. 5. The count of different fuel consumption through an edge w and w/o
vehicle-dependent calibration.

in our dataset, we can easily retrieve all the car trips as well
as the related edges belonging to a specific driver. Given a
particular Cl

T ,ek
, we then represent DSl

u,ek
as the ratio of the

travel time cost of driver u and the average travel time cost
of all other drivers at edge ek during time slot l. Thus, DSu

is then calculated as the average value of all DSl
u,ek

through
our dataset. Repeating this process, we can obtain the driving
skill index for every driver. Finally, we calibrate the travel
time cost for a road at a given time period by dividing each
cost in Cl

T ,ek
by the corresponding DSu . Fig. 4(b) shows

the calibrated benchmark travel time of the same road as
in Fig. 4(a). We can find that the cost distribution is more con-
centrated compared to the original costs, where most people
use between 60 seconds to 80 seconds to pass through this road
segment.

D. Vehicle-Dependent Calibration

Car trips with different vehicle types usually have differ-
ent fuel efficiency (represented by fuel consumption of per
100 kilometers in city road), causing diverse fuel consumption
collection in Cl

F,ek
. For example, a truck can consume twice

the fuel as that of a small sedan on the same road. Fig. 5(a)
shows the count of fuel consumption levels on the same edge.
We can find that the fuel consumption distribution is quite
dispersed without a centralized region. This is possibly due to
the neglect of vehicle type.

To accurately evaluate the benchmark fuel cost of an edge,
however, we need a unified indicator. We first choose a
particular vehicle type v0 and specify the fuel efficiency of this
vehicle type fv0 as the baseline fuel efficiency. Note that the
fuel efficiency data can be obtained from the official vehicle
manuals given the detailed car types. Similarly, we define a
fuel efficiency index F E as follows:

Definition 6 (Fuel Efficiency Index): Given a baseline vehi-
cle type v0 and the corresponding fuel efficiency fv0 . The fuel
efficiency index of vehicle type v is defined as F Ev = fv

fv0
,

indicating the fuel efficiency ratio of car type v and the
baseline car type v0.

We can next calibrate the fuel consumption cost by divid-
ing each cost in Cl

F,ek
by the corresponding fuel efficiency

index F Ev based on this index. Fig. 5(b) show the count of
benchmark fuel consumption after calibration. Compared to
raw data, the cost distribution after calibration are obviously
more centralized and show better statistical characteristics.
These calibrated metrics further enable us to learn the actual
characteristics of travel cost and achieve an accurate 3D cost
estimation.

E. GMM Based Edge Cost Estimation

Next, we view the costs of each time slot as random
distributions and estimate random variables RV l

T ,ek
and RV l

F,ek

for each cost. Intuitively, we can consider Cl
T ,ek

and Cl
F,ek

as
the travel time costs and fuel consumption costs of time slot
l. Yet such an estimation can be inaccurate and not robust for
two reasons. First, since traffic changes gradually, this hard
time slot partition cuts off the continuity of time, which can
lead to an inaccurate traffic features capture. Second, given our
fine-grained time slot partition, the number of costs in each
time slot can be limited, or even empty. For example, it is
likely that no car passes through a road in midnight so that
we are unable to estimate its random variable.

We therefore utilize a cost overlay mechanism to address
this issue. When estimating the random variable in time slot
l, we not only consider the costs in l (i.e., Cl

T ,ek
and Cl

F,ek
),

but also consider the costs of the time slots nearby. That is,
the costs of nearby time slots are multiplied by a weight and
then adds to the costs in l. Obviously, a farther time slot should
have a smaller weight. We employ the widely-used exponential
decaying function Decay(t) = e− t

λ , where λ indicates the
mean lifetime. The contribution of time slot x regarding the
target time slot l is represented as follows:

Decay(x, l) = e− 1
λ(x,l) ·min{|x−l|,|x+D−l|,|x−D−l|} (1)

λ(x, l) =

⎧⎪⎨
⎪⎩

τla , if x and l are in the same

time period type

τsm, otherwise

(2)

where D is the number of time slots in a day equal to [ 24∗60
α ],

τla is a larger value and τsm is a smaller value. We set λ(x, l)
as different values according to whether x and l have the
same time period type (refer to §IV-B), different from [29]
using a constant mean lifetime parameter. This is intuitive to
understand: If x and l belong to the same time period type
(e.g., the rush hour Wr ), the cost features of x is more similar
to i so that λ(x, l) uses a large mean lifetime parameter τla

to achieve a slow decaying. Otherwise, λ(x, l) takes a small
value τsm for fast decaying if x and l fall in different time
periods. In this way, we can calculate the final Cl

T ,ek
and Cl

F,ek
as {(cost,

∑
x count (x) · Decay(x, l))}. Fig. 6(a) illustrates a

simple case of the cost overlay mechanism for a particular
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Fig. 6. An example of using cost overlay and GMM based estimation.

time slot based on the travel time cost of a road. We can
observe that the counts of nearby slots complement that of the
current slot, e.g., there is no data record from travel time 55s
to 60s, while with the cost overlay mechanism we now have
corresponding data records. This mechanism makes the law of
data distribution more clear, especially when some roads do
not have very dense data samples.

After obtaining the final benchmark time-dependent travel
time and fuel consumption cost for each time slots on every
road, we next consider learning a random variable and its
probability function. Given the possibly diverse data distri-
bution, we need a model that can generally fit all kinds of
distributions well. As such, we consider using Gaussian mix-
ture model (GMM) to represent these random variables. As a
linear combination of multiple Gaussian distributions, GMM
is able to approximate any probability distribution [9], which
fits well in our context. Fig. 6(b) shows an example of using
two-component GMM to estimate the travel time distribution.
We can find that GMM is able to fit the distribution precisely.
Finally, we use the expectation of random variables RV l

T ,ek
and

RV l
F,ek

as the estimated travel cost (including travel time cost
E(RV l

T ,ek
) and fuel consumption cost E(RV l

F,ek
)) for time

slot l on edge ek , and the 3D landmark graph is thereby con-
structed. The entire 3D landmark graph construction algorithm
is presented in Algorithm 1.

It is worth noting that our prediction approach applies well
in the real world scenario where the trip data is changing over
time (e.g., the travel cost of an edge may suddenly increase due
to the road maintenance). Recall that we maintain a time cycle
(a week or a month) when calculating the costs of each time
slots. We update the estimated cost-count set by incorporating
the new data of a time slot into the cycle and removing the
last one from the cycle. We then recalculate the new edge cost

Algorithm 1 3D Landmark Graph Construction
Input: Vehicle trajectories from dataset.
Output: The landmark graph G.

1 Build up the vertices and edges based on the historical
trajectories;

2 Retrieve all the car trips from these trajectories;
3 Calculate the DSu for each driver u;
4 Calculate the F Ev for each car type v;
5 foreach ek in E do
6 foreach l in TimeSlots L do
7 Calculate initial Cl

T ,ek
and Cl

F,ek
;

8 Calibrate Cl
T ,ek

and Cl
F,ek

with DIu and F Ev ;
9 Use cost overlay mechanism and Decay() to

obtain new Cl
T ,ek

and Cl
F,ek

;
10 Estimate random variable RV l

T ,ek
and RV l

F,ek
using

GMM;
11 Mark E(RV l

T ,ek
) and E(RV l

F,ek
) as the estimated

cost;

12 return landmark graph G;

through the 3D analysis. In this way, the estimated edge cost
of each road can be updated in real time.

V. 3D TRAVEL COST ESTIMATION

Given that the travel cost is dependent on different departure
time, driving skills and vehicle types, we next consider how
to select the optimal routing path for a particular trip and
achieve an accurate travel cost estimation. Comparing with
traditional static shortest path problem, the travel time and the
corresponding cost of each path in our problem are uncertain
given the cost of each edge in the landmark graph is time-
dependent, driver-dependent and vehicle-dependent. Thus this
problem is equivalent to finding the shortest path in a dynamic
weighted graph. We consider finding an optimal path to
minimize the travel time for a given trip.

According to the travel distance, the problem actually can
be divided into two situations. First, a travel trip has quite short
distance and the entire time period is covered by only one time
slot. Since the landmark graph is static in this situation, we can
directly use the traditional shortest path finding algorithm
such as Dijkstra algorithm [36] to find the travel path with
the least travel time cost. Second, for a long trip that the
travel time falls in multiple time slots, the weight of each
time slot for each edge is different in the landmark graph.
Then the weights of edges change during the path finding
in this situation. We assume that all the car trip satisfy the
first-in-first-out (FIFO) property,8 which is exhibited in many
networks, in particular transportation networks [37]. Then this
dynamic shortest path problem can be solved within multiple
stages, where each stage indicates a time slot.

The specific steps are described as follows. We denote the
weight of an edge ek in a particular time slot l as w(ek , l).

8The FIFO property stipulates that vehicles exit from an arc in the same
order as they entered, so that delaying one’s departure along any path never
results in an earlier arrival at an intended destination.
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Then an edge has L different weights in total, where L is the
total time slot number. If a trip departs at a particular time
within time slot l, then we begin to search the shortest path
using the weights w(ek, l). When the arrival time at any node
spans a time slot during the searching process, we then change
the cost of every edge as w(ek, l + 1) and continue searching
(note that if we reach the last time slot in a day, we next switch
to the first time slot of the next day). We repeat this process
until we reach the destination node.

Note that for each particular car trip, we calculate the travel
time and fuel consumption considering the driver dependent
calibration and vehicle dependent calibration, namely, using
a 3D travel cost estimation. Recall that we have obtained
the driving skill index for each driver and the fuel efficiency
index for each vehicle during the 3D landmark construction
(in §IV). Therefore, when calculating the travel cost of a trip
related with a particular driver u, we calibrate the edge cost
of the landmark graph by multiplying the original cost by
DSu to obtain the driver specific cost. Besides, if a trip is
related to a vehicle type v, the specific fuel consumption cost
is the product of corresponding benchmark value and the fuel
efficiency index F Ev . For those new drivers without historical
records or car trips without specifying vehicle type, we set the
two indexes both as 1 so that their estimated cost is the same
as the benchmark value. In this way, we can finally obtain the
parcel delivery time and the corresponding travel cost for each
particular trip.

VI. TASK ASSIGNMENT VIA CAR TRIP SHARING

In this section, we consider how to formulate the problem of
parcel delivery through car trip sharing and solve it efficiently.
We first introduce some basic definitions and formulate the
task assignment problem as an integer programming model.
Then we develop a two-stage algorithm to solve it efficiently,
namely, achieving the optimal solution for the one-to-one case
and solving the many-to-one assignment in an iterative manner.

A. Problem Formulation

People with potential trips can share their future trip plans
with specified source, destination, departure time and so on
(recall Definition 2). A parcel delivery task can be assigned to
a car trip, while two basic requirements have to be satisfied.
First, the assigned parcel must be delivered before its arrival
deadline. With the 3D travel cost estimation method, we can
easily obtain the estimated arrival time for a parcel taken
by various trips and only choose those satisfied trips as
candidates. Second, since different trips can have different
sources and destinations, the cost of taking the same task can
also be different. For a trip assigned with a task, the reward
for task completion must be higher than the extra cost of
taking this task compared with the original trip cost, namely,
the utility must be positive.

Definition 7 (Payment for a Parcel): Each parcel has a cost
that the sender pays to the platform for its delivery, denoted
as the payment Pi for parcel Pi . For example, the payment
can be considered as the cost to deliver this task using the
traditional approach.

Definition 8 (Utilities to the Platform): Given the original
trip as T and the delivered tasks as (P1, ...,Pi ), we denote
the new trip taking these tasks as T̃ = (T , (P1, ...,Pi )). The
utility of this trip to the platform is then defined as Up(T̃ ) =∑

i Pi − ∑
i Pi .rew, which can be viewed as the cost saving

brought to the platform if a parcel is sent via car trip sharing
instead of being sent by traditional approach.

Definition 9 (Utilities to Drivers): The utility to a driver
for taking a task is defined as the reward of this task minus
the extra cost brought to the driver. Namely, Ud (T̃ ) =∑

i Pi .rew − [C(T̃ ) − C(T )].
With the requirements above, we aim to assign delivery

tasks to proper candidate trips to maximize the social wel-
fare.9 Specifically, given a set of parcel delivery tasks P =
(P1,P2, ...,Pn) and a set of trip plans T = (T1,T2, ...,Tm),
find the task assignment < (Pi1 ,Pi2 , ...,Pik ) → T j > with
objective of maximizing the sum of Up(T̃ j ) and Ud (T̃ j ) for
every T j ∈ T.

We denote xi j ∈ {0, 1} as a variable indicating whether task
Pi is assigned to trip T j . Let Arr T (T̃ j ,Pi ) denote the arrival
time of Pi in trip T̃ j . Then the problem formulation is as
follows:

Max :
m∑

j=1

n∑
i=1

xi j
[
Pi − (

C(T̃ j ) − C(T j )
)]

(3)

s.t . ∑
j

xi, j ≤ 1, ∀i (4)

T̃ j = (T j , (xi jPi )), ∀i (5)

Pi .ddl ≥ Arr T (T̃ j ,Pi ), ∀i (6)

where constraint 4 specifies that any task is taken by at
most one trip, namely parcel itself is indivisible; constraint 5
explains the representation of each new trip which takes some
parcel delivery tasks; and constraint 6 indicates that the parcel
arrival time should be earlier than the required deadline.

B. One-to-One Assignment

We first consider solving the one-to-one task assignment
problem, i.e., each trip is allowed to take at most one deliv-
ery task. Then the previous formulation should add another
constraint as follows: ∑

i xi, j ≤ 1, ∀ j (7)

Assume that a delivery task Pi is assigned to a trip T j , the trip
route then turns from T j .s → T j .e to T j .s → Pi .p →
Pi .d → T j .e. Given the certain calculated travel routes in the
landmark graph, the arrival time of parcel Pi and the utility of
this trip can be determined. We abstract this task assignment
problem as a weighted matching problem in bipartite graph,
defined as follows:

Definition 10 (Maximum Weighted Bipartite Matching):
Given a bipartite graph G = (V , E) with a bipartition (A, B)
and weight w > 0 between each part, find a matching M so

9Note that our focus in this paper is to maximize the total utility of social
welfare. How to set the appropriate reward to balance the individual utilities
to the platform and drivers will be left as a future work.
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that the weight of the matching w(M) = ∑
a∈A,b∈B w(a, b)

is maximized.
In our context, the bipartition A and B represent the task

set and trip set, respectively, and w means the sum of utility
to the platform and the related driver. If an assignment (a, b)
can be completed before the deadline and the sum of utility
for an assignment is positive, then there is an edge with
weight w(a, b). To solve this matching problem, we need to
conduct a series of conversions. Given the number of tasks
and trips can be unequal, we first add some dummy nodes
to make this graph a balanced graph, i.e., |A| = |B|. For
any given pair (a, b), there may not exist an edge in between
due to the inability to complete the task by the deadline or
the negative utility to the driver. For all such pairs, we then
add edges with zero weight between them to make it a
completed bipartite graph. With these two steps, we convert
the graph into a balanced completed bipartite graph. Next,
we negate all the weights and make them positive by adding
a large constant value. In this way, we convert this problem
into a well-known problem of finding the minimum weighted
bipartite perfect matching. Then we can solve it by Hungar-
ian algorithm [38], [39], with the computational complexity
of O(|V |3).

With the matching result, we reconvert this graph to the
original graph. The matching edges with positive weights are
the final one-to-one task assignment result, while the zero
weight edges are removed since they are not truly assigned.
The one-to-one assignment result is optimal given the opti-
mal Hungarian algorithm. To better exploit the potential of
Car4Pac, we next study the many-to-one assignment, where a
single trip can take multiple parcels.

C. Many-to-One Assignment
In the many-to-one assignment situation, one single trip is

allowed to take multiple parcels. If the costs of taking indi-
vidual parcels are independent of each other, we can just add
duplicate nodes for each trip in the previous bipartite graph,
and still run the selected algorithms to find the maximum
weighted matching. However, the cost for taking a selected
set of parcels is not the same as the sum of the cost for taking
each of the individual parcels, which makes this algorithm not
applicable to this case. Since each car has limited capacity for
taking extra parcels and each driver has limited tolerance level
for picking up and dropping off parcels, we assume that each
trip j is limited to take at most N j parcels. This realistic
constraint naturally reduces the candidate parcel combinations
to examine for each trip. However, even if each trip is allowed
to take 2 parcels in total, the combinations of all available
parcel-trip is still too large to be processed in a short time.
We therefore reexamine this practical problem again and
propose our solutions to solve this problem.

We first formally analyze the computational complexity
of this problem. Compared to the one-to-one assignment,
the difference of many-to-one assignment is allowing allocat-
ing multiple tasks to one trip. We no longer treat each indi-
vidual delivery task as the assignment unit. Instead, we have
a bundle S as a set of tasks where S ∈ P. Each bundle
Si represents one possible task bundle that a trip is capable

of taking, namely, Si = (Pi1 ,Pi2 , ...,Pik ). The previous
introduced variable xi j thus indicates whether task bundle Si

is assigned to trip T j .
Theorem 1: The many-to-one social welfare maximization

problem is NP-complete.
We can prove this by transforming the weighted set packing

problem into a special case of our social welfare maximization
problem. In weighted set packing problem, each set has
a weight. We aim at finding a series of pairwise disjoint
sets with the maximum weight in the set universe. In our
problem, each set corresponds to a bundle of tasks that a
trip can take. The weight of this set corresponds to the social
welfare contribution of a trip-ask bundle assignment. Consider
a simplified case of our problem, if we only select the task
bundle with the largest weight for each trip. Then the problem
of maximizing social welfare is equivalent to our mentioned
weighted set packing problem. Since the weighted set packing
problem is known to be NP-complete, where no optimal
algorithms exist to solve this problem in polynomial time in all
instances, our social welfare maximization problem naturally
also is NP-complete even in this simplified case. �

Given the context of car trip sharing, we propose a car trip
aware heuristic algorithm based on the one-to-one assignment
to address this problem in an iterative way. The algorithm can
be divided into three steps. We use the original bipartite graph
G in the one-to-one assignment. First, we try to add an edge
between each unassigned task ai and each assigned trip b j

(note that the trip can have been assigned other tasks). If ai can
be completed before its deadline under the assignment (ai , b j )
and the extra utility gain is positive, we then add an edge with a
weight w(ai , b j ) as the utility gain. Note that the travel routes
can have multiple choices when a trip takes multiple tasks.
The route selection can be reduced to the traveling salesman
problem (TSP) which is NP-hard. Here we simply search for
the next nearest feasible stop from the trip departure node
and repeat this process iteratively until the destination node.
Second, we each time select an available assignment with the
largest utility gain and update the new trip routes. If a trip has
taken its maximum allowed tasks, then we remove all edges
related this trip. We also remove other candidate edges for the
assigned task. Third, we recalculate the weights between the
newly updated trip and its connected tasks and update these
weights accordingly. We repeat the second step and the third
step iteratively until no task can be assigned anymore.

Fig. 7 illustrates this process using a simple example.
In the 1st round after the one-to-one assignment, we calculate
the weight from each task to each available trips and select
the pair (a2, b1) for assignment as its weight is largest. The
in the 2nd round we update all related weights and then select
(a4, b2) because w(a4, b1) is now smaller than w(a4, b2) after
the 1st round. Then at the 3rd round, the algorithm finishes
when all tasks are assigned.

Note that it is possible that some parcels cannot be effec-
tively delivered due to the unreachable source/destination
location or tight delivery time demand, where the platform
can send its own couriers to handle these tasks or just refuse
them. More details on solutions for such situations are beyond
the scope of this paper.
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Fig. 7. An example of iterative many-to-one task assignment. In the first
round we select (a2, b1) and update (a4, b1) accordingly. In the second round
we select (a4, b2). In the last round we achieve the final assignment.

VII. EVALUATION

We conduct extensive real-world trace driven simulations to
investigate the performance of Car4Pac. We first evaluate the
accuracy of the edge cost estimation from different metrics.
Then we compare our task assignment solutions with baseline
methods to evaluate its efficiency and effectiveness.

A. Experimental Setup

We first introduce the data of car trips and parcel delivery
tasks we use in our evaluations and the baseline method for
comparison as follows:

1) Car Trip Data: We use the real-world traces of car
trip trajectories for evaluations. We have closely collaborated
with Mojio,10 a leading open platform for connected cars, and
collected a three-week trajectory dataset of private cars in Van-
couver. This dataset includes more than 8,634,000 data entries
and 25,978 car trips, recording the record time, GPS, speed,
odometer and fuel levels with dense sampling rate. As such,
we use these real car trips in our evaluation. We split the
entire dataset into a training set and a testing set. In particular,
the data of the first two weeks is used as the training set for
the 3D landmark graph construction. The data of the last week
is used as the testing set for validating the prediction accuracy
of each edge cost in the landmark graph.

2) Parcel Delivery Tasks: Since we do not have the
real-world parcel delivery data, we empirically generate these
data for evaluation. We restrict the deadline for each task in a
single day from 9 am to 7 pm. Considering that most parcels
are actually delivered in the afternoon and only a small part of
them are delivered in the morning, we generate the deadline
following Gaussian distribution, i.e., ddl ∼ N(μddl , σ

2
ddl),

where the mean value μddl is set at 4 pm considering the
actual situation. We next randomly generate the source and
destination for each task. Those tasks with very short distance
(e.g., less than 1 km) are removed out since it is not a big
overhead using other delivery methods (e.g., people can fetch
their parcels themselves if the distance is very small).

3) Baseline Methods: For comparison, we implement two
baseline methods for comparison, namely, Closest Deadline
First (CDF) and Shortest Distance First (SDF). For CDF, all
the tasks are sorted by their deadlines and all the trips are

10https://www.moj.io/

sorted by their departure times. For every task in the head
of the task queue, we examine every trip in the trip queue
until finding one trip that is able to deliver the task before its
deadline with a positive profit. For SDF, we every time select
the task-trip match with the shortest extra driving distance
rather than considering the maximum utility.

We also compare our Car4Pac system with existing state-of-
the-art solution to evaluate its effectiveness. Given that most of
the related solution cannot well fit our scenario (e.g., some of
them rely on trip relay [22], [24] and some do not focus on trip
task matching [18], [19]), we consider the algorithm used in
[21] (denoted as MinCost in the experiment) for comparison.
In [21], the authors reduced the task trip matching problem
as a minimum cost flow problem. They considered the simple
extra delivery distance as the cost while we fully consider the
3D travel cost in our system. Besides, they assumed that all
the delivery tasks are independent and ignored the property of
accumulative delivery tasks.

We consider the error ratio of travel time (ERT) and that
of fuel consumption (ERF) as the metrics for edge cost
estimation, defined as E RT = Ave( |Pred t ime−Real t ime|

Real t ime )

and E RF = Ave( |Pred f uel−Real f uel|
Real f uel ). We also consider

the Parcel completion ratio (PCR) (defined as PC R =
|completed tasks|

|total tasks| ), Ratio of completed parcels to trips (CPTR)

(defined as C PT R = |completed tasks|
|total trips| ) and Social Welfare

(SW) as metrics for task assignment estimation.

B. Evaluation on Edge Cost Prediction

We begin the evaluation from the 3D landmark graph
construction in our Car4Pac framework.

1) Impact of Time Slot Granularities: We first examine the
impact of the time slot granularity α (recall §IV-B) on the cost
prediction by setting different time slot intervals, such as 5, 15,
30 and 60 minutes. Fig. 8(a) illustrates the average error ratio
of travel time (ERT) of edges in the landmark graph under the
different time slot settings. We can find that when α = 15,
the error ratio of travel time is minimal compared to the real
data records. When α = 5, the time slot interval is so small
that many roads do not have such dense data records. The
travel time cost can be less accurate with a small data size.
On the other hand, if we use a very large α (e.g., 30 minutes
and 60 minutes), the road conditions during a time slot can
vary a lot due to the coarse-grained time slot setting, leading
to a large variance in travel time prediction. Different time
periods also demonstrate different ERT. Compared to other
time periods, Wr , Wn and Rn have relatively smaller ERT,
which is probably due to the highly consistent road conditions
(e.g., most roads are crowded in Wr and are pretty clear in
night times).

Similarly, we also evaluate the error ratio of the fuel con-
sumption (ERF) with different time slot settings, as illustrated
in Fig. 8(b). We can also find that the setting of 15-minute
time slot achieves the closest fuel consumption prediction.
In rush hours, we can achieve ERF of less than 10 percent
with α = 15, while the error ratio increases to more than
30 percent if α = 60. This is because even in rush hours
the traffic congestion level varies according to different times.
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Fig. 8. Error ratio of travel time and fuel consumption with various time
slot settings.

The overly coarse setting, such as 60 minutes, can include
many situations with diverse road conditions and make the
prediction inaccurate. In this group of evaluation, we find α =
15 achieves the best performance among other settings, where
our prediction can achieve less than 20 percent error ratio in
all time periods for both travel time and fuel consumption.

2) Impact of Driver and Vehicle Dependent Calibration:
Fig. 9(a) illustrates the comparison between the ERT with
driver dependent calibration (w d − c) and the result without
such calibration (w/o c). We can find that our model achieves
much smaller error ratio of travel time in all time periods,
where the raw prediction (i.e., without calibration) has more
than 35 percent error ratio in Wd and Rd . Given that different
drivers have different driving skills, this diversity can lead
to a large cost variance, even the road conditions are the
same. Through the driver dependent calibration, we remove
this impact factor when calculating the benchmark travel
time cost, and reconsider this factor when predicting the
individual trip cost, which enables a driver specific travel time
prediction.

The fuel consumption prediction even reveals a bigger
difference between ERF with vehicle dependent calibration
(w v − c) and the result without this calibration (w/o c),
as illustrated in Fig 9(b). We can find that without considering
the impact of different fuel efficiencies for different vehicle
type, the fuel cost prediction can significantly deviate from the
actual fuel consumption, achieving an average of 35 percent
ERF among all time periods. In contrast, we calibrate the fuel
consumption of each car trip considering the baseline fuel
efficiency based on their vehicle types and thus is able to
achieve a more accurate prediction result (about 12 percent
among all time periods).

Fig. 9. Error ratio of travel time and fuel consumption with and without
corresponding calibration.

Fig. 10. Error ratio of travel time and fuel consumption with different cost
overlay mechanism.

3) Impact of Cost Overlay Mechanism: Fig. 10(a) illustrates
the ERT of three different mechanisms, namely, using dynamic
decaying function (dyn − decay), using static decaying func-
tion (sta − decay) and without using cost overlay mechanism
(w/o decay). Here we set τla = 2 and τsm = 1 for the
dynamic decaying function and set a constant τ = 2 for
the static decaying function. We can find there is a big
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Fig. 11. Task completion ratio of different task deadline generation.

improvement when using at least one cost overlay mecha-
nism. The reason lies in the insufficient trip records when
considering all roads in all time slots. Besides, the dynamic
decaying function outperforms the static decaying function by
an average of 5 percent error ratio in all time periods. Since
the traffic condition can transit quickly or slowly depending
on different time periods, using a dynamic decaying function
can capture the feature more accurately.

Fig. 10(b) shows the similar situation on fuel consumption
with different cost overlay mechanism. Our dynamic decaying
function achieves the smallest error ratio, which is 10 percent
on average. Yet if we do not consider the cost overlay
mechanism, we ERF can be as high as 30 percent on average,
20 percent higher than our result. Besides, we observe that
the performance difference of these methods in Wn and Rn is
relatively smaller than other time periods, which is probably
because the road conditions are very clean in these two periods
and the fuel consumption does not vary too much.

C. Evaluation on Task Assignment

We first explain some additional settings before the evalua-
tion on task assignment.

• Trip extra cost. We define the extra cost of a trip for
taking the parcel delivery tasks as β ∗ extra time + γ ∗
extra f uel, where β is set as the minimum legal hour
rate (e.g., $12/hour) and γ is set as the typical fuel price
(e.g., $1.4/L).

• Average parcel delivery distance (AveDis). The delivery
distance of a parcel is the distance between the pick up
location and drop off location, denoted as dis(P .p,P .d).
If we want to generate parcel sets with a larger AveDis,
we then remove out the tasks with very small delivery
distance and regenerate the same amount of tasks repeat-
edly until AveDis is achieved, and vice versa.

• Ratio of parcels to trips (PTR). PTR indicates the ratio of
the total task numbers to the total trips numbers, denoted
as |total tasks|/|total tri ps|.

• Payment and reward for a parcel. For simplicity, we set
the payment for a citywide parcel delivery service as a
constant value P (e.g., $16 as a typical value for same
day delivery). We assume the citywide maximum delivery
distance is D. Then we set the reward for each parcel
as P .rew = P0 + η ∗ dis(P .p,P .d), where P0 is the
basic delivery reward, η is the coefficient for the delivery

Fig. 12. Task completion ratio of different average parcel delivery distance.

Fig. 13. The value of CPTR when setting different PTR.

distance of the parcel. We assume the maximum reward
(namely, the task that dis(P .p,P .d) = D) is equal to
the payment, then η can be calculated as P−P0

D given the
certain P , P0 and D.

The default settings of parameter σddl , AveDis, PTR and P0
P

are 1.5, 10km, 0.4 and 0.4, respectively.
We first evaluate the impact of different σddl on the task

completion ratio, as illustrated in Fig. 11. We can observe that
when the mean deadline is set at 4 pm and the deviation σddl

is 1.5, the PCR achieves the maximum value for all methods
compared with other parameter settings. When the σddl keeps
increasing, the task completion ratio begins to decrease since
the deadline of many tasks are so early that they are hard
to be completed. Particularly, when σddl reaches 3, Car4Pac
remarkably outperforms other three methods by 15 percent,
34 percent, and 18.2 percent, respectively. Note that the
performance result of MinCost is close to that of SDF. This is
because these two methods both consider the travel distance as
the delivery cost, while Car4Pac fully considers the dynamic
cost of travel time and fuel consumption. This comparison
result infers that Car4Pac is more capable of processing the
task assignment problem even the deadlines of many tasks are
very tight.

We further consider the impact of different task delivery
distance on the parcel completion ratio, as described in Fig. 12.
As the average delivery distance increases, the performance
of all the methods gets worse accordingly. This is probably
because the excessively far delivery distance may exceed many
people’s daily car trip distance, where the arrival deadline
cannot be satisfied or the extra cost is too large, leading
to a low task completion ratio. When the average distance
reaches 15 km, the existing state-of-the-art solution MinCost
can only achieve a parcel completion ratio of 56.2 percent.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 20:42:44 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: Car4Pac: LAST MILE PARCEL DELIVERY THROUGH INTELLIGENT CAR TRIP SHARING 13

Fig. 14. The social welfare when setting different ratio of basic delivery
reward to payment.

Yet our Car4Pac solution has 77 percent PCR, which outper-
forms MinCost by 20.8 percent, SDF by 16 percent, and CDF
by 39 percent.

Besides the previous two factors, the task completion is also
affected by the ratio of tasks to car trips. Fig. 13 illustrates
the CPTR when we generate tasks according to different PTR
values. We can find that when PTR is small (e.g., less than
0.2), most tasks can be completed and the ratio of CPTR to
PTR is close to 1. This indicates that when there are abundant
car trip resources, all the methods can well handle the delivery
tasks. Yet when the PTR increases and reaches 0.4, the CPTR
begins to increase very slowly, which infers that the tasks have
already exceeded the delivery capacity of car trips. When PTR
reaches 0.7, our car4Pac system still has the highest CPTR,
which is 8.5 percent higher than MinCost, 7 percent higher
than SDF, and 14.7 percent higher than CDF.

We last examine the social welfare when we set dif-
ferent ratio of the basic delivery reward to the payment.
Fig. 14 shows the social welfare under different P0

P . In reality,
the higher the P0

P is, it means that the service platform is
more likely to offer a high reward for parcel delivery task
completion, even for tasks with short delivery distance. We can
find that even for a small setting of P0

P (e.g., 0.2 as a typical
value), Car4Pac can achieve a high social welfare of about
$4300, which is 1.4 times higher than MinCost, 1.3 times
higher than SDF and 2.5 times higher than CDF. This result
indicates that Car4Pac can assign suitable tasks to available
car trips more effectively, leading to higher welfare for both
drivers and the delivery service platform.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed Car4Pac, a novel and effective
last mile parcel delivery system through car trip sharing.
Car4Pac leverages the available private car trips to incidentally
deliver parcels during their original trips by offering a proper
reward to the drivers. To achieve this, we first constructed a
3D (time-dependent, driver-dependent and vehicle-dependent)
landmark graph and predicted the travel cost of each road
segment accurately. We developed a two-stage solution for the
task-trip assignment problem to maximize the social welfare,
which can achieve optimal for one-to-one assignment and
yield high-quality results for many-to-one assignment. With
extensive real-world trace driven experiments, we show that by
Car4Pac, the trip cost prediction error can be reduced by up to
60 percent when compared with the approach without driver

and vehicle calibration. Car4Pac can effectively complete more
than 22.4 percent tasks and achieve 60 percent higher social
welfare than the state-of-the-art method in a typical car trip
sharing context.

Our system can benefit the real trip sharing system from
two aspects. First, the 3D travel cost estimation mechanism
helps improve the prediction accuracy of arrival time and travel
cost in real trip sharing system such as UberPOOL,11 where
an accurate estimation (in minute level) is necessary. Second,
the trip sharing based parcel delivery system can also benefit
the post service providers by reducing the overall operational
cost without sacrificing the quality of the delivery service
(e.g., to better complement Amazon Flex as a more flexible
alternative pay-by-trip method).

Our system can be further extended in several aspects,
which are worth exploring as our future works. First,
the weather (e.g., rainy, snowy and sunny) is likely to have
an impact on the trip cost estimation, which is not consid-
ered in this paper due to the lack of fine-grained weather
information at this time moment. Indeed, our Car4Pac frame-
work can be easily extended from the 3D (time-dependent,
driver-dependent and vehicle-dependent) travel cost estimation
to 4D, including the weather-dependent travel cost estimation.
We are planning to seek help from the local meteorological
department, or get the fine-grained weather information of
every road through a crowdsourcing way. We expect that our
Car4Pac framework can achieve even higher accuracy using
the 4D travel cost estimation when more data support on
fine-grained weather information becomes available.

Second, the wide deployment of our accurate travel time
estimation approach requires the support of large amounts of
car trip information, otherwise the landmark graph may not
be accurate and complete. Fortunately, some vehicle platforms
(e.g., Mojio) and navigation platforms (e.g., GoogleMap) can
have sufficient data, which can help our system achieve more
accurate prediction and better delivery task assignment. There-
fore, another interesting future work is to automatically inte-
grate information from such platforms and gradually improve
its performance over time.

Third, our model mainly considers the primary aspects
in the cost estimation, i.e., time cost regarding the driving
skill and fuel cost regarding the vehicle type. On one hand,
such corresponding impacts are much more obvious than the
crossover impacts, i.e., time cost determined by different car
type and fuel cost caused by different driving skills. On the
other hand, it is quite difficult to evaluate such crossover
impacts since one driver usually only has one primary car and
the diversity is limited. we believe such crossover impacts can
be further calibrated given more comprehensive data using the
similar calibration methods.
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