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Abstract—This paper describes an experimental study that
closely examines the underlying topologies of multiple complex
networks formed in BitTorrent swarms. Our results demon-
strate that the networks exhibit fundamental differences during
different stages of a swarm, suggesting that the initial stage
is not predictive of the overall performance. We also find a
power-law degree distribution in the network of peers that are
unchoked by others, which indicates the presence of a robust
scale-free network. However, unlike previous studies, we find no
clear evidence of persistent clustering in any of the networks,
precluding the presence of a small-world that is potentially
efficient for peer-to-peer downloading. These results suggest an
interesting venue for improving BitTorrent’s performance. We
present a first attempt to introduce clustering into BitTorrent.
Our approach is theoretically proven and makes minimal changes
to the tracker only. Its effectiveness is verified through a series
of simulations and experiments.

I. INTRODUCTION

Among all of the peer-to-peer Internet applications avail-
able, BitTorrent [1] has become the most popular for the
downloading of large files. It has been reported that half of all
current Internet traffic is due to BitTorrent [2]. This popularity
can be attributed to the efficiency with which BitTorrent can
distribute large files, and its resilience to peer departures, peer
failures, and misbehaving peers. Many of these properties
have been confirmed through both theoretical and experimental
studies. One aspect yet to be fully explored is the topology
of the network of peers formed during a download. In partic-
ular, the resilience to failing and misbehaving nodes suggests
that the network may be scale-free, and the efficiency of
information distribution suggests that the network may be
clustered or even small-world. Neither of these properties
has been quantitatively measured beyond the early stages of
swarms. Since BitTorrent networks are highly dynamic, a
clear understanding of the characteristics and evolution of
the networks during churn and during their entire lifespans
is critical to its performance optimization.

In this paper, we describe experiments that closely examine
the underlying topologies of BitTorrent swarms. These experi-
ments capture the intricacies of forming multiple complex net-
works in BitTorrent, including the formation of four networks
in a BitTorrent download: Connection, Interest, Unchoked,
and Download. Unlike previous work which was confined

to the initial stage, we look at their characteristics and dy-
namics throughout the entire lifespan of swarms. Our results
demonstrate that the networks exhibit fundamental differences
over time. This suggests that the initial stage of a BitTorrent
swarm is not sufficient to predict the overall performance of
the system, and in order to fully examine a BitTorrent swarm,
long-term measurements are needed.

We find strong evidence of scale-free characteristics in the
network of peers that are unchoked by other peers. However,
we find no clear evidence of persistent clustering in any of
the networks of peers that we studied, which suggests an
interesting venue for improving BitTorrent’s performance.

We present a first attempt to introduce clustering into Bit-
Torrent. Our approach makes minimal changes to a BitTorrent
tracker by adding peers to a fixed number of groups, called n-
cliques. The tracker then returns mostly peers from the same
group, with only a small number from other groups. Our theory
indicates that this will keep the clustering high within the
n-cliques, while the connections to other groups will keep
the characteristic path length low. We verify this theoretical
prediction by simulation and experiment.

II. BACKGROUND AND RELATED WORK

A. Related Work

Various aspects of the performance of BitTorrent have been
investigated through measurement and analytical modeling [3].
Recently, several authors have examined the network topolo-
gies formed by BitTorrent. Urvoy-Keller and Michiardi [4]
used a simulated BitTorrent overlay to look at the distance of
peers from the initial seed and the matrix of peer connections.
Their results were based on a homogeneous collection of
peers, and were limited to the initial stage of a swarm. Al-
Hamra et al. [5] expanded on those results through simulation
with some experimental confirmation. They also examined
the diameter of the overlay created, and the robustness of
the overlay in the presence of churn and attacks. Legout et
al. [6] performed an experimental evaluation with around 40
heterogeneous peers, finding interesting evidence of clustering
in the network of peer unchokings.

Our results differ from these earlier results in several ways.
We have focused on experimental evaluation, which, as a
complement to theoretical modeling and simulation, captures



the intricacies of forming multiple complex networks in Bit-
Torrent. We use over 400 peers and explore the entire lifespans
of the swarms: from initialization to steady state. This enables
us to quantitatively evaluate both time-invariant characteristics
and those that evolve in different stages.

B. Scale-Free Networks

Many real-world networks have been found to be scale-
free [7]. In a scale-free network, the probability that a node is
connected to k other nodes follows a power law distribution
P (k) = k−γ , in which the power γ is usually between 2 and 3
[8]. This results in a large number of nodes with small degrees
and a small number of nodes, called hubs, with large degrees.
The presence of hubs leads to good tolerance of random node
failures in scale-free networks [9].

Two mechanisms contribute to the scale-free nature of many
real-world networks: the networks evolve over time, and nodes
attach preferentially to other nodes based on distinguishing
characteristics. Both mechanisms are present in peer-to-peer
networks [10], but the presence of scale-free characteristics in
BitTorrent swarms has not been previously confirmed.

C. Small-World Networks

Milgram [11] initiated the study of small-world networks
while investigating the phenomenon that people are linked by
short chains of acquaintances (popularly known as six degrees
of separation). Small-world networks possess characteristics
of both random and regular networks [12]. More formally,
the clustering coefficient Ci of node i is the fraction of all
possible edges between neighbors of i that are present, while
the clustering coefficient of a network is the average clustering
coefficient of its nodes. This coefficient is small for random
graphs and large for regular graphs. A small-world graph has
a large clustering coefficient like a regular graph, but also has
a small characteristic path length (average distance between
nodes) like a random graph.

Small-world networks are known to be effective for the
exchange and dissemination of information, including broad-
casting and the spread of viruses [13], [14]. Many existing
peer-to-peer systems (e.g., Gnutella [15], Freenet [16], and
DHT-based systems [17]) are known to be small-world. It is
natural to expect that BitTorrent swarms would exhibit small-
world characteristics, particularly since clustering has been
observed in early stages of swarms [6]. Unfortunately, we find
strong evidence that this is not the case.

III. DEFINITIONS AND EXPERIMENT DESIGN

Since the terminologies and operations of BitTorrent sys-
tems have been well-documented in the literature, we refer
interested readers to [3]. In this section, we describe the
different levels of networks formed by BitTorrent peers, and
the design of our experiments.

A. Networks in BitTorrent Swarms

Given the complex relations among peers, BitTorrent actu-
ally maintains four networks (or graphs1) during a swarm.
Previous studies have focused on only one or two of the
following networks. In this paper, we will investigate the
properties and evolution of all four networks.

Connection Network. This is the network of neighbors that
each peer maintains. These neighbors are chosen randomly by
the tracker from the list of peers in the system. Each peer
makes connections to the peers returned by the tracker and
also makes return connections to other peers that connect to it.
All neighbor connections are bi-directional, so the Connection
Network is undirected.

Interest Network. This network represents the interest that
peers have in other peers. Each peer maintains a list of the
pieces stored by its neighboring peers. A peer is interested in
any neighboring peer that has a piece it does not have. Since
interest can be uni-directional, the Interest Network is directed.

Unchoked Network. This network is formed by the in-
centive mechanism present in BitTorrent. Each uploading
peer assigns its limited number of unchoke slots to certain
neighboring peers in an effort to maximize the downloads that
it receives from them. Since unchoking can be uni-directional,
the Unchoked Network is directed.

Download Network. This network is formed by the peers
that are downloading from other peers. Since downloading can
be uni-directional, the Download Network is directed.

We investigate all four networks in our experiments. We
emphasize that the Connection and Unchoked networks are
the most important of these four networks. The Connection
network forms the neighbor set for all of the peers in the
system, and is a superset of the other networks. The Unchoked
network is necessary for the uploading and downloading of
data from other peers, and so it is very important for the
scalability and efficiency of BitTorrent.

B. Experiment Design

Our experimental data was gathered using a modified ver-
sion of the BitTornado program [18], which is a typical and
widely-used BitTorrent client. The program was modified to
log the connections to other peers that were made by the
client for the four types of networks described in section III-A.
Except for this, we have made no modification to the normal
operations of BitTorrent. The modified BitTornado client was
used to collect data from more than 400 nodes of the PlanetLab
research network testbed.

Below, we show the results of a representative experimental
configuration from a series of experiments that we conducted.
We created a test file consisting of 780 MB of random data
(a typical size for a BitTorrent download) and assigned one
node to be the original seed. The connection speeds that
we used, shown in table I, are typical of those available
from Internet Service Providers. The percentage of nodes

1In this paper, we use graphs to represent networks, and we use the two
terms interchangeably.



TABLE I
THE DISTRIBUTION OF PEER CHARACTERISTICS USED IN THE

EXPERIMENTS.

Nodes Duration Upload Download Unchoke Slotsa

45 % 44 hours 6 kB/s 6 kB/s 2

25 % 20 hours 12 kB/s 24 kB/s 3

15 % 12 hours 25 kB/s 75 kB/s 4

10 % 6 hours 50 kB/s 150 kB/s 5

5 %b 4 hours 100 kB/s 500 kB/s 6
a This is the number of unchoke slots available for uploading (out-

degree). Downloading (in-degree) is not limited.
b The original seed for the experiment is in this class of peers.

for each connection speed was determined from previous
measurements of real BitTorrent swarms [19]. The number of
unchoke slots was varied according to recommended values for
different connection speeds. We limited the maximum number
of connections for each peer to 80, which is the default value
in many BitTorrent clients.

To realize a larger total number of peers than is possible
with only 400 nodes, the clients were scheduled to join
randomly over the first 4 hours of the experiment, download
the file to completion, seed for a random period, and then leave
and rejoin to restart the download. The average times in the
system are shown in table I (except for the original seed, which
stayed indefinitely). The experiments were run for over 100
hours, which was enough time for all of the peers to become
seeds, leave the system, and rejoin multiple times. After the
experiments, the data was synchronized for time by examining
the times that pairs of peers logged a bidirectional connection.

In this paper, we will present results based on the above con-
figuration. Similar conclusions can be drawn from our other
experiments. To investigate the impact of some key factors,
in particular the connectivity and the churn, we conducted
additional experiments. In one experiment, we removed the
limit on the number of connections that each peer could make.
In another experiment, we introduced alternating periods of
high and low churn. We found that most of the results are
similar, so we will only highlight the differences.

All of the figures in the next section were created by
measuring the characteristics of the networks at regular in-
tervals during the experiment. Approximately 360 networks
were generated to produce 100 hours of data for each figure.
We determined this to be frequent enough to capture all of the
details of the evolving networks.

The Connection, Interest, and Unchoked graphs are con-
structed using actual connections among peers that have a
defined start and end time. The Download graph is more
difficult to construct because downloading from a peer occurs
almost instantaneously for the small piece size. To overcome
this difficulty, we constructed it by considering all peers that
have downloaded from each other since the last measurement.

It is worth noting that some of the directed Interest, Un-
choked, and Download networks are not connected. This is
due to the presence of seeds. Seeds have the entire file, so
they are not interested in other peers, are not unchoked by
other peers, and do not download from other peers. This can
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Fig. 1. The population of peers in the system during the first 45 hours of
the experiments.

cause problems with calculations that depend on the graph
being connected. For these calculations, we used the largest
strongly connected component, which is usually equivalent to
removing the seeds from the network.

IV. EXPERIMENTAL RESULTS

Figure 1 shows the distribution of seeds and leechers
throughout the first 45 hours of the 100 hours of the exper-
iment. The remaining 55 hours are not shown as the system
has reached a steady state after which there is little change
in the results. The varying numbers of seeders and leechers
is due to the progression of the BitTorrent clients. We will
further investigate the impact of different amounts of churn in
section IV-C.

We can identify roughly three regions in figure 1. The
system starts out in an initial stage with a single seed, and then
peers join randomly. After the first 4 hours, the total number
of peers in the system is approximately 430. Some of the peers
are already beginning to be converted into seeds before 4 hours
as they joined early with the fastest download rate and so have
already completed their downloads. The system then enters a
transient stage, from 5 hours to about 25 hours, during which
the numbers of seeders and leechers in the system are still
varying. After 25 hours, the numbers of seeders and leechers
change very slowly and are generally quite steady. From 45
hours to 100 hours (not shown in figure 1), the numbers of
seeders and leechers change by less than 10%, probably due
only to the randomness in the experiment.

A. Characteristics of Network Topologies

To determine if the node degrees in the network exhibit
a power law distribution, we plot the degree of each node
against the rank of the node by degree, on a log-log scale.
The slope of a linear fit then yields the power law exponent,
and an R2 goodness of fit value is also generated. The only
network of the four that exhibited this power law behavior was
the Unchoked network, which had an R2 goodness of fit value
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Fig. 2. The node in-degree distribution for the Unchoked network at hour
19 of the experiment, and the resulting fit to it.
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Fig. 3. The exponent found by fitting a power law to the Unchoked graph’s
node degree during the experiments.

of approximately 0.9 over most of the experiment (except the
initial stage). This is high enough to indicate a good fit, while
the other networks had goodness of fit values less than 0.7. A
sample node degree distribution and fit is shown in figure 2.

Figure 3 shows the power law exponent found from the
fitting of the in-degree of the nodes in the Unchoked network.
The power law exponent can be seen to vary quite a lot during
the initial stage. However, once all the peers have joined the
system the power law exponent quickly reaches its final value,
and remains very steady at just over 2 through most of the
transient stage and all of the steady state.

Figure 4 shows the characteristic path lengths of the four
networks in the experiment. Note that, for the directed Inter-
est, Unchoked, and Download graphs, the path lengths were
calculated on the graphs after they were reduced to their
largest strongly connected component to avoid the discon-
nected nature of BitTorrent graphs. The characteristic path
length increases rapidly during the initial stage, though all
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Fig. 4. The characteristic path lengths during the experiments. Also shown
are those of a similar-sized random graph.
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Fig. 5. The clustering coefficients during the experiments.

but the Unchoked network slow their increase even before
the initial stage is complete. The Unchoked graph reaches its
steady state value early in the transient stage, after which none
of the networks vary much at all.

The characteristic path lengths for the Connection, Interest,
and Download networks are short, due mostly to the density
of the graph (430 nodes with an average degree of 65). The
Unchoked graph’s characteristic path length is larger due to the
reduced degree (about 4) of nodes in this graph. Also shown
are the characteristic path lengths of a randomly constructed
graph with the same number of nodes and edges, and with
similar limits on the node degree [20]. The random graph
results are almost not visible, as the Connection, Interest,
and Download graphs have nearly the same characteristic path
lengths as their random graph counterparts. The only exception
is the Unchoked graph which is about 10% larger, probably
due to the scale-free nature of this graph which causes it to
vary slightly from being truly random.

Figure 5 shows the clustering coefficients of the four net-
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Fig. 6. The clustering coefficients during the experiments compared with
the clustering coefficient of a similar random graph.

works in the experiment. Although not shown in the figure,
the coefficient starts at 1 (since it is a clique), and then has
a sharp decline during the initial stage as the size of the
graph increases. Once all the peers have joined the system
there is some further decrease in the coefficients of all but the
Unchoked graph during the transient stage. Through the end
of the transient stage there are some further small oscillations
in the Interest and Download graphs, until all settled into a
steady state after approximately 25 hours.

Although at first it seems that there is some clustering
present in figure 5, especially in the graphs of Connection,
Interest, and Download peers, further investigation shows that
is not the case. Figure 6 shows the clustering coefficients
of the graphs when compared with that of a similar sized
random graph (same node and edge restrictions), which is
not expected to have any clustering at all. Here we see that
there is some clustering during the initial stage, which begins
to decrease once all the nodes have joined the system. The
Unchoked graph has no clustering through the rest of the
experiment, while the clustering of the other graphs reduces
more slowly through the transient stage. In the steady state,
all graphs have almost no clustering. The increased noise in
the comparison of the Unchoked graph with a random graph is
due to the randomness of the resulting graph and the relatively
tiny clustering coefficient.

B. Connectivity Matrix

To compare with the results from previous papers [4], [5],
we present the connectivity matrix of peer connections during
the experiment. The connectivity matrix is a scatter plot, where
a point at location (i, j) in the plot refers to the fact that peer
i is connected to peer j. Peer indexes i are created by sorting
peers by their joining time.

Figure 7 shows the connectivity matrix formed after 4 hours
at the end of the initial stage when most of the peers have
joined the swarm. The fan-out shape from the lower left to
upper right corner of the matrix occurs due to the early peers
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Fig. 7. The connectivity matrix at hour 4.

filling their 80 connection limit and refusing later connections,
and is very similar to previous results [5]. There is however
some additional connectivity between early and late peers,
which is due to some of the early peers being the fastest
downloaders and having already completed their downloads.
Once they become seeds they disconnect from other seeds in
the system, thus freeing up connection slots for later peers.

Although figure 7 does match well with the previous results
at the early stages of the experiment, we now proceed further
into the experiment to see how the connectivity matrix evolves.
Figure 8 shows the connectivity matrix 4 hours further into the
experiment in the middle of the transient stage, at which point
some peers have left and new peers have joined the system.
The matrix is now much more random, with many early peers
having lost connections to leaving peers and so connecting
to many late peers, though the fan-out is still visible in the
lower left corner. Figure 9 goes further to 16 hours into the
experiment, where the connectivity matrix becomes an almost
completely random scattering of points, and the fan-out in
the lower left is almost not visible. The connectivity matrix
has now reached a steady state, as shown by the similarity of
figures 9 and 10.

The experiment we ran with no limit on the number of
connections a peer could make gives almost identical results
to that in figures 1 through 6, but differs from the connectivity
matrix shown in figure 7. In this experiment, the connectivity
matrix throughout the entire experiment was completely ran-
dom (similar to figure 10), as the fan-out shape in the other
matrices is due only to the limit on the number of connections.

C. Impact of Churn

To further evaluate the impact of churn, we varied the
amount of churn at certain points in the system by grouping
some of the peer departures and arrivals together2. Figure
11 shows the resulting population of seeders and leechers
in the system. Although the total number of peers does not
change, the increased churn occurs when the number of seeds

2The previous experiment also had churn, but the amount of churn was
steady throughout the experiment.
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Fig. 10. The connectivity matrix at hour 32.
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Fig. 11. The population of peers during the experiment with varying churn.

decreases rapidly, for example from 20 to 25 hours, 40 to 50
hours, and 60 to 70 hours. Since the number of peers is limited,
the periods between these increased churn periods exhibit
a state of decreased churn as compared with the previous
experiment. We find that this varying churn had almost no
effect on the power law exponent or the characteristic path
length, which are identical to figures 3 and 4.

Figure 12 shows the clustering coefficient for the four
graphs in the experiment with varying churn. During the initial
stage, it is very similar to figure 5, decreasing rapidly as
the peers enter the system. However, after the initial stage
(i.e., after 4 hours), the effect of the varying churn can
be clearly seen on the Connection, Interest, and Download
networks, causing their clustering coefficients to oscillate.
Interestingly, the clustering coefficient increases during the
periods of light churn and decreases during the periods of
heavy churn. Although the varying churn continues throughout
the experiment, the oscillations in the clustering coefficients
of these graphs are greatly reduced after 50 hours.

V. MAKING BITTORRENT SMALL-WORLD: A THEORY

It is known that small-world networks are efficient for
spreading information [13], [14]. A previous study [6] has
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Fig. 12. The clustering coefficient during the experiment with varying churn.

Fig. 13. An example of one of the 5-cliques from a cycle, the arrows indicate
connections to neighboring cliques.

also conjectured that BitTorrent’s efficiency partly comes from
the clustering of peers. It is thus interesting to see whether
BitTorrent networks can be made small-world. In this section,
we present a theoretical attempt at increasing the small-world
characteristics of BitTorrent networks. In the next section we
show how this can be done in practice.

A. Maximum Clustering Coefficient

Since most existing small-world graphs are sparse, and the
BitTorrent networks we are considering are quite dense, it is
not clear that creating a small-world network in BitTorrent
is even possible. Therefore we start our investigation by
determining the maximum possible clustering coefficient. We
will focus on the Connection Network, the superset of the
other three networks.



To create a small-world network containing peers with a
known maximum degree, we first attempt to maximize the
clustering coefficient of a regular graph of these peers. Our
instinct is to create a series of cliques, since they have a
perfect clustering coefficient of 1, each with size equal to the
maximum node degree. A single edge can then be removed
from each clique (to maintain regularity), and the endpoints
of the removed edge are connected to neighboring cliques.
This results in a cycle of k identical n-cliques, where n is the
maximum node degree, and k is given by k = N/n (assuming
for now that k is an integer). Figure 13 shows an example of
one of the n-cliques from the cycle for n = 5.

As the clustering coefficient of the graph is an average over
all nodes, and each n-clique is identical, it will be sufficient to
calculate the clustering coefficient of a single n-clique. Each
n-clique contains two types of nodes: n − 2 interior nodes
(i-nodes) connected only to neighbors in the same n-clique,
and 2 exterior nodes (e-nodes) that have a single connection
to another n-clique. Since the clustering coefficient of a node
is a measure of how many triangles include the node, we will
only look at how many triangles are lost by removing the
single edge to connect to neighboring cliques. The i-nodes
lose only a single triangle when the edge is removed, so their
clustering coefficient is

Ci =
(n−1)(n−2)

2 − 1
(n−1)(n−2)

2

= 1 − 2
(n − 1)(n − 2)

(1)

The e-nodes lose a triangle for each node that was connected to
the missing edge, of which there are n−2. So their clustering
coefficient is

Ce =
(n−1)(n−2)

2 − (n − 2)
(n−1)(n−2)

2

= 1 − 2
(n − 1)

(2)

Averaging over the n-clique gives the clustering coefficient
of the entire graph:

CC(G) =
(n − 2) ∗ Ci + 2 ∗ Ce

n
= 1 − 6

n(n − 1)
(3)

This result is independent of the total size of the graph, and
so of the number of n-cliques used. It also approaches 1 as
the size of the n-cliques increases. For BitTorrent, which has a
default maximum node degree of 80, the clustering coefficient
is very close to 1 (0.9986 for n = 80).

B. Caveats: Expanding Diameter

The clustering coefficient resulting from our construction is
large, but the diameter and characteristic path length of the
graph are also large. It takes 3 hops to get through a single
clique, and the worst case is having to go half way around the
cycle of k cliques; hence, the maximum diameter is given by
approximately 3k

2 .
We can estimate the characteristic path length by consid-

ering only the distances of i-nodes from other i-nodes (since
there are many more of them than there are e-nodes). For each
i-node there are n−1 nodes at distance 1, 2n nodes at distance
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Fig. 14. The change in the clustering coefficients and characteristic
path lengths of the n-clique graphs with varying amounts of randomness
added. The variables are shown as ratios to the values when no edges are
replaced. The original clustering coefficients were all 0.999, while the original
characteristic path lengths were 3.64, 6.25 and 15.8 for the 400, 1040 and
4000 node graphs respectively.

3 (one n-clique away), 2n nodes at distance 6, etc. . . . The sum
of the distances for all possible i-nodes is then

(n − 1) + 6n

k−1
2∑

j=1

j = n − 1 + 3n
k − 1

2

(
k − 1

2
+ 1

)
(4)

The characteristic path length of the graph can be calculated
by using an approximation for large values of n and dividing
by the number of nodes:

CPL(G) ≈ n + 3
4n(k − 1)(k + 1)

nk
=

1 + 3
4 (k2 − 1)

k
(5)

For a BitTorrent graph with n = 80 and 400 nodes (k = 5),
the characteristic path length will be 3.8, which is almost twice
that of a similarly sized random graph.

C. Forming the Small-World

To solve the dilemma, we modify the regular n-clique graph
by randomly removing a small number of n-clique edges and
adding back new randomly created ones. This is inspired by
previous work on the construction of small-world graphs from
regular graphs [12]. In our construction, the new random edges
are restricted to be links between pairs of n-cliques.

Figure 14 shows the result of adding varying amounts of
randomness to the regular n-clique graphs for a few sizes of
graphs. We again use a clique size of 80, which is the default
maximum node degree of BitTorrent graphs. The randomness
varies from 0 (no edges replaced, completely regular) to
1 (all edges replaced, making the graph almost completely
random). We observe that the graphs become small-world
when approximately 1 to 3% of the edges are randomly
replaced. At this point the clustering coefficient still maintains
90% of it’s original value, while the characteristic path length
has dropped very near to that of a completely random graph.
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Fig. 15. The simulated connectivity matrix after 400 peers have joined the
swarm.

VI. SMALL-WORLD TRACKER: A SIMPLE SOLUTION

To realize the theoretical results in practical BitTorrent
software, we have implemented a simple modification to the
BitTorrent tracker. We believe this is the best, and possibly
only, type of change that can be made to BitTorrent’s function-
ality. The tracker is easily modifiable by any data distributor,
whereas the vast diversity of BitTorrent clients that would
need to be changed for a client modification make that type
of change quite difficult.

A. Tracker Modification

The modified tracker assigns a number to each newly arrived
peer indicating the n-clique to which it belongs. If all the
n-cliques are full (or there are no n-cliques), the peer will
receive a new n-clique number one larger than the largest
so far. Otherwise the peer receives the number of the largest
currently unfilled n-clique. When choosing a list of other peers
to return to the current peer, the n-clique number of the peer
will be considered. The tracker will first choose a small fixed
number of peers randomly from n-cliques that do not contain
the peer. This small number of peers will be the control on
the randomness referred to in section V. The remaining peers
(the majority) will be randomly chosen from those in the same
n-clique as the current peer.

There are two new configuration parameters for this tracker.
The first, which we call random-peers, is the fixed number of
peers that will be randomly chosen from other n-cliques for
each request. The second, which we call clique-size, is the
maximum size of n-clique that the new tracker will allow.
Once an n-clique reaches this size, the next peer to join will
create a new empty n-clique.

B. Simulation Results

We first present some results from a customized discrete
event-driven simulator of BitTorrent. We have verified the
correctness of the simulator with a standard tracker implemen-
tation that returns a random set of peers in each request, by
comparing the results with our previous experimental results.
There are 400 peers arriving over a period of 4 hours, followed
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Fig. 16. The simulated small-world tracker results with different values for
random-peers, for three sizes of graphs (clique-size is kept constant at 80).

by 2 hours during which the peers make further requests from
the tracker to satisfy their minimum peer requirements. Figure
15 shows the connectivity matrix after 6 hours, which can be
compared with Figure 7 from our previous experiment. Other
than the connections in figure 7 due to peers becoming seeds
(which we did not simulate), the results are almost identical.

For the modified tracker, Figure 16 shows the resulting
clustering coefficients and characteristic path lengths for three
sizes of swarms with random-peers values from 0 to 10. The
characteristic path length for 0 random-peers does not appear,
as it is infinite due to the disconnected nature of the graph.

Compared with the previous experimental results, there are
gains in the clustering coefficient of the graph, but they are
not as dramatic as the theory in section V suggests (i.e. they
are not almost 1 for zero randomness). This is mostly due
to the limits on the number of connections that a peer can
initiate in BitTorrent, which prevents the peers from forming
a complete n-clique. Since we are trying to only modify the
tracker, we cannot adjust the number of connections at which
a BitTorrent client stops initiating more. However, we can
reduce the clique-size tracker configuration parameter so that
more connections are made within the clique. We verified
this by reducing the clique-size to 40, which increased the
clustering coefficient to 1 for 0 random-peers.

C. Experimental Results

We further confirmed the effectiveness of the modification
experimentally. The experiment was run as described previ-
ously in section III-B, with the only difference being the
modified small-world tracker. The modified tracker used a
random-peers value of 1, and a clique-size value of 80. The
population of peers in the system during the experiment was
identical to the previous experiment shown in figure 1.

Figure 17 shows the characteristic path length for the four
networks. As expected, there is an increase in the characteristic
path length due to the regular construction of the graph
imposed by the tracker, as compared with the previous results
in figure 4. The increase is on the order of 10 to 20%.
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Fig. 17. The characteristic path lengths during the small-world tracker
experiment, also shown are those of a similar-sized random graph.
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Fig. 18. The clustering coefficients during the small-world tracker experi-
ment.
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Fig. 19. The clustering coefficients during the small-world tracker experi-
ment, compared with the clustering coefficient of a similar random graph.

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

Peer Index

P
ee

r 
In

de
x

Fig. 20. The connectivity matrix at hour 4 of the small-world tracker
experiment.

Figure 18 shows the clustering coefficient for the four net-
works in the experiment. Compared with the previous results
(shown in figure 5), the clustering coefficient has increased by
a factor of 7 or 8. To determine if there really is clustering
present, we compare the clustering coefficients of the graphs
with that of a similarly sized random graph in figure 19.
Here we see that there is definite clustering throughout the
experiment in all four of the networks. These results are a
dramatic increase over the amount of clustering present in the
previous experiments, shown in figures 5 and 6.

Figure 20 shows the connectivity matrix at hour 4 of
the experiment, after all the original peers have joined the
swarm. This connectivity matrix is constructed differently than
previously: rather than ordering the peers by their arrival times
to get their peer indices, we instead sort them by the clique
to which they belong.3 This shows the cliques that we have
constructed more clearly, as can be seen by the tight boxes of
peers in the figure. The matrix is now quite different than the
previous results shown in figure 7. The formation of the n-
cliques is very clear, with some random connections to other
n-cliques also present. The tight boxes of peers in figure 20
remain throughout the experiment, though the presence of
seeds leads to some holes due to their dropping connections
to other seeds.

VII. CONCLUSIONS AND DISCUSSION

This paper presented an experimental study of the charac-
teristics and evolution of a comprehensive set of BitTorrent
network topologies, as well as a possible enhancement to
BitTorrent to make it a small-world.

Our most important finding was that the initial stage of a
BitTorrent system is not predictive of the overall performance
of the system. In order to fully examine a BitTorrent swarm,
long-term experiments that examine the changes due to later
stages of the swarm are needed. This was clearly demonstrated
by the difference that we found between the steady state matrix

3We also attempted this with the previous results and got an almost
completely random connectivity matrix similar to figure 10.



connectivity and the connectivity that was previously reported
to occur early in the lifetime of a BitTorrent swarm [5]. The
difference is almost certainly due to the evolution of the swarm
over time. As peers become seeds they break connections with
other seeds, and when peers leave they free up connection
slots for new peers. Neither of these aspects were previously
considered. Furthermore, peers use the tracker to form new
random connections to peers. We found that, on average, a
peer will get a new random peer list from the tracker at least
once during its time in the swarm. This behavior was not
considered at all in previous studies.

Our experimental results showed that the network of peers
that unchoke each other is scale-free, exemplified by a power
law distribution of node degrees. We found that the Unchoked
graph has a power law exponent of approximately 2 in all
of the experiments, independent of time and changes to the
amount of churn or the maximum number of neighbors. This
scale-free nature has also been found in other peer-to-peer
systems [15]. Since scale-free graphs are resistant to random
attacks (in this case, churn), the resulting graphs are more
robust than graphs without this property4. This robustness
was observed previously in BitTorrent networks [5], but no
explanation for its existence was given. We believe that the
robustness (to churn) of the scale-free Unchoked graph is re-
sponsible for the efficient use of upload bandwidth previously
observed in BitTorrent systems [3].

We found that the characteristic path lengths and clustering
coefficients of the Connection, Interest, and Download graphs
are very similar to random graphs and there is no evidence of
small-world characteristics. Other than the scale-free degree
distribution, we found that the Unchoked graph is also nearly
random after a short initial period. We showed quantitatively
that there is a small amount of clustering in the Unchoked
network during the initial stage, confirming the previous
qualitative evidence [6]. However, after this short period we
found no evidence of clustering in any of our experiments,
which precludes the presence of a small-world network.

Small-world characteristics are desirable for efficient infor-
mation distribution [13], [14], and previous studies have also
conjectured [6] that BitTorrent’s efficiency partly comes from
the clustering of peers with similar bandwidth. We believe that
this can be an interesting venue for improving BitTorrent’s
performance. We therefore presented a theoretical framework
for making BitTorrent small-world, together with a practical
implementation. Our implementation makes minimal changes
to trackers only, and the preliminary results show that the
simple modification created a dramatic increase in the amount
of clustering, at the expense of a slightly increased diameter.
Although the tracker controls only one of the four networks in
BitTorrent, i.e. the Connection network, we showed that our
modification also introduces small-world characteristics to all
other networks, including the important Unchoked network.

In addition, we did find some interesting increases in the

4The vulnerability of scale-free graphs to targeted attacks is not an
issue in BitTorrent because the tracker prevents the graph from becoming
disconnected.

clustering coefficient during periods of light or no churn in
the current BitTorrent. We believe that it is this churn, in
combination with the random list of peers returned by the
tracker (designed to create a random graph), that is preventing
clustering from occurring. This is another area of potential im-
provement for BitTorrent that could quite easily yield increases
in the efficiency of file distribution.
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