

1

Abstract—Information security has been a critical issue in the
design and development of reliable distributed communication
systems and has attracted significant research efforts. A
challenging task is how to maintain information security at a high
level for multiple-destination video applications with the huge
volume of data and dynamic property of clients. This paper
proposes a novel Content-Aware Secure Multicast (CASM)
protocol for video distribution that seamlessly integrates three
important modules: 1) a scalable light-weight algorithm for
group key management; 2) a content-aware key embedding
algorithm that can make video quality distortion imperceptible
and is reliable for clients to detect embedded keys; and 3) a smart
two-level video encryption algorithm that can selectively encrypt
a small set of video data only, and yet ensure the video as well as
the embedded keys unrecognizable without a genuine key. The
implementation of the CASM protocol is independent of the
underlying multicast mechanism and is fully compatible with
existing coding standards. Performance evaluation studies built
upon a CASM prototype have demonstrated that CASM is highly
robust and scalable in dynamic multicast environments.
Moreover, it ensures secure distribution of key and video data
with minimized communication and computation overheads. The
proposed content-aware key embedding and encryption
algorithms are fast enough to support real-time video
multicasting.

Index Terms—Secure multicast, Selective encryption, Key
management, Content-awareness

I. INTRODUCTION
ue to the multiple-destination nature of video programs,

real-time video multicast has received great interests and
significant research efforts over the past decade [1].
Information security has been a critical issue in the design and
development of distributed systems and become more crucial
for open and dynamic group communications in the IP
multicast environment [3, 4, 14, 17]. For overlay or
application-layer multicast, the security problem persists if
trust relation is not established among the participating nodes.
However, conventional methods for secure communications,
like direct data encryption, often fail due to the large group and
video data sizes, as well as the dynamic property of clients.

In this paper, we propose a novel Content-Aware Secure
Multicast (CASM) protocol for video distribution. CASM
seamlessly integrates three important modules: 1) a scalable
light-weight algorithm for group key management; 2) a
content-aware key embedding algorithm that can yield
imperceptible video quality distortion and is reliable for clients

to detect embedded keys; and 3) a smart two-level video
encryption algorithm. This modularized design enables
asynchronous updates of individual components in the CASM
system. Furthermore, the implementation of the CASM
protocol is independent of the underlying multicast mechanism
and is fully compatible with existing coding standards. We
have implemented a prototype of CASM demonstrating that
this protocol is highly robust and scalable in dynamic multicast
environments. Moreover, it ensures secure distribution of key
and video data with minimized communication and
computation overheads.

The rest of this paper is organized as follows. Section II
presents the background and related work. An overview of
CASM is outlined in Section III. The new key management,
embedding, and secure transmission modules are presented in
Sections IV, V, and VI, respectively. Section VII discusses the
implementation of CASM and presents experimental results.
Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section will present some preliminaries of secure video
multicast and report existing research work.

A. Group Key Management
The goal of key management is to securely share and update

the keys for data encryption/decryption among a group of
clients. A comprehensive survey on the schemes of group key
management can be found in [12]. Among the existing
approaches, Efficient Large-Group (ELK) algorithm [13] using
a balanced binary key tree to manage the keys is particularly
interesting. The distinguishing feature of ELK is that its rekey
messages are of a fixed and short length that can thus be easily
embedded into video frames. ELK ensures reliable rekey
message distribution and provides hints for key recovery, but it
suffers from excessive overheads. The CASM proposed by this
study achieves reliable message distribution using the other two
modules; hence, the overhead of its key management module is
relatively light-weighted as compared to ELK.

B. Data Embedding
CASM embeds the key updating messages into video data,

thus eliminating the need of a separate reliable control channel
that is extremely difficult and costly to establish and manage in
a distributed multicast environment.

Digital watermarking is a widely studied data embedding

CASM: A Content-Aware Protocol for Secure
Video Multicast

Hao Yin, Chuang Lin, Feng Qiu, Jiangchuan Liu, Geyong Min, Bo Li

D

2

technique [7-9]. However, many of the algorithms can tolerate
certain discrepancies after the process of decoding. As a result,
they do not match the demands of the key embedding module of
CASM. For consistent data embedding, Alattar et al. [5] have
suggested that the original compressed stream can be partially
decoded to expose its syntactic elements; such data as Discrete
Cosine Transform (DCT) coefficients can then be modified to
insert the watermark. The key embedding algorithm in CASM
was motivated by such proposals. It modulates the average
luminance value of certain regions in I-frames to embed data.
We also make effective use of the embedded data for channel
coding, which, together with the key management module,
achieve highly efficient and reliable key updating for multicast
groups.

C. Selective Encryption
The high data rate and long playback duration of a video

stream yield a huge volume of data. It is impractical to encrypt
the entire stream, thus selective encryption is advocated [15].
The selective encryption algorithm in CASM is closely related
to that proposed by Shi and Bhargave [21, 22]. They both
employed a secret key to randomly change the sign bits of
certain data. The difference is that the algorithm in CASM uses
a one-way function to generate the keys according to both the
frame number and the session key, which is stronger for
resisting statistical attacks. This algorithm is faster than those
based on Data Encryption Standard (DES) / International Data
Encryption Algorithm (IDEA) [19, 20] and suffers less data
expansion [18]. Both advantages of this algorithm are desirable
for real-time processing and communications. Furthermore, it
is fully compatible with the existing video coding standard and
hence does not rely on a customized decoder, as in [16].

III. OVERVIEW OF CASM
CASM consists of three major modules, namely, key

management, key embedding, and secure transmission. Their
hierarchy is illustrated in Fig. 1. This section will outline their
functionalities; detailed implementations will be addressed in
the subsequent three sections.

Fig. 1. System hierarchical diagram of CASM.

The key management module manages a family of keys,

which form a key tree rooted at the server. Each client

corresponds to a leaf node in the tree and records the set of keys
along its path from the root. When such events as client joining
or leaving occur, the server will update the corresponding keys
in the key tree and inform the affected clients to update their
key set. As shown in the next section, such organization
enables both forward and backward secrecies.

Instead of maintaining a separate control channel, such
rekey messages are embedded in the video stream to be
distributed to the clients. On the client side, the embedded
messages are then detected and forwarded to its key
management module.

CASM transmits the video data through the transmission
module that ensures secure key and video distribution.
Specifically, the video data are encrypted by a selective
encryption algorithm with a session key, i.e., the key at the root
of the key tree. Since the session key is available at each
destination client, it can be used to decrypt the stream, and, if
needed, detect the embedded rekey messages. The selective
encryption algorithm applies to a small set of video data only,
and yet the reconstructed video and the embedded key are
generally unrecognizable when decoded with a non-genuine
key.

To accommodate current clients joining and leaving the
multicast group, CASM divides the running time into slices of
identical lengths. The interval for a client to join or leave
consists of two slices. In the first, the client to join or leave the
system contacts the server for authenticating, and, meanwhile,
the server prepares for the new rekey messages. If there are lots
of clients joining or leaving simultaneously, key server can use
a batch process to update the key tree. In the second slice, the
server initiates the key updating process for all the clients
joining or leaving in the previous slice, and yet it can accept
joining or leaving requests from another batch of clients (as
shown in Fig. 2). This pipelining process greatly reduces the
frequency of key updating, and consequently, minimizes the
communication overhead. The batch process can also greatly
reduce the overhead for re-configuration of the key tree. The
batch joining process and leaving processing will be discussed
respectively in the following sections.

Fig. 2. Illustration of time slices.

3

IV. THE KEY MANAGMETN MODULE

The key management module of CASM extends the Logical
Key Hierarchy (LKH) and One-way Function Tree (OFT)
algorithms to achieve secure and efficient key distribution [4].
Similar to Efficient Large-Group (ELK) protocol proposed in
[13], CASM maintains a balanced binary key tree. The root of
the tree is assigned with the session key for encrypting the
video data. Each leaf node corresponds to a legitimate client
and is assigned with a key for encrypting the session key and
other related keys. A leaf node also records the keys along its
path from the root. Fig. 3 illustrates an example of such a tree
where client keeps the key set { 1 2 4, , ,GK K K K }, keeps
{ 1 2 5, , ,GK K K K }, and so forth. CASM seamlessly integrates
three modules and relies on the key embedding and secure
transmission modules to ensure reliable key distribution; its
key management module is thus light-weighted as compared to
ELK.

Fig. 3. An example of the key tree.

To facilitate our discussion on key management as well as

selective encryption in the next section, we define a family of
pseudo-random functions (PRFs) as follows:

(m)PRF : {0,1} {0,1}n m nK→ × →
Where K is the key, m and n are the lengths of the input and

output data, respectively. We also define { }KM as the
encrypted sequence of M with key K .

A. Operations for Client Joining
The operations for client joining involve key update for

both existing and newly joined nodes. To this end, the
following procedure is executed in CASM (see Fig. 4):
1) The new client contacts the server;
2) The server multicasts a message, informing all the present

clients to update their keys along their key-tree paths, as
follows,

)()(
G

nn
Ki KPRFK

i

→=′ δ
, (1)

)0()(nn
KG G

PRFK →=′ δ
, (2)

where)()(δδ nn
Ki i

PRFK →= . This operation ensures backward

secrecy, such that the newly joined client cannot decode
previous video data;

3) The server generates node MN for the new client, which
is associated with a randomly generated key MK . Node MN is
then inserted to the key tree. It is either attached to a node with

only one child so far, or, if there is no such a node, the server
picks leaf node jN that has the least depth in the key tree, and

generates a new parent node PN for both MN and jN . The

key PK for node PN is set as)(nn
K j

PRF → in Eq. (1), and the

server then informs jN to update its key set;

Fig. 4. Procedure for client join.

Fig. 5. Illustration of client join.

Fig. 5 shows an example for client 6U to join the system.

Upon receiving the join request from this new client, the server
first updates all the present keys in the tree to preserve
backward secrecy. Since there is no any node with a single
child, the server picks node 1U and generates a new node with
key 9K , which serves as the parent for both 1U and 6U . The
server then informs 1U to update its key set

100 1 9{ , , , }G KK K K K′ ′ ′ and sends to 6U .

For joining multiple clients during the same time slice, the
key server generates a new sub-tree for these new clients, and
attaches this sub-tree to the key tree by the end of this time slice
as a normal client does. In this case, the server only needs to
communicate with a single node, i.e., the root of the sub-tree,
which greatly reduces the communication and computation
overhead.

B. Operations for Client Leaving
Upon a client leaving, the current session key has to be

replaced and only the legitimate clients can receive the new key.
Moreover, to ensure forward secrecy, all the keys that the
leaving client knows must also be changed.

4

Fig. 6. Algorithm for key update.

We first present a key update algorithm that facilitates the

operations for client leaving (Fig. 6). This algorithm is based
on the assumption that the two children of the node with key K
have keys LK and RK , respectively. The new key K ′ is

derived from K together with 1n -bit contribution from LK
and 2n -bit from RK , 2 2()n n n+ ≤ . The server then
multicasts the following rekey messages through the secure
transmission module:

ββ
LR KRKL CC }{|}{

 (3)
Where βα , are two pre-defined parameters, which ensures
that the generated keys are independent,
)()(αα nn

Ki i
PRFK →= , }.,{ RLi ∈ (4)

)()(ββ nn
Ki i

PRFK →= , }.,{ RLi ∈ (5)

Clearly, the rekey messages contain enough information for
both children to reconstruct K ′ . For the left child, it can
decrypt RC from β

LKRC }{ using its local key, and then

combine it with LC , which is locally available, to

reconstruct K ′ . Symmetric procedures can be applied for the
right child.

 Given this key updating algorithm, the following procedure
can then be executed to meet the demands for client leaving
(Fig. 7):

1) The leaving client or a neighboring node that detects its
leaving contacts the server;

2) The server deletes the corresponding leaf node in the key
tree, and replaces its parent node by its sibling node. The server
also informs the sibling node to remove the key of its original
parent from the key set;

3) All the keys of the nodes along the key path for the leaving
client need to be updated sequentially. For key iK , the update

is as follows,
)()(

i
nn

Ci KPRFK
LR

→=′ ; (6)

4) The server multicasts the rekey message to all the clients,
that is,

βα
RiLi Ki

nn
K KPRF)}({)(1→ |

βα
LiRi Ki

nn
K KPRF)}({)(2→ .

(7)

Fig. 7. Procedure for client leave.

Fig. 8. Illustration of client leaving.

 Fig. 8 shows an example for client 5U to leave the group.

It first contacts the server to logout; the server uses its sibling
node 4U to replace their original parent. The key 6K is then
removed from the key set of 4U , and the server computes the
new keys along the path from 4U toward the root. In the last
step, rekey messages updating, GK , 0K , and 2K are
multicast. For illustration, the message for key 2K is

 1 1

5 77 5
2 2{ ()} ,{ ()}n n n n

K KK K
PRF K PRF Kα β α β

< → > < → > . (8)

 For client 3U , it should first compute 1

5
2 2()n n

L K
C PRF Kα

< → >= ,

and, upon receiving the right half of this message , that is,

5
2{ }R K

C β , it decrypts the message to get
2RC . It follows the

algorithm in Fig. 6,

2 2 2
|LR L RC C C= (9)

22 2()
LR

n n
CK PRF K< → >′ = . (10)

 Considering a balanced binary key tree with N leaves, the
number of keys to be updated is bounded by (log)O N , which
implies that the leaving algorithm is scalable as well.

When multiply clients leave in a same time slice, the server
will firstly gather all of these leaving requests. By the end of
this time slice, the server merges the redundant key updating
operations, forms an updated key tree and generates rekey
messages for all the residual clients to complete their key
updating process according to the final key tree. In this case,
reduplicate and unnecessary updating of key nodes can be
efficiently prevented. Consequently, it can greatly decrease the
computational overhead.

V. THE KEY EMBEDDING MODULE

The key embedding algorithm of CASM works in the

1

2

1 2

The left child contribution: ()

The right child contribution: ()

| () | ()

L

R

L R

n n
L K

n n
R K

n n n n
LR L R K K

C PRF K

C PRF K

C C C PRF K PRF K

α

α

α α

< → >

< → >

< → > < → >

=

=

= =

Output: updated key ()
LR

n n
CK PRF K< → >′ =

5

Discrete Cosine Transform (DCT) domain through a novel
Average Luminance Value (ALV) modulation [10]. It
partitions the DCT blocks in a frame into mutually-exclusive
fields, and alters the Direct Current (DC) component by
embedding one bit data in each field. Details of the ALV
modulation can be found in [10].

TABLE I
FORMAT OF THE REKEY MESSAGE

20bits iK

20bits LiK

20bits RiK

34bits β
LiKRC }{

34bits β
RiKRC }{

In our implementation of CASM, we divide each video

frame into 200 fields, and 200 bits data can thus be embedded.
The data to be embedded include an 8-bit flag and a 128-bit
rekey message, which follows the format presented in Table I.
We use the remaining 64 bits for Reed-Solomon (RS) coding,
which facilitates client-side error recovery [11]. In addition, the
same rekey message is repeated in every subsequent frame till
another key is updated, which further enhances reliability of
CASM.

VI. THE ENCRYPTION MODULE

We employ a two-level approach for selective encryption,
which is the core operation in the secure transmission module.
Recently, the H.26x and MPEG1/2/4 video coding standards
have provided the enabling technologies for a wide variety of
applications. These standards achieve high compression
performance using a number of methods to exploit the spatial
redundancies and temporal redundancies [23]. The MPEG
standard uses inter-frame compression to achieve compression
ratio of about 100:1 by storing only the differences between
successive frames. The detailed information about video coding
can be found in [23]. In the two-level approach, the sign bits of
the DC components and motion vectors are respectively
modified to encrypt the video data. The modification is an XOR
operation with a pseudo-random sequence, which is referred to
as an Encryption Sequence (ES), can be calculated as

 ()PRF (_)
G

n n
KES frame number→= (11)

Since the ESs vary with different frame numbers, this scheme
can resist statistical attacks. A client, however, keeps track of
the session key and the frame number, and thus can easily
reproduce the corresponding ES and decrypt the video data
accordingly. The detailed encryption operations at each level

are given below.

A. Level-1: DC Component Encryptions
At level-1, we shuffle the sign bits of the DC components in

an I-frame. Assume that iDC is the codeword to be
transmitted for DCT block i , and iDC is the real DC

component. It follows that 0 0DC DC= and iDC =

1i iDC DC -- , since the DC components are predicatively
coded in the MPEG standard. Let iE be the i-th bit of the ES;
we encrypt the DC codeword as follows,

 () (2 (()) 1)i i iEnc DC sign DC Ki DC= × ⊕ − ⋅ , (12)

where
0, 0

()
1, 0

i
i

i

if DC
sign D C

if DC

 <= 
≥

 .

Given the predictive coding, any change on one DC
component will result in severe errors cumulated in all the
following blocks. This is illustrated in Fig. 9, where an
alternation of the sign in the first block leads to confusion on
the luminance components in all the blocks.

Fig. 9. An example of layer-1 encryption.

B. Level-2: Motion Vector Encryption
It is known that motion vectors contain abundant information

about the video. In the scenarios such as video surveillance and
conferencing, video objects could be effectively reconstructed
by motion vectors only. Hence, it is necessary to hide the
motion vectors in a P-frame as well, which is realized in the
level-2 encryption.

Assume that MV is the motion vector of the current block,
and 1MV , 2MV , 3MV are motion vectors of its neighboring
blocks already being transmitted. Let

 1 2 3(, ,)x x x xP Median MV MV MV= , (13)
 1 2 3(, ,)y y y yP Median MV MV MV= , (14)
and the differential codewords for the motion vectors are thus,
 x x xMVD MV P= - , (15)
 y y yMVD MV P= - . (16)

Let),1(tE be the first t bits of the ES, where t is the length of

an MVD. MVDs are encrypted as follows,
),1()(txx EMVDMVDEnc ⊕= , (17)

),1()(tyy EMVDMVDEnc ⊕= . (18)

Such operations disorder the positions of the reconstructed
blocks, leading to unacceptable reconstructed quality for an

6

entire video frame and, more significantly, all the following
predictive frames. An example is shown in Fig. 10. Since the
motion vector data are relatively small, the computation
overhead of such encryption can be kept at a low level, as
shown in the next section.

Fig. 10. An example of layer-2 encryption.

VII. IMPLEMENTATION AND EXPERIMENTS

We have implemented a prototype for the proposed CASM
system. Its protocol stack is depicted in Fig. 11, and the system
configuration is in Fig. 12. Note that we distribute the key
management and the key embedding/selective encryption
operations into a gateway and a server, respectively. There is
also a transcoder that realizes all these functionalities and yet
meets the bandwidth constraints from its local clients [2, 6].
Such a configuration validates the flexibility of the
modularized design of CASM.

Fig. 11. Protocol stack of the prototype.

Fig. 12. System configuration of the prototype.

In this prototype, we employ a keyed-hash function,
TLS-PRF [24], in the key embedding and selective encryption
modules to generate pseudo-random sequences. It splits the
input into two halves, transforms them using MD5 and SHA-1,
respectively, and then combines them through an XOR
operation. Details of TLS-PRF can be found in RFC2246 [24].

A. Reconstruction Quality
In the first set of experiments, we examine the performance

of CASM in terms of the quality of reconstructed video. Note
that CASM is content-aware, which is reflected in two aspects:
first, it embeds the rekey messages into video frames to avoid a
separate control channel for key distribution; and second, it
encrypts the DC components and motion vectors of a video
stream only, which significantly reduces the computation and
communication overhead. It is thus necessary to investigate the
following two aspects: the encryption effect and the impact on
the quality of correctly decrypted content.

 We have conducted experiments over a variety of video
sequences to investigate the aforementioned two measures. Fig.
13(a) shows a video frame with a 200-bit rekey message
embedded (right) and the original frame (left), as well as the
corresponding PSNR curves. This sequence containing 500
frames is taken from a famous film “Jurassic Park”. The
modulation cycle in the embedding algorithm is 4 (see [10] for
details). In this frame, we are unaware of any perceptible
quality distortion, which is also true for most of other sequences
used in our experiments.

(a)

7

(b)

Fig. 13. (a) Left: un-embedded image; Right: embedded; (b) Corresponding
PSNR curves of these two images

Fig. 14 demonstrates the effectiveness of the two-level

encryption algorithm. The original pictures are shown in Fig.
14(a), which also represents the pictures being encrypted and
then decoded with a genuine key. In Fig. 14(b), only level-1
encryption is applied and then decoded with an outdated key.
We can see there are many stripes, brighter, or darker pixels
and blocks in these pictures. While the quality is quite poor,
there is still a vague shape of a dinosaur. Upon applying the
level-2 encryption for motion vectors, however, it is impossible
to recognize the pictures, especially for P-frames (see Fig.
14(c)).

It is worth noting that, for both the key embedding and
selective encryption algorithms, there are no extra bits added to
the video data, and the altered stream strictly follows the
original encoding format. Consequently, no any change is
needed for the video decoder on client sides.

(a) Non-encrypted

(b) Encrypted by Layer-1 and decoded without genuine keys

(c)Encrypted by level-1 and -2 and decoded without genuine keys

Fig. 14. Effectiveness of encryption (Left column: I frame; Right column:
P-frame).

B. Computation Overhead
The most intensive computation in CASM is required by the

selective encryption algorithm, which is to be invoked for each
frame. Table II compares the encoding speeds (frame/second)
with and without selective encryption for both a high-rate
stream (4.5 Mbps) and a mid-rate stream (1.5 Mbps). The
results reaffirm that the selective encryption algorithm, applied
to a small set of data only, is highly efficient for real-time
processing.

TABLE II.

COMPLEXITY OF THE SELECTIVE ENCRYPTION.

Video Sequence High-Rate Mid-Rate

Encoding speed without
selective encryption (frame/sec) 49.7f/s 55.6f/s

Encoding speed with selective
encryption (frame/sec) 48.4f/sec 54.3f/s

Processing time (%) 2.69% 2.39%

C. Scalability
Since the scale of our prototype remains limited, we

investigate the scalability of CASM through simulations. Table
III shows the client joining and leaving times with different
group sizes. The path length is the maximum number of nodes
within a root-to-leaf path in the key tree, which is bounded by
in CASM. It is easy to show that, when a client joins, only one
message should be multicast, and when a client leaves, the
number of messages to be multicast ranges from

2log 1N +   to

2log 1N +   . Considering the multiple concurrent requests, the
processing overhead can be greatly decreased by the method of
gathering request firstly then processing them later, i.e., a
time-driven strategy. Such analysis is consistent with the
simulation results presented in Table III, which suggests that
CASM can scale to large multicast groups.

TABLE III

JOINING/LEAVING TIME VS GROUP SIZE.

Group size Path length Joining time Leaving time

100 9 0.5s 3.7s
1,000 12 0.5s 5.3s

10,000 16 0.5s 7.4s
100,000 19 0.5s 9.0s

VIII. CONCLUSIONS
This paper has presented a novel content-aware protocol for

secure video multicast. The protocol, called CASM,
incorporates a light-weight scalable algorithm for group key
management, a reliable key embedding algorithm, and a

8

selective video encryption algorithm. CASM is content-aware,
which is reflected in two aspects: first, it embeds the rekey
messages into video frames to avoid a separate control channel
for key distribution; and second, it encrypts the DC components
and motion vectors of a video stream only, which significantly
reduces the computation and communication overhead.
Moreover, it is fully compatible with existing video coding
standards.

 We have built a prototype of CASM that demonstrates its
robustness and scalability. The design of CASM adopts a
time-driven strategy, i.e., dividing time into slices of identical
length, which can efficiently accommodate with concurrent
multiple requests and can ensure a limited communication
overhead. Our experimental results have also validated that
CASM enables secure key and video content distribution with
minimized bandwidth overheads. Its content-aware key
embedding and encryption algorithms are fast enough to
support real-time video multicasting.

REFERENCES
[1] J. Liu, B. Li, Y.-Q. Zhang, Adaptive Video Multicast over the Internet,

IEEE Multimedia, Vol.10, No.1, January 2003.
[2] P. Yin, M. Wu, and B. Liu, Video Transcoding by Reducing Spatial

Resolution, In Proceeding of the IEEE Int’1 Conf. on Image Processing
(ICIP), Vancouver, September 2000.

[3] K.-C. Chan, S.-H. G. Chan, Key Management Approaches to Offer Data
Confidentiality for Secure Multicast, IEEE Network, pp. 30-39, September
2003.

[4] W. Trappe, J. Song, R. Poovendran, and K. J. Ray Liu, Key Management
and Distribution for Secure Multimedia Multicast, IEEE Transaction on
Multimedia, Vol. 5, No.4, pp. 544-557, December 2003.

[5] A. M. Alattar, E. T. Lin, M. U. Celik, Digital Watermarking of Low
Bit-Rate Advanced Simple Profile MPEG-4 Compressed Video, IEEE
Transaction on Circuits and Systems for Video Technology, Vol. 13, No.8,
August 2003.

[6] A. Vetro, C. Christopoulos, and H. Sun, Video Transcoding Architectures
and Techniques: An Overview,” IEEE Signal Processing Magazine,
pp.18-29, March 200.

[7] G. Voyatzis and I. Pitas, The Use of Watermarks in the Protection of Digital
Multimedia Products, Proceedings of the IEEE, Vol. 87, No. 7,
pp.1197-1207, July 1999.

[8] I. J. Cox, J. Kilian, F. T. Leighton and T. Shamoon, Secure Spread Spectrum
Watermarking for Multimedia, IEEE Transactions on Image Processing,
Vol. 6, No. 12, pp. 1673-1687, December 1997.

[9] S.-J. Lee and S.-H. Jung, A Survey of Watermarking Techniques Applied to
Multimedia, In Proceedings of IEEE International Symposium on Industrial
Electronics, pp.272-277, June 2001.

[10] H. Yin, X. Chu, C. Lin, F. Qiu, G. Min ,A Novel Key-Embedded Scheme for
Secure Video Multicast Systems,” Lecture Notes in Computer Science,
Springer Vol.3768, pp.246-257,2005.

[11] S. B. Wicker, V. K. Bhargava, Reed-Solomon Codes and Their Applications,
Wiley-IEEE, September 1999.

[12] S rafaeli, A Decentralized Architecture for Group Key Management, PhD
Thesis, Lancaster University, Lancaster, uk, September 2000.

[13] A. Perrig, D. Song, J. D. Tygar, ELK: A New Protocol for Efficient
Large-Group Key Distribution, In Proceedings of the IEEE Symposium on
Security and Privacy, 2001.

[14] Y. Li, Z. Chen, S. Tan, and R. Campbell, Security Enhanced Mpeg Player,
In Proceedings of IEEE International Workshop on Multimedia Software
Development (MMSD’96), Berlin, Germany, March 1996.

[15] T. B. Maples and G. A. Spanos, Performance Study of a Selective
Encryption Scheme for the Security of Networked, Real-Time Video, In
Proceedings of 4th International Conference on Computer Communication
and Network, Las Vegas, NV, September 1995.

[16] J. Meyer and F. Gadegast, Security Mechanisms for Multimedia Data with
the Example of MPEG-1 Video, Available at
http://www.powerweb.de/phade /phade.html

[17] H. Chu, L. Qiao, and K. Nahrstedt, A Secure Multicast Protocol With
Copyright Protection, ACM SIGCOMM Computer Communications
Review, Vol. 32, No. 2, April 2002.

[18] L. Tang, Methods for Encrypting and Decrypting Mpeg Video Data
Efficiently, In Proceedings of ACM Multimedia’96, Boston, MA, November
1996.

[19] L. Qiao and K. Nahrstedt. Comparison of MPEG Encryption Algorithms,
International Journal on Computers and Graphics, Vol. 22, No. 3, January
1998.

[20] L. Qiao and K. Nahrstedt, A New Algorithm for MPEG Video Encryption,
In Proceedings of The First International Conference on Imaging Science,
Systems and Technology (CISST’97), pp. 21-29, Las Vegas, Nevada, July
1997.

[21] C. Shi and B. Bhargava, A Fast Mpeg Video Encryption Algorithm, In
Proceedings of the 6th ACM International Multimedia Conference, Bristol,
UK, September 1998.

[22] C. Shi and B. Bhargava, An Efficient Mpeg Video Encryption Algorithm, In
Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems,
October 1998.

[23] Yao Wang, Jörn Ostermann, and Ya-Qin Zhang, Video Processing and
Communications, Prentice Hall, 2002 ISBN 0-13-017547-1

[24] RFC 2246, The TLS Protocol Version 1.0,
http://www.faqs.org/rfcs/rfc2246.html

Hao Yin, is an assistant professor of the Department of
Computer Science and Technology, Tsinghua University,
Beijing, China. He received Ph.D. degree in Information and
Communication Engineering from Huazhong University of
Science and Technology in 2002. From 2001-2002, he was a
CTO with Wuhan Teamswan Digital Technology, Co.,Ltd.
His research interests span broad aspects of performance

evaluation for Internet and wireless network, image/video coding, multimedia
communication over wireless network, and security. He has published more than
50 papers in refereed journal and conference.

Chuang Lin,is a professor and the head of the Department of
Computer Science and Technology, Tsinghua University,
Beijing, China. He received the Ph.D. degree in Computer
Science from Tsinghua University in 1994. His current
research interests include computer networks, performance
evaluation, logic reasoning, and Petri net theory and its
applications. He has co-authored more than 150 papers in

research journals and IEEE conference proceedings in these areas and has
published three books.

Qiu Feng, received the B.Eng degree (cum laude) from
Tsinghua University, Beijing, China, in 2004, and the master
candidate, both in computer science. His main research is
multimedia security.

 Jiangchuan Liu (S’01-M’03) received the B.Eng degree (cum
laude) from Tsinghua University, Beijing, China, in 1999, and
the Ph.D. degree from The Hong Kong University of Science and
Technology in 2003, both in computer science.
He is currently an assistant professor in the School of Computing
Science, Simon Fraser University, BC, Canada, and was an
assistant professor at The Chinese University of Hong Kong from

2003 to 2004. His research interests include Internet architecture and protocols,
media streaming, wireless ad hoc networks, and service overlay networks. He
serves as TPC member for various international conferences, including IEEE
INFOCOM and IWQoS. He was Information System Co-Chair for IEEE
INFOCOM’04, and a guest-editor for ACM/Kluwer Journal of Mobile Networks
and Applications (MONET), Special Issue on Energy Constraints and Lifetime
Performance in Wireless Sensor Networks. He was Program Co-Chair of The First
IEEE International Workshop on Multimedia Systems and Networking
(WMSN'05). He is a member of IEEE and ACM, and an elected member of Sigma
Xi.

 Geyong Min received the PhD degree in Computing Science
from the University of Glasgow, United Kingdom, in 2003, and
the B.Sc. degree in Computer Science from Huazhong University

9

of Science and Technology, China, in 1995. He is currently a Senior Lecturer in
the Department of Computing at the University of Bradford, United Kingdom. His
research interests include Performance Modeling/Evaluation, Computer Networks,
Mobile Computing and Wireless Networks, Multimedia Systems, Information
Security.

 Bo Li, (S’89-M’92-SM’99)received his B. Eng. (summa
cum laude) and M. Eng. degrees in the Computer Science
from Tsinghua University, Beijing in 1987 and 1989,
respectively, and the Ph.D. degree in the Electrical and
Computer Engineering from University of Massachusetts at
Amherst in 1993. Between 1993 and 1996, he worked on high
performance routers and ATM switches in IBM Networking
System Division, Research Triangle Park, North Carolina.

Since 1996, he has been with the Department of Computer Science, Hong Kong
University of Science and Technology. He also holds an adjunct researcher
position at the Microsoft Research Asia (MSRA), Beijing, China. His research
interests are on adaptive video multicast, packet scheduling and dynamic routing
in optical networks, resource management in mobile wireless systems, scheduling
and energy efficient routing in ad hoc networks, across layer design for sensor
networks, and content distribution and replication. He has published 80 journal
papers and held several patents in above areas. He received the Outstanding
Oversea Young Scientist Award from Natural Science Foundation of China in
2004. He has been on editorial board for 16 journals and involved in organizing
over 40 conferences, esp. IEEE Infocom since 1996. He was the Co-TPC Chair for
IEEE Infocom 2004.

