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ABSTRACT
The 3G/4G cellular networks as well as the emerging 5G
have led to an explosive growth on mobile services across the
global markets. Massive base stations have been deployed
to satisfy the demands on service quality and coverage, and
their quantity is only growing in the foreseeable future. Giv-
en the many more base stations deployed in remote rural ar-
eas, maintenance for high service availability becomes quite
challenging. In particular, they can suffer from frequen-
t power outages. After such disasters as hurricanes or s-
now storms, power recovery can often take several days or
even weeks, during which a backup battery becomes the only
power source. Although power outage is rare in metropoli-
tan areas, backup batteries are still necessary for base sta-
tions as any service interruption there can cause unafforable
losses. Given that the backup battery group installed on a
base station is usually the only power source during power
outages, the working condition of the battery group there-
fore has a critical impact on the service availability of a base
station. In this paper, we conduct a systematical analysis
on a real world dataset collected from the battery groups
installed on the base stations of China Mobile Ltd co., and
we propose an event-driven battery profiling approach to
precisely extract the features that cause the working con-
dition degradation of the battery group. We formulate the
prediction models for both battery voltage and lifetime and
propose a series of solutions to yield accurate outputs. By
real world trace-driven evaluations, we demonstrate that our
approach can boost the cellular network service availability
with an improvement of up to 18.09%.

1. INTRODUCTION
The deep penetration of cellular mobile wireless technolo-

gies have made anytime anywhere communications become
more available than ever. Indeed, with the wide deployment
of 4G network as well as the emerging of 5G, mobile applica-
tions are experiencing an explosion while the bandwidth of
cellular network becomes higher than ever. To afford such
great demands, in the cellular network infrastructure, more
and more base stations have been strategically construct-
ed and deployed to satisfy the service coverage and quality
(e.g., bandwidth) requirements. The base stations are then
aggregated into the carrier network through the backhaul
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infrastructure by fiber lines or microwave links. However,
this renders that the network service downtime will cascade
to all the dependent base stations if any part experiences
power outages [1]. In particular, in the rural areas or during
severe weather conditions such as hurricanes or snow storm-
s, the power recovery may take several days or even weeks
depending on the difficulty to reach the repairing area.
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Figure 1: The power sources and loads in the cellular net-
work base stations

To improve the service availability, besides connecting to
the utility grids, each cellular tower is also equipped with a
battery group as illustrated in Fig. 1. When a power outage
happens in the utility grid, to avoid any service interrup-
tion, the battery group discharges to support the communi-
cation equipment until the generator is delivered to provide
enough power supply. This makes the battery group and its
working condition play a critical role. During this period,
if the condition of the battery group deteriorates, a power
outage can easily take down the service. The emergency re-
pairing service arrives may take several days or even weeks
depending on the difficulty to reach and locate the repair-
ing section, especially in rural areas or during severe weath-
er. Thus, being able to predict the condition of the battery
group is of immense technical and commercial importance
for system maintenance, so that battery replacement can
be planned ahead of failure to minimize the interruptions
of service availability. A successful prediction requires not
only the knowledge of the battery ageing processes, but also



a good understanding of the stress events that may induce
and accelerate the aging process.

To tackle those issues, we collaborate with China Mobile
Ltd co., which is the world’s largest mobile phone operator
in term of subscriber and currently with about 806 million
users. We have collected 42,527 equipment data with totally
1,313,533,557 rows from July 28th, 2014 to July 31st, 2015
including 105 categories of events, which are further pro-
cessed and analyzed by our cloud computing platform with
Hadoop 1.2.1 and Hive 1.2.1. Based on the data analysis,
we propose an event-driven battery profiling approach to
precisely predict the battery group working conditions and
schedule maintenance accordingly, so as to guarantee the
high service availability for the cellular networks. We for-
mulate the prediction models for both battery voltage and
lifetime and propose a series of solutions to yield accurate
outputs. By real world trace-driven evaluations, we demon-
strate that our approach can precisely predict the battery
voltage and lifetime with the RMS error no more than 0.01
v, which can further the improves the service availability of
the cellular towers up to 18.09%.

The rest of the paper is organized as follows. Section 2
provides our detailed observations on the battery properties.
Section 3 presents our approach to efficiently solve the prob-
lem. Section 4 discusses the performance evaluation results
on our approach. We provide a literature review in Section 5
and we conclude this paper in Section 6.

2. MOTIVATION AND DATA ANALYSIS
To better understand the battery working condition and

its deterioration process, we have closely worked with the
engineers from China Mobile to collect the dataset for our
study. In this section, we first describe the collected dataset
and then discuss our observations for aging profiling in time
series battery data.

2.1 Background
We explain the details of power supply in the cellular net-

work base stations, as Fig. 1 shows. The equipment in base
stations is supported by the utility grid, where the battery
group is installed as the backup power. In case that the u-
tility grid interrupts, the battery discharges to support the
communication switching equipment during the period of
the power outage. As Fig. 2(a) shows, a battery group in
the cellular network base station contains 24 cell batteries.
In Fig. 2(b), the monitoring system has sensors on each cel-
l of the battery group and periodically collects the voltage
and events in both normal and abnormal situations. When
the monitoring system reports the alert event, e.g. the pow-
er outage, the emergency repairing service is scheduled de-
pending on the accident severity. Since few base stations
have the diesel generators permanently installed on site, the
engineers have to drive the emergency diesel generator to
provide the power, which can take time to arrive at the site.
The power outage can occur frequently and severely in the
rural areas and developing countries due to the unstable
utility grid. To make it even worse, the construction of in-
frastructure often makes that the base stations are difficult
to reach, e.g. slippery rock trails in the mountains, where
the workers have to manually carry the heavy generators to
the site. As a result, the cellular carriers may have to trade
off between the cost and the quality of service, so that they
even abandon the base stations in the tough surroundings

until the utility grid is restored. On the other hand, con-
sidering the labor costs for the mobile telecom carries, the
periodical maintenance for the battery group is generally of
long intervals, which further exaggerates the possibilities of
battery accidents during the outage of utility grid. If the re-
pairing engineers cannot arrive at the site before the battery
group is exhausted, the availability of the base stations can-
not be guaranteed. Thus prediction for the lifetime of bat-
tery group is meaningful for the service availability, which
is helpful for maintenance engineers to solve the potential
issues in advance during the periodical maintenance.

(a) Two battery groups
with 24 cells

(b) The cable of monitoring
systems

Figure 2: The battery group and monitoring systems

Despite the Li-ion and NiCd batteries demonstrate the
latest development in battery technology due to their s-
maller size, lower weight and better storage efficiency, ma-
jor drawbacks of these types of batteries are the high cost.
Lead-acid batteries in Fig. 2(a) have large capacities and
thus have been widely used for storage in backup power
supplies in base stations. The aging mechanism of Li-ion
batteries attracts many efforts [2], where the frequent ac-
tivities of Li-ion batteries produce lots of log and provide
possibilities to measure the battery working conditions. Yet
the lead-acid batteries in base stations normally keep in the
float-charging status, where float-charging status represents
that a battery maintains the capacity by compensating for
self-discharge after being fully charged. The monitoring sys-
tem collects the float voltage from the float-charging batter-
ies twice per day, which makes the dataset considerately
sparse. Therefore extracting the features from such a sparse
data source and predicting the working conditions of lead
acid batteries pose many challenges and here we take the
first attempt to tackle these issues.

2.2 Data Analysis
The log data that we have collected is from July 28th,

2014 to July 31st, 2015. In our dataset, we have identified
105 categories of event codes and obtained 42,527 equipment
data with totally 531 tables and 1,313,533,557 rows.

2.2.1 Voltage Readings of Batteries
The voltage of each cell battery is the most important

feature that we have measured, as it reflects the power out-
put pattern of the battery. In general, we have observed
two representative kinds of cell batteries, where we manu-
ally choose 1578 batteries as the newly-installed group and
put 1459 batteries into the nearly-dead group depending on
the repair records. As mentioned, there are 24 cell batter-
ies in one battery group, where the rated voltage of cell is
around 2.23v and the rated voltage of battery group is 53.5v.
Based on this, we further analyze the typical status of the
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Figure 3: Mean voltage versus battery status

voltage patterns inside the two representative cell battery
categories. Fig. 3 shows the significant differences between
the newly-installed and nearly-dead batteries.The blue sol-
id line plots the mean voltage of newly-installed batteries,
which judders between 2.21v and 2.25v. The red dotted line
shows the decay trend on the mean voltage of the nearly-
dead batteries. There is a clear downward trend close to the
failure date, where the battery power frequently falls down
and becomes quickly exhausted, causing many issues and
alerts in the cellular network base station, which indicates
that the voltage have strong correlations with the battery
life.
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Figure 4: Voltage variances versus battery status

As Fig. 4 shows, the blue solid line represents the newly-
installed battery can output a steady power and the variance
of the voltage keeps very close to zero. The red dotted line
illustrates that the variance of the nearly-dead batteries in-
creases much faster than the newly-installed batteries. Fig. 4
illustrates that the voltage variance also has the correlation
with the length of remaining lifetime. The variance of the
output voltage from the batteries over time also reflects the

aging trend of battery quality degradation. These obser-
vations motivate our battery working condition prediction
based on the battery historical voltages.

2.2.2 Battery Events
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Figure 5: Distribution of battery events categories

We perform an analysis on the battery events in the logs
to explore their potential relationship with the battery work-
ing conditions. Fig. 5 also shows the frequency distribution
among all the 105 categories. We can see that the distribu-
tion is highly skewed: the most popular category is Alert,
at about 28.09%, the second is Battery premature failure,
at about 20.42%; and the third is Discharging, at about
10.70%.
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Figure 6: Correlation between the remaining life and the
number of low float voltage events

We take three events as example to further investigate the
correlations between events and battery remaining lifetime,
which are Alert to low float voltage, Discharge and fault cell
shown in Fig. 6, 7 and 8, respectively. We count the specific
events number for each battery until the batteries are re-
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Figure 7: Correlation between the remaining life and the
number of discharge events

placed, and pick up the top-30 batteries with the maximum
number of events. From July 28th, 2014 to the end of July
2015, there are 366 days in our dataset, where the remaining
lifetime of most batteries in our dataset is longer than 366
days, therefore dash lines represent that those batteries on
it have longer remaining lifetime than 366 days. Fig. 6 and 7
plot the correlation between Alert to low float voltage, Dis-
charge and remaining lifetime. This clearly demonstrates
that there exists a strong correlation between battery re-
maining lifetime and Alert to low float voltage, as well as
between battery remaining lifetime and Discharge. We fur-
ther plot the failure rates against the number of fault cell
events in the system in Fig. 8, which does not show any
noticeable correlation between them. This implies that the
failure is affected by some specific events. The observation-
s suggest that the diverse events have different influences
on the battery working conditions, thus it is necessary to
discriminatingly differentiate these events for the accurate
prediction.
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Figure 8: Correlation between the remaining life and the
number of fault cell events

3. SOLUTION DESCRIPTION
The battery working conditions can be predicted by it-

s relevant historical voltage records and event logs, which
motivates us and serves as the basis for the prediction of bat-
tery remaining lifetime. Although the monitoring systems
collects sufficient messages from batteries with the voltage
and events data, there still remain several challenges to ac-
curately predict the battery lifetime, especially when there
are massive events in logs with some noises existing. More-
over, our observations suggest that the historical events are
correlated with the battery working conditions, yet single
event record is not a reliable factor for the prediction. Thus
our approach filters out a large amount of noise and only
pulls the relevant data from the database, including the his-
torical float voltage and meaningful events, as mentioned in
prior section, e.g., we only select the float voltage from the
table named historybattery. Let V = {v1,v2, ...,vN} denote
the float voltage set and E = {e1, e2, ..., eN} represent the
event set, where N is the number of batteries. Each volt-
age records vi = {v1i , v2i , ..., vti , ...} is a sequence of voltage
records in time series for battery i, where each vti is the mean
voltage value of battery i in time t and the time interval is
one day. Similarly, let ei = {e1i , e2i , ..., emi

i } represent the
event set of battery i, which has mi events. Our goal is to
profile the aging trends for the battery working conditions,
and predict the battery remaining lifetime. Given the bat-
tery data with historical events E and float voltage V in time
series, we can predict the future voltage and then estimate
the battery remaining lifetime.

To achieve this, we extract the aging trend via from a giv-
en time series vi. We partition the voltage records vi into
K segments, and use the polynomial regression to fit each
segment, where each voltage segment k having the initial
voltage vkia and the slope of line with value ski to represen-
t the voltage aging trend. To ensure that the trend via is
monotonic, we can simply write the constraint as vkia ≥ vk+1

ia .
Given the aging trend via = {(v1ia, s1i ), (v2ia, s

2
i ), ...}, we pro-

pose a concept of penalty pki to represent the influences of
a group of events on the voltage aging trend, which can be
defined as pki = ski −sk−1

i . Then we utilize the learning algo-
rithm with events data E to predict the penalty value pi on
the voltage aging trend via. Based on the predictive voltage
in coming months, we can estimate the battery remaining
lifetime. To this end, we further transform the problem into
a Multi-Instance Multi-labels Learning [3] problem.

Let E denote the instance space for the historical events,
and P define the set of penalty labels. We denote the
training data by {(e1,p1), (e2,p2), ..., (eN,pN)} that con-
sist of N examples, where a set of events ei is called a
bag in the MIML model and has mi instances, i.e., ei =
{e1i , e2i , ..., emi

i }. A set of penalty labels pi is associated with

the bag pi, where each pji ∈ pi is one possible penalty value
led by these events ei. In particular, each battery group
has 24 cells with different voltage aging trend, where pi =
{p1i , p2i , ..., p24i } is a subset of all possible labels and pi ∈ P.
Then the objective is to learn a function fMIML : 2E → 2P

from a given data set {(e1,p1), (e2,p2), ..., (eN,pN)} to ac-
curately predict the penalty label pi for the bag ei.

Instead of receiving a set of independent labeled instances
as in standard classification, MIML model receives a set of
bags {e1, e2, ...} which are labeled with the penalty values
{p1,p2, ...}. Given bags obtained from different batteries at
different dates, the goal is to build a classifier that will la-



bel other bags correctly. Based on the MIML algorithm, we
propose a modified approach with an effective approxima-
tion of the original MIML problem. Specifically, to utilize
the relations among multiple labels, our approach first learn
a shared space for all the labels from the original features,
and then trains label specific linear models from the shared
space. To make the learning efficient, stochastic gradient de-
scent is used to optimize an approximated ranking loss. In
testing phase, our approach returns a subset of all possible
labels with the prediction value, and we obtain the penal-
ty label for each bag by selecting the one with the largest
prediction value.

With the domain knowledge and our observations that the
voltage is the criterion of the battery condition, the remain-
ing lifetime can be easily predict with the voltage threshold
T for pre-defined battery failure. We say the working con-
dition of battery i is good, when the float voltage value vi is
higher than pre-defined threshold T . With the aging trend
(vkia, s

k
i ) and penalty pk of the voltage in time segment k,

the battery remaining lifetime lki for the battery i at time

segment k can be calculated as lki =
vk
ia−T

ski +pki
.

4. EXPERIMENTS
In this section, we evaluate the prediction accuracy of

the event-driven battery profiling approach using real-world
trace collected from China Mobile Ltd Co and demonstrate
the performance in estimating the remaining battery life-
time. To evaluate the prediction quality, we run experiment
on the real-world data with 2673 batteries data, 2082 exam-
ples in the training set and 593 examples in the test set.
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Figure 9: Root-mean-square Errors

Then we compute the root-mean-square error between the
predictive and actual trends. We compare our method with
ARIMA [5], Linear Regression [6] and wavelets [7], as Fig 9
shows. We can see that our method performs best among the
majority of the compared schemes with the smallest root-
mean-square errors, where our approach can precisely pre-
dict the battery voltage with the RMS error less than 0.01 v.
Moreover, the aging trend extracted by our scheme is mono-
tonic and satisfies the nature of the aging behavior, while
LR, ARIMA, or Wavelets does not have such advantage as
they have no monotonic constraint in extracting the voltage

aging trend.
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Figure 10: Survival days after our failure alert

As the battery replacement is the consequence of a bat-
tery failure [4], we choose 112 batteries with the replace-
ment records in the log to verify the prediction accuracy for
remaining lifetime. We count the survival days for each bat-
tery after the failure alert. A plot of the relation between
the percentage and the survival days after our failure alert
is shown in Fig. 10. We can see that 87% batteries are re-
placed in three months after the alters, which demonstrates
our approach is a strong predictor for battery working con-
ditions. We also observe that there are still a small number
of batteries not replaced after our failure alerts. We have a
close look at those batteries, and find out there are redun-
dant battery groups in their cellular network base stations.
Therefore repairing engineers postponed the maintenance
service for those batteries, which also demonstrates our bat-
tery profiling approach can help the maintenance engineers
to detect the potential issues in the battery groups.
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Figure 11: Service Availability

Fig. 11 plots the service availability of the base stations
in the case of the power outage. We assume that the bat-
tery will be replaced after the failure alert and the voltage
goes back to the normal level. The result demonstrates that
the event-driven battery profiling approach together with
our proposed battery maintenance and replacement scheme,



can boost the cellular network service availability with an
improvement of up to 18.09%.

5. RELATED WORK
The time series research has attracted significant efforts

in recent decades. In this section, we highlight some rele-
vant techniques. The most intuitive approach is smoothing,
filtering and prediction, which can be done using differen-
t techniques, including ARIMA [5], Linear Regression [6],
wavelets [7] and SSA [8]. Luo et al. [9] presented an ap-
proach to find the correlation between actual events and
time series in order to diagnose incidents. Their approach
matched the events with certain subsequences of time series
in order to give a real explanation of the time series shape.
Xu et al. [10] [11] combined textual messages in console logs
to construct performance features and conducted the Prin-
cipal Component Analysis (PCA) [12] to detect anomalies.
Makanju et al. [13] proposed IPLoM by creating event de-
scriptions based on clustering text messages in the logs, but
interpreting them requires unavailable domain knowledge.
Predicting failures on a data stream processing system [14]
could be done by observing system’s status, which uses an
ensemble of decision tree classifiers and is applicable in an
online setting. Finite state automata [15] can be used to
model sequential dependencies between messages and de-
tect anomalies. Most recently, Sipos et al. [4] considered
log-based predictive analysis in order to monitor the con-
ditions of the operating equipment, yet they ignored the
possibility of fine temporal patterns to simplify the model.
Different with the prior approaches, our event-driven bat-
tery profiling approach focuses on a large amount of battery
and utilizes not only the signal value but also the events data
to comprehensively predict the battery working conditions.

6. CONCLUSION
In this paper, we propose an event-driven battery profil-

ing approach to precisely extract the features that cause the
working condition degradation of the battery group. We
formulate the prediction models for both battery voltage
and lifetime and propose a series of solutions to yield accu-
rate outputs, which further enable us to propose a scheme
to timely schedule battery maintenance and replacement to
minimize the service interruptions caused by power outages.
By real world trace-driven evaluations, we demonstrate that
our approach can achieve much higher prediction accuracy
on the battery voltage and lifetime, which together with
our proposed battery maintenance and replacement scheme,
can boost the cellular network service availability with an
improvement of up to 18.09%.
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