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Abstract—Information security has been a critical issue in the 
design and development of reliable distributed communication 
systems and has attracted significant research efforts. A 
challenging task is how to maintain information security at a high 
level for multiple-destination video applications with the huge 
volume of data and dynamic property of clients. This paper 
proposes a novel Content-Aware Secure Multicast (CASM) 
protocol for video distribution that seamlessly integrates three 
important modules: 1) a scalable light-weight algorithm for 
group key management; 2) a content-aware key embedding 
algorithm that can make video quality distortion imperceptible 
and is reliable for clients to detect embedded keys; and 3) a smart 
two-level video encryption algorithm that can selectively encrypt 
a small set of video data only, and yet ensure the video as well as 
the embedded keys unrecognizable without a genuine key. The 
implementation of the CASM protocol is independent of the 
underlying multicast mechanism and is fully compatible with 
existing coding standards. Performance evaluation studies built 
upon a CASM prototype have demonstrated that CASM is highly 
robust and scalable in dynamic multicast environments. 
Moreover, it ensures secure distribution of key and video data 
with minimized communication and computation overheads. The 
proposed content-aware key embedding and encryption 
algorithms are fast enough to support real-time video 
multicasting. 
 

Index Terms—Secure multicast, Selective encryption, Key 
management, Content-awareness 
 

I. INTRODUCTION 
ue to the multiple-destination nature of video programs, 

real-time video multicast has received great interests and 
significant research efforts over the past decade [1]. 
Information security has been a critical issue in the design and 
development of distributed systems and become more crucial 
for open and dynamic group communications in the IP 
multicast environment [3, 4, 14, 17]. For overlay or 
application-layer multicast, the security problem persists if 
trust relation is not established among the participating nodes. 
However, conventional methods for secure communications, 
like direct data encryption, often fail due to the large group and 
video data sizes, as well as the dynamic property of clients.  

In this paper, we propose a novel Content-Aware Secure 
Multicast (CASM) protocol for video distribution. CASM 
seamlessly integrates three important modules: 1) a scalable 
light-weight algorithm for group key management; 2) a 
content-aware key embedding algorithm that can yield 
imperceptible video quality distortion and is reliable for clients 

to detect embedded keys; and 3) a smart two-level video 
encryption algorithm. This modularized design enables 
asynchronous updates of individual components in the CASM 
system. Furthermore, the implementation of the CASM 
protocol is independent of the underlying multicast mechanism 
and is fully compatible with existing coding standards. We 
have implemented a prototype of CASM demonstrating that 
this protocol is highly robust and scalable in dynamic multicast 
environments. Moreover, it ensures secure distribution of key 
and video data with minimized communication and 
computation overheads.  

The rest of this paper is organized as follows. Section II 
presents the background and related work. An overview of 
CASM is outlined in Section III. The new key management, 
embedding, and secure transmission modules are presented in 
Sections IV, V, and VI, respectively. Section VII discusses the 
implementation of CASM and presents experimental results. 
Finally, Section VIII concludes the paper. 

 

II.  BACKGROUND AND RELATED WORK 

This section will present some preliminaries of secure video 
multicast and report existing research work. 

A. Group Key Management 
The goal of key management is to securely share and update 

the keys for data encryption/decryption among a group of 
clients. A comprehensive survey on the schemes of group key 
management can be found in [12]. Among the existing 
approaches, Efficient Large-Group (ELK) algorithm [13] using 
a balanced binary key tree to manage the keys is particularly 
interesting. The distinguishing feature of ELK is that its rekey 
messages are of a fixed and short length that can thus be easily 
embedded into video frames. ELK ensures reliable rekey 
message distribution and provides hints for key recovery, but it 
suffers from excessive overheads. The CASM proposed by this 
study achieves reliable message distribution using the other two 
modules; hence, the overhead of its key management module is 
relatively light-weighted as compared to ELK.  

B. Data Embedding 
CASM embeds the key updating messages into video data, 

thus eliminating the need of a separate reliable control channel 
that is extremely difficult and costly to establish and manage in 
a distributed multicast environment.  

Digital watermarking is a widely studied data embedding 
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technique [7-9]. However, many of the algorithms can tolerate 
certain discrepancies after the process of decoding. As a result, 
they do not match the demands of the key embedding module of 
CASM. For consistent data embedding, Alattar et al. [5] have 
suggested that the original compressed stream can be partially 
decoded to expose its syntactic elements; such data as Discrete 
Cosine Transform (DCT) coefficients can then be modified to 
insert the watermark. The key embedding algorithm in CASM 
was motivated by such proposals. It modulates the average 
luminance value of certain regions in I-frames to embed data. 
We also make effective use of the embedded data for channel 
coding, which, together with the key management module, 
achieve highly efficient and reliable key updating for multicast 
groups. 

C. Selective Encryption 
The high data rate and long playback duration of a video 

stream yield a huge volume of data. It is impractical to encrypt 
the entire stream, thus selective encryption is advocated [15]. 
The selective encryption algorithm in CASM is closely related 
to that proposed by Shi and Bhargave [21, 22]. They both 
employed a secret key to randomly change the sign bits of 
certain data. The difference is that the algorithm in CASM uses 
a one-way function to generate the keys according to both the 
frame number and the session key, which is stronger for 
resisting statistical attacks. This algorithm is faster than those 
based on Data Encryption Standard (DES) / International Data 
Encryption Algorithm (IDEA) [19, 20] and suffers less data 
expansion [18]. Both advantages of this algorithm are desirable 
for real-time processing and communications. Furthermore, it 
is fully compatible with the existing video coding standard and 
hence does not rely on a customized decoder, as in [16].   
 

III. OVERVIEW OF CASM 
CASM consists of three major modules, namely, key 

management, key embedding, and secure transmission. Their 
hierarchy is illustrated in Fig. 1. This section will outline their 
functionalities; detailed implementations will be addressed in 
the subsequent three sections. 

 

 
Fig. 1.  System hierarchical diagram of CASM. 

 
The key management module manages a family of keys, 

which form a key tree rooted at the server. Each client 

corresponds to a leaf node in the tree and records the set of keys 
along its path from the root. When such events as client joining 
or leaving occur, the server will update the corresponding keys 
in the key tree and inform the affected clients to update their 
key set. As shown in the next section, such organization 
enables both forward and backward secrecies.  

Instead of maintaining a separate control channel, such 
rekey messages are embedded in the video stream to be 
distributed to the clients. On the client side, the embedded 
messages are then detected and forwarded to its key 
management module. 

CASM transmits the video data through the transmission 
module that ensures secure key and video distribution. 
Specifically, the video data are encrypted by a selective 
encryption algorithm with a session key, i.e., the key at the root 
of the key tree. Since the session key is available at each 
destination client, it can be used to decrypt the stream, and, if 
needed, detect the embedded rekey messages. The selective 
encryption algorithm applies to a small set of video data only, 
and yet the reconstructed video and the embedded key are 
generally unrecognizable when decoded with a non-genuine 
key.  

To accommodate current clients joining and leaving the 
multicast group, CASM divides the running time into slices of 
identical lengths. The interval for a client to join or leave 
consists of two slices. In the first, the client to join or leave the 
system contacts the server for authenticating, and, meanwhile, 
the server prepares for the new rekey messages. If there are lots 
of clients joining or leaving simultaneously, key server can use 
a batch process to update the key tree. In the second slice, the 
server initiates the key updating process for all the clients 
joining or leaving in the previous slice, and yet it can accept 
joining or leaving requests from another batch of clients (as 
shown in Fig. 2). This pipelining process greatly reduces the 
frequency of key updating, and consequently, minimizes the 
communication overhead. The batch process can also greatly 
reduce the overhead for re-configuration of the key tree. The 
batch joining process and leaving processing will be discussed 
respectively in the following sections. 

 

 
Fig. 2.  Illustration of time slices. 
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IV. THE KEY MANAGMETN MODULE 

The key management module of CASM extends the Logical 
Key Hierarchy (LKH) and One-way Function Tree (OFT) 
algorithms to achieve secure and efficient key distribution [4]. 
Similar to Efficient Large-Group (ELK) protocol proposed in 
[13], CASM maintains a balanced binary key tree. The root of 
the tree is assigned with the session key for encrypting the 
video data. Each leaf node corresponds to a legitimate client 
and is assigned with a key for encrypting the session key and 
other related keys. A leaf node also records the keys along its 
path from the root. Fig. 3 illustrates an example of such a tree 
where client keeps the key set { 1 2 4, , ,GK K K K  }, keeps 
{ 1 2 5, , ,GK K K K  }, and so forth. CASM seamlessly integrates 
three modules and relies on the key embedding and secure 
transmission modules to ensure reliable key distribution; its 
key management module is thus light-weighted as compared to 
ELK.  

 

 
Fig. 3.  An example of the key tree. 

 
To facilitate our discussion on key management as well as 

selective encryption in the next section, we define a family of 
pseudo-random functions (PRFs) as follows: 

(m )PRF : {0,1} {0,1}n m nK→ × →  
Where K is the key, m and n are the lengths of the input and 

output data, respectively. We also define { }KM  as the 
encrypted sequence of M with key K .  

A. Operations for Client Joining 
The operations for client joining involve key update for 

both existing and newly joined nodes. To this end, the 
following procedure is executed in CASM (see Fig. 4): 
1) The new client contacts the server; 
2) The server multicasts a message, informing all the present 

clients to update their keys along their key-tree paths, as 
follows, 

)()(
G

nn
Ki KPRFK

i

→=′ δ
, (1) 

)0()( nn
KG G

PRFK →=′ δ
, (2) 

where )()( δδ nn
Ki i

PRFK →= . This operation ensures backward 

secrecy, such that the newly joined client cannot decode 
previous video data;  

3) The server generates node MN  for the new client, which 
is associated with a randomly generated key MK . Node MN  is 
then inserted to the key tree. It is either attached to a node with 

only one child so far, or, if there is no such a node, the server 
picks leaf node jN  that has the least depth in the key tree, and 

generates a new parent node PN  for both MN  and jN . The 

key PK  for node PN  is set as )( nn
K j

PRF →  in Eq. (1), and the 

server then informs jN  to update its key set; 
 

 
Fig. 4.  Procedure for client join. 

 

 
Fig. 5.  Illustration of client join. 

 
Fig. 5 shows an example for client 6U  to join the system. 

Upon receiving the join request from this new client, the server 
first updates all the present keys in the tree to preserve 
backward secrecy. Since there is no any node with a single 
child, the server picks node 1U  and generates a new node with 
key 9K  , which serves as the parent for both 1U  and 6U . The 
server then informs 1U  to update its key set 

100 1 9{ , , , }G KK K K K′ ′ ′ and sends  to 6U .  

For joining multiple clients during the same time slice, the 
key server generates a new sub-tree for these new clients, and 
attaches this sub-tree to the key tree by the end of this time slice 
as a normal client does. In this case, the server only needs to 
communicate with a single node, i.e., the root of the sub-tree, 
which greatly reduces the communication and computation 
overhead. 

B. Operations for Client Leaving 
Upon a client leaving, the current session key has to be 

replaced and only the legitimate clients can receive the new key. 
Moreover, to ensure forward secrecy, all the keys that the 
leaving client knows must also be changed. 
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Fig. 6.  Algorithm for key update. 

 
We first present a key update algorithm that facilitates the 

operations for client leaving (Fig. 6). This algorithm is based 
on the assumption that the two children of the node with key K  
have keys LK  and RK , respectively. The new key K ′  is 

derived from K  together with 1n -bit contribution from LK  
and 2n -bit from RK , 2 2( )n n n+ ≤ . The server then 
multicasts the following rekey messages through the secure 
transmission module:   

ββ
LR KRKL CC }{|}{

 (3) 
Where βα ,  are two pre-defined parameters, which ensures 
that the generated keys are independent,  
                    )()( αα nn

Ki i
PRFK →= , }.,{ RLi ∈  (4) 

                   )()( ββ nn
Ki i

PRFK →= , }.,{ RLi ∈  (5) 

Clearly, the rekey messages contain enough information for 
both children to reconstruct K ′ . For the left child, it can 
decrypt RC  from β

LKRC }{  using its local key, and then 

combine it with LC , which is locally available, to 

reconstruct K ′ . Symmetric procedures can be applied for the 
right child. 

  Given this key updating algorithm, the following procedure 
can then be executed to meet the demands for client leaving 
( Fig. 7): 

1) The leaving client or a neighboring node that detects its 
leaving contacts the server; 

2) The server deletes the corresponding leaf node in the key 
tree, and replaces its parent node by its sibling node. The server 
also informs the sibling node to remove the key of its original 
parent from the key set; 

3) All the keys of the nodes along the key path for the leaving 
client need to be updated sequentially. For key iK , the update 

is as follows, 
)()(

i
nn

Ci KPRFK
LR

→=′ ; (6) 

4) The server multicasts the rekey message to all the clients, 
that is,  

   
βα
RiLi Ki

nn
K KPRF )}({ )( 1→ |

βα
LiRi Ki

nn
K KPRF )}({ )( 2→ .    

(7) 

     
Fig. 7.  Procedure for client leave. 

 

     
Fig. 8.  Illustration of client leaving. 

 
   Fig. 8 shows an example for client 5U  to leave the group. 

It first contacts the server to logout; the server uses its sibling 
node 4U  to replace their original parent. The key 6K  is then 
removed from the key set of 4U , and the server computes the 
new keys along the path from 4U  toward the root. In the last 
step, rekey messages updating, GK , 0K , and 2K  are 
multicast. For illustration, the message for key 2K  is 

                  1 1

5 77 5
2 2{ ( )} ,{ ( )}n n n n

K KK K
PRF K PRF Kα β α β

< → > < → > .     (8) 

   For client 3U , it should first compute 1

5
2 2( )n n

L K
C PRF Kα

< → >= , 

and, upon receiving the right half of this message , that is, 

5
2{ }R K

C β , it decrypts the message to get 
2RC . It follows the 

algorithm in Fig. 6, 

2 2 2
|LR L RC C C=  (9) 

22 2( )
LR

n n
CK PRF K< → >′ = . (10) 

   Considering a balanced binary key tree with N leaves, the 
number of keys to be updated is bounded by (log )O N , which 
implies that the leaving algorithm is scalable as well.  

When multiply clients leave in a same time slice, the server 
will firstly gather all of these leaving requests. By the end of 
this time slice, the server merges the redundant key updating 
operations, forms an updated key tree and generates rekey 
messages for all the residual clients to complete their key 
updating process according to the final key tree. In this case, 
reduplicate and unnecessary updating of key nodes can be 
efficiently prevented. Consequently, it can greatly decrease the 
computational overhead. 

 

V. THE KEY EMBEDDING MODULE 

The key embedding algorithm of CASM works in the 

1

2

1 2

The left child contribution:   ( )

The right child contribution: ( )

| ( ) | ( )

L

R

L R

n n
L K

n n
R K

n n n n
LR L R K K

C PRF K

C PRF K

C C C PRF K PRF K

α

α

α α

< → >

< → >

< → > < → >

=

=

= =
 

Output: updated key ( )
LR

n n
CK PRF K< → >′ =  
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Discrete Cosine Transform (DCT) domain through a novel 
Average Luminance Value (ALV) modulation [10]. It 
partitions the DCT blocks in a frame into mutually-exclusive 
fields, and alters the Direct Current (DC) component by 
embedding one bit data in each field. Details of the ALV 
modulation can be found in [10]. 

 
 
 
 
 

TABLE I 
FORMAT OF THE REKEY MESSAGE 

20bits iK   

20bits LiK   

20bits  RiK   

34bits β
LiKRC }{  

34bits β
RiKRC }{  

 
In our implementation of CASM, we divide each video 

frame into 200 fields, and 200 bits data can thus be embedded. 
The data to be embedded include an 8-bit flag and a 128-bit 
rekey message, which follows the format presented in Table I. 
We use the remaining 64 bits for Reed-Solomon (RS) coding, 
which facilitates client-side error recovery [11]. In addition, the 
same rekey message is repeated in every subsequent frame till 
another key is updated, which further enhances reliability of 
CASM. 

VI. THE ENCRYPTION MODULE 

We employ a two-level approach for selective encryption, 
which is the core operation in the secure transmission module. 
Recently, the H.26x and MPEG1/2/4 video coding standards 
have provided the enabling technologies for a wide variety of 
applications. These standards achieve high compression 
performance using a number of methods to exploit the spatial 
redundancies and temporal redundancies [23]. The MPEG 
standard uses inter-frame compression to achieve compression 
ratio of about 100:1 by storing only the differences between 
successive frames. The detailed information about video coding 
can be found in [23].   In the two-level approach, the sign bits of 
the DC components and motion vectors are respectively 
modified to encrypt the video data. The modification is an XOR 
operation with a pseudo-random sequence, which is referred to 
as an Encryption Sequence (ES), can be calculated as 

                      ( )PRF ( _ )
G

n n
KES frame number→=  (11) 

Since the ESs vary with different frame numbers, this scheme 
can resist statistical attacks. A client, however, keeps track of 
the session key and the frame number, and thus can easily 
reproduce the corresponding ES and decrypt the video data 
accordingly. The detailed encryption operations at each level 

are given below.  

A. Level-1: DC Component Encryptions  
At level-1, we shuffle the sign bits of the DC components in 

an I-frame. Assume that iDC  is the codeword to be 
transmitted for DCT block i , and iDC  is the real DC 

component. It follows that  0 0DC DC=  and iDC =   

1i iDC DC -- , since the DC components are predicatively 
coded in the MPEG standard. Let iE  be the i-th bit of the ES; 
we encrypt the DC codeword as follows, 

               ( ) (2 ( ( ) ) 1)i i iEnc DC sign DC Ki DC= × ⊕ − ⋅ , (12) 

where      
0,          0

( )
1,          0

i
i

i

if DC
sign D C

if DC

 <= 
≥

 . 

Given the predictive coding, any change on one DC 
component will result in severe errors cumulated in all the 
following blocks. This is illustrated in Fig. 9, where an 
alternation of the sign in the first block leads to confusion on 
the luminance components in all the blocks.  

 

 
Fig. 9.  An example of layer-1 encryption. 

B. Level-2: Motion Vector Encryption 
It is known that motion vectors contain abundant information 

about the video. In the scenarios such as video surveillance and 
conferencing, video objects could be effectively reconstructed 
by motion vectors only. Hence, it is necessary to hide the 
motion vectors in a P-frame as well, which is realized in the 
level-2 encryption.  

Assume that MV  is the motion vector of the current block, 
and 1MV ,  2MV , 3MV  are motion vectors of its neighboring 
blocks already being transmitted. Let 

                   1 2 3( , , )x x x xP Median MV MV MV= , (13) 
                1 2 3( , , )y y y yP Median MV MV MV=  ,          (14) 
and the differential codewords for the motion vectors are thus,  
                           x x xMVD MV P= - ,                        (15) 
                           y y yMVD MV P= - . (16) 

Let ),1( tE  be the first t bits of the ES, where t is the length of 

an MVD. MVDs are encrypted as follows, 
                       ),1()( txx EMVDMVDEnc ⊕= ,           (17) 

                       ),1()( tyy EMVDMVDEnc ⊕= . (18) 

Such operations disorder the positions of the reconstructed 
blocks, leading to unacceptable reconstructed quality for an 
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entire video frame and, more significantly, all the following 
predictive frames. An example is shown in Fig. 10. Since the 
motion vector data are relatively small, the computation 
overhead of such encryption can be kept at a low level, as 
shown in the next section. 

 
Fig. 10.  An example of layer-2 encryption. 

 

VII. IMPLEMENTATION AND EXPERIMENTS 

We have implemented a prototype for the proposed CASM 
system. Its protocol stack is depicted in Fig. 11, and the system 
configuration is in Fig. 12. Note that we distribute the key 
management and the key embedding/selective encryption 
operations into a gateway and a server, respectively. There is 
also a transcoder that realizes all these functionalities and yet 
meets the bandwidth constraints from its local clients [2, 6]. 
Such a configuration validates the flexibility of the 
modularized design of CASM. 

 

 
Fig. 11.  Protocol stack of the prototype. 

 

 
Fig. 12.  System configuration of the prototype. 

In this prototype, we employ a keyed-hash function, 
TLS-PRF [24], in the key embedding and selective encryption 
modules to generate pseudo-random sequences. It splits the 
input into two halves, transforms them using MD5 and SHA-1, 
respectively, and then combines them through an XOR 
operation. Details of TLS-PRF can be found in RFC2246 [24]. 

A. Reconstruction Quality 
In the first set of experiments, we examine the performance 

of CASM in terms of the quality of reconstructed video. Note 
that CASM is content-aware, which is reflected in two aspects: 
first, it embeds the rekey messages into video frames to avoid a 
separate control channel for key distribution; and second, it 
encrypts the DC components and motion vectors of a video 
stream only, which significantly reduces the computation and 
communication overhead. It is thus necessary to investigate the 
following two aspects: the encryption effect and the impact on 
the quality of correctly decrypted content.  

   We have conducted experiments over a variety of video 
sequences to investigate the aforementioned two measures. Fig. 
13(a) shows a video frame with a 200-bit rekey message 
embedded (right) and the original frame (left), as well as the 
corresponding PSNR curves. This sequence containing 500 
frames is taken from a famous film “Jurassic Park”. The 
modulation cycle in the embedding algorithm is 4 (see [10] for 
details). In this frame, we are unaware of any perceptible 
quality distortion, which is also true for most of other sequences 
used in our experiments. 

 

       
(a) 
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(b) 

Fig. 13.  (a) Left: un-embedded image; Right: embedded; (b) Corresponding 
PSNR curves of these two images 

 
 

 
Fig. 14 demonstrates the effectiveness of the two-level 

encryption algorithm. The original pictures are shown in Fig. 
14(a), which also represents the pictures being encrypted and 
then decoded with a genuine key. In Fig. 14(b), only level-1 
encryption is applied and then decoded with an outdated key. 
We can see there are many stripes, brighter, or darker pixels 
and blocks in these pictures. While the quality is quite poor, 
there is still a vague shape of a dinosaur. Upon applying the 
level-2 encryption for motion vectors, however, it is impossible 
to recognize the pictures, especially for P-frames (see Fig. 
14(c)).  

It is worth noting that, for both the key embedding and 
selective encryption algorithms, there are no extra bits added to 
the video data, and the altered stream strictly follows the 
original encoding format. Consequently, no any change is 
needed for the video decoder on client sides. 

 

       
(a)  Non-encrypted 

       
(b) Encrypted by Layer-1 and decoded without genuine keys 

      
(c)Encrypted by level-1 and -2 and decoded without genuine keys 

Fig. 14.  Effectiveness of encryption (Left column: I frame; Right column: 
P-frame). 

B. Computation Overhead 
The most intensive computation in CASM is required by the 

selective encryption algorithm, which is to be invoked for each 
frame. Table II compares the encoding speeds (frame/second) 
with and without selective encryption for both a high-rate 
stream (4.5 Mbps) and a mid-rate stream (1.5 Mbps). The 
results reaffirm that the selective encryption algorithm, applied 
to a small set of data only, is highly efficient for real-time 
processing.  

 
TABLE II.  

COMPLEXITY OF THE SELECTIVE ENCRYPTION. 

Video Sequence High-Rate Mid-Rate 

Encoding speed without 
selective encryption (frame/sec) 49.7f/s 55.6f/s 

Encoding speed with selective 
encryption (frame/sec) 48.4f/sec 54.3f/s 

Processing time (%) 2.69% 2.39% 

 

C. Scalability 
Since the scale of our prototype remains limited, we 

investigate the scalability of CASM through simulations. Table 
III shows the client joining and leaving times with different 
group sizes. The path length is the maximum number of nodes 
within a root-to-leaf path in the key tree, which is bounded by 
in CASM. It is easy to show that, when a client joins, only one 
message should be multicast, and when a client leaves, the 
number of messages to be multicast ranges from 

2log 1N +    to 

2log 1N +   . Considering the multiple concurrent requests, the 
processing overhead can be greatly decreased by the method of 
gathering request firstly then processing them later, i.e., a 
time-driven strategy. Such analysis is consistent with the 
simulation results presented in Table III, which suggests that 
CASM can scale to large multicast groups.  

 
TABLE III  

JOINING/LEAVING TIME VS GROUP SIZE. 

Group size Path length Joining time Leaving time 

100 9 0.5s 3.7s 
1,000 12 0.5s 5.3s 

10,000 16 0.5s 7.4s 
100,000 19 0.5s 9.0s 

 

VIII. CONCLUSIONS 
This paper has presented a novel content-aware protocol for 

secure video multicast. The protocol, called CASM, 
incorporates a light-weight scalable algorithm for group key 
management, a reliable key embedding algorithm, and a 
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selective video encryption algorithm. CASM is content-aware, 
which is reflected in two aspects: first, it embeds the rekey 
messages into video frames to avoid a separate control channel 
for key distribution; and second, it encrypts the DC components 
and motion vectors of a video stream only, which significantly 
reduces the computation and communication overhead. 
Moreover, it is fully compatible with existing video coding 
standards. 

   We have built a prototype of CASM that demonstrates its 
robustness and scalability. The design of CASM adopts a 
time-driven strategy, i.e., dividing time into slices of identical 
length, which can efficiently accommodate with concurrent 
multiple requests and can ensure a limited communication 
overhead. Our experimental results have also validated that 
CASM enables secure key and video content distribution with 
minimized bandwidth overheads. Its content-aware key 
embedding and encryption algorithms are fast enough to 
support real-time video multicasting. 
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