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Abstract—Video streaming plays a critical role in the video
analytics pipeline and thus its adaptation scheme has been a focus
of optimization. As machine learning algorithms have become
main consumers of video contents, the streaming adaptation
decision should be made to optimize their inference performance.
Existing video streaming adaptation schemes for video analyt-
ics are usually designed to adapt to bandwidth and content
variations separately, which fail to consider the coordination
between transmission and computation. Given the nature of
batch transmission in video streaming and batch processing in
deep learning-based inference, we observe that the choices of the
batch sizes directly affects the bandwidth efficiency, the response
delay and the accuracy of the deep learning inference in video
analytics. In this work, we investigate the effect of the batch size
in transmission and processing, formulate the optimal batch size
adaptation problem, and further develop the deep reinforcement
learning-based solution. Practical issues are further addressed
for Implementation. Extensive simulations are conducted for per-
formance evaluation, whose results demonstrate the superiority
of our proposed batch adaptive streaming approach over the
baseline streaming approaches.

Index Terms—video analytics, adaptive streaming, batch, ma-
chine learning

I. INTRODUCTION

With the advances of deep neural network (DNN)-based

learning techniques in recent years, complicated computer

vision tasks, e.g., highly accurate object detection and recog-

nition, can now be accomplished. Various video analytics

applications including surveillance [1], traffic control [2],

factory monitoring [3], and face authentication [4] have driven

the pervasive deployment of video cameras, whose number

and coverage are still rapidly expanding. A typical pipeline

for video analytics is that, video contents are generated at

the source camera, streamed to the cloud/edge server, and

processed there by the machine learning (ML) algorithm

for the computer vision (CV) tasks. Such video analytics

applications usually run in long durations and thus demand

significant amounts of network resources.

The Internet video streaming has been a key optimization

target, which must balance between maximizing application-

level quality and adapting to limited network resources. Con-

ventionally, the video source naturally knows which version

of frames can provide better QoS for human users–a smooth
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Fig. 1. The workflow of a typical server-driven streaming adaptation

playback with higher resolutions. However, for video analytics

applications, the quality-of-service (QoS) should be the infer-

ence accuracy of the ML algorithm, which depends on the

video contents. This makes a huge difference from traditional

video services for human users. When ML algorithms become

the video consumers, only the server can tell the QoS, while

the video source does not know which transmission configu-

ration is actually better. Adaptation relying on the source side

estimation could lead sub-optimal performance. Therefore, the

adaption decision should be made at the server side.

The server-driven adaptation approach is proposed and

proved to work better than the camera-side adaptation heuris-

tics for machine-centric video streaming [5]. Fig. 1 illustrates

the basic workflow of server-driven adaptation. Given a con-

figuration containing several “knobs” (e.g, resolution, frame

rate, region of interest), the source camera (1) encodes the raw

frames accordingly and (2) sends the encoded video chunk

to the server. The server (3) profiles the received chunk to

select a configuration update with the best bandwidth-accuracy

trade-off and (4) sends the adaptation decision back to the

source camera, which (5) applies the updated configuration

at the earliest feasible time and carries on the above process



iteratively. As the adaptation is based on server side profiling,

it is possible to adapt to both network and video contents,

although unfortunately the two goals are achieved separately

in existing solutions.

An intrinsic feature of such machine-centric video stream-

ing, which is omitted in literature, is batch transmission

and batch processing–the video contents are transmitted and

processed in batches, e.g., the group of pictures (GOPs) for

encoding [6], the video chunks for streaming [7], the input

frames for CV algorithms [8]. We observe that the selection

of the batch size affects not only the response time but also the

inference accuracy, the two key performance metrics for video

analytics. From the network perspective, an appropriate batch

size would allow the source camera to encode video frames

with a high compression ratio. The frames are encoded in

batches so that the correlation between them can be leveraged

to reduce the redundant pixels as much as possible. From the

video content perspective, an appropriate batch size would

allow the server to make quality adaptation decisions without

excessively increasing the response delay. Increasing batch

size will directly lead to longer delays as shown in Fig. 1

as more data is transferred and processed each time, while

a too small batch size cannot yield good configurations as

the profiling samples are not enough. Therefore, choosing an

appropriate batch size is a crucial task for video analytics.

Unlike existing adaptation approaches with fixed batch size,

in this work, we for the first time propose the batch adaptation

for video streaming in video analytics applications. We analyze

the impacts of batching in transmission and processing on

various aspects and show that adjusting the batch size can

help adapt to both network and video contents, especially the

latter as video contents are constantly changing and need to

be closely profiled. We further formulate the batch adaptation

optimization problem and develop a deep reinforcement learn-

ing (DRL) based solution to maximize the overall inference

accuracy. To make our solution feasible for deployment, we

address key issues towards a practical implementation.

The rest of this paper is organized as follows. Section II

presents the background about batching and our motivation

for this work. We formulate the optimization problem for

batch adaptive streaming for video analytics in Section III, and

propose a DRL-based batch-size adaptation solution in Sec-

tion IV. The key implementation issues are further discussed

in Section V. We evaluate the performance of our solution

and compare it with other baselines in Section VI, and finally

conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Batch Transmission and Batch Processing

Networking systems transfer and process data in batches

to improve efficiency. Video analytics systems naturally take

this batch transmission and batch processing approach. At

the video source side, the media codec compresses frames

in batches (i.e., GOPs) to reduce data redundancies, which

can be transferred using less bandwidth. As the frames are

encoded and transferred in batches, the reconstruction requires

Fig. 2. Batching effect on transmis-
sion efficiency

Fig. 3. Batching effect on response
delay

the information from multiple frames, e.g., decoding P-frames

and B-frames needs I-frames.

At the server side, the reason for batch processing is two-

fold. First, given today’s highly advanced GPUs, analyzing

one frame at a time cannot fully utilize the hardware re-

sources, e.g., GPU’s computing capability and GPU mem-

ory. Therefore, ML algorithms for video analytics can take

multiple frames as a batch input to improve throughput for

inference [9]. Second, as the server is responsible for making

adaptation decisions, it needs to profile a reasonably-sized

batch of frames to select a quality configuration. Too few

samples could lead to poor selections since the limited video

contents are not representative.

Taking object detection (using YOLOv3 [10] as the detector

model) as an example, we discuss the batching impact on

various factors for video analytics applications and present

our motivations in the following subsections.

B. Impact of Batch Size on Bandwidth

The size of a frame is mostly decided by the configurable

knobs such as resolution in pixels and which part of the

frame to encode. Transferring multiple frames in a batch after

encoding can reduce the bandwidth requirement. This data

compression technique is highly optimized by today’s media

codecs and is still one of their working targets. We set the same

frame rate and vary the number of frames that are encoded in

a batch as a GOP, and then check the bandwidth requirement.

Fig. 2 shows that when there are more frames to be encoded

in a batch as a GOP, the bandwidth consumption rapidly

deceases at first (from 1 frame/batch to 50 frames/batch) and

then slowly goes down afterwards. This result demonstrates

the batching effect on bandwidth requirement, which implies

that adjusting batch size (with fixed frame rate setting) can

indeed help to adapt to network to a certain degree.

C. Impact of Batch Size on Response Delay

Another direct impact of increasing the batch size is that

each batch takes longer to be encoded, transferred, and pro-

filed. Therefore, a larger batch size leads to a longer response

delay–time for one iteration of adaptation in Fig. 1. We

change the batch size from 0.5s to 5s and collect the response

delays following the server-driven adaption process. It is not

surprising to see the response delay increases with the batch

size as shown in Fig. 3. It is worth noting that here we use fixed



Fig. 4. Distribution of Effective Du-
ration

Fig. 5. Accuracy with different batch
size

bandwidth, while the bandwidth varies constantly in practice,

which may change the numbers but the growing trend holds.

D. Impact of Batch Size on Inference Accuracy

In the server-driven adaptation, the adaptation decision is

made by profiling a batch and finding its best configuration. As

the most important performance metric, inference accuracy is

also influenced by batch size from two aspects. With different

batch sizes, the video is profiled at different paces, which will

likely generate distinct configuration suggestions with differ-

ent accuracy performance. Moreover, as batch size directly

affects response delay, which in turn changes the time for the

suggested configuration to take effect. The configuration can

be outdated if it takes too long to apply.

1) Varying Configuration for Uncertain Video Contents:
The best configuration and its effective duration change with

the video contents. The uncertainty and the dynamics of video

contents require the batch’s profiling to be appropriate and

responsive. For different test videos, we analyze the best

configuration and count the occurrences for how long it lasts

with the granularity of 1 second. Fig. 4 shows different

distributions for the effective duration. The result suggests that

the best configuration does not last very long and different

videos have different dynamics of the contents. As the features

of the contents change in different videos and different parts of

a video, a fixed batch size is sub-optimal for profiling. Varying

batch size properly can help closely monitoring and profiling

the video at the right pace to obtain quality configurations.

2) Delay for Configuration to Take Effect: Batch size

affects not only the configuration obtained from profiling but

also the time when it becomes effective. Fig. 5 plots the F1

scores of the inference when the suggested configuration from

profiling is applied with and without the response delay. Even

if the adaptation decision is applied immediately, the inference

performance varies for different batch sizes (blue solid line),

which is accorded with the previous observation. When the

suggested configuration takes effect with longer delays, the

inference accuracy drops significantly (green dashed line)

because the profiling result becomes less timely and even

outdated for the dynamic video contents.

To sum up, we have presented the implications of batching.

On one hand, adjusting batch size in video analytics appli-

cations can trade-off between various performance metrics to

better fit network and video contents. On the other hand, it is

not trivial to evaluate the comprehensive impacts of changing

the batch size, and hence it remains a difficult task to strike the

optimal balance between maximizing application-level quality

and adapting to limited network resources.

III. PROBLEM FORMULATION

A. System Model

For a video analytics application, the video contents are

organized and transmitted in N batches. Note that N can

be infinite for continuous video analytics. For each batch i,
the transmission batch size is batch ti, which means this

video segment is of batch ti second length. The server profile

the first batch pi second of batch i to make the adaptation

decision. The profiling can be done based on a part of or

the whole batch, which implies batch pi ≤ batch ti. Let

the transmission configuration applied to batch i be ci =
{cri , cfi , cbi}, where cri denotes the setting for resolution in

pixels, cfi denotes the setting for frame rate, and cbi denotes

the setting for region of interest (ROI) blocks in the frame.

Therefore, batch i has cfi · batch ti frames to encode at the

source and cfi ·batch pi frames to profile at the server. Assume

that function g(ci, batch ti) and f(ci, batch ti) calculate the

encoding time and the amount of transmitted data for a batch,

respectively, given its configuration ci and batch size batch ti.
Note that g(·) and f(·) can be obtained by measuring and

fitting the multimedia processing process, as both the encoding

time and the data volume after encoding directly depend on

the factors including frame resolution cri , ROI areas cbi , and

number of frames cfi · batch ti. As the computing capability

and the available bandwidth may vary with time and the

applied configuration, we further assume that the server has a

computing capability of Ci frames per second for batch i, and

the available bandwidth for transmitting batch i is Bi.

B. Delay Analysis

Since the server driven adaptation relies on a feedback

control logic, it is important to analyze the delay components.

As shown in Fig. 1, the response delay is defined as the

duration from the source camera preparing a batch with a

configuration to it receiving the updated configuration applied

to a new batch, which mainly consists of four parts: the time

for encoding, the time for transmission, the time for profiling,

and the round trip time (RTT).

Given the system model described above, we next calculated

the delay components that are affected by the selections of

batch ti and batch pi. The encoding delay d1i for batch i can

be decided as

d1i = g(ci, batch ti). (1)

The transmission delay d2i for batch i can be calculated as

d2i = f(ci, batch ti)/Bi. (2)

Note that the bandwidth requirement for transmitting batch

i depends on both the configuration and the batch size. To

profile the received frames, the server needs to run the CV

algorithm to evaluate the inference performance of different



configurations, which involves a certain amount of computa-

tion. The processing delay d3i for profiling batch i is calculated

as

d3i = cfi · batch pi/Ci. (3)

Therefore, we have the total response delay for batch i as

di = d1i + d2i + d3i +RTT. (4)

C. Optimization Problem

Denote C = Profile(cfi , batch pi) as the candidate set of

configurations based on the profiling result from the input

cfi ·batch pi frames of batch i. Note that cfi and batch pi can

be uniquely defined the profiling window, and C is a Pareto-

optimal set for the bandwidth-accuracy trade-off, in which

any configuration cannot find an alternative that requires less

bandwidth and offers a higher inference accuracy. Let c′ be the

best configuration in C with a corresponding batch ti given

the bandwidth constraint. As c′ is updated to the source camera

to be applied on the next batch, we have ci+1 = c′.
We further assume Accuracy(ci) to be the function mapping

the inference accuracy with the applied configuration ci. It

is worth noting that the inference accuracy of batch i + 1
depends on the configuration that is applied to batch i + 1
but was decided a while before by profiling batch i. For the

first batch, an initial configuration c1 is provided directly as a

default setting on the source camera.

Our objective is to select the best batch pi and batch ti so

that the overall accuracy is maximized:

∑

i∈[1,N ]

Accuracy(ci) ∗ batch ti, (5)

subject to

batch pi ≤ batch ti, (6)

di ≤ batch ti, (7)

Ci = Profile(cfi−1, batch pi−1) (8)

ci = best(Ci) (9)
∑

i∈[1,N ]

batch ti = Lvideo (10)

Eq. 6 implies that the profiling is conducted within the

current batch. Eq. 7 guarantees that the video analytics pipeline

works fluently and does not have any bottleneck. The com-

ponents and the detailed computation of di can be referred

to Eq. 1, Eq. 2, Eq. 3, and Eq. 4. This constraint does not

allow any accumulated latency to build up so that our model

can work in scenarios such as live video analytics, where the

analytics requests arrive constantly and need to be done in

time without choking the pipeline for later processing. Eq. 7

also implies the combination of the configuration and the batch

size should satisfy the bandwidth requirement. Eq. 8 and Eq. 9

indicate that we select the Pareto-optimal set Ci from the last

step and then select the best configuration to apply in the

current step. Eq. 10 guarantees that the total length of all the

batches should be equal to the video length Lvideo, no matter

(a) Video 1 (SurveillanceCams) (b) Video 2 (DashCams)

Fig. 6. Screenshots of two browsing sessions with the same timestamp

how we select the batch size at each step. Note that Lvideo

can be an arbitrary boundary for live video analytics within

which we consider maximizing the inference accuracy.

This problem is difficult to solve because 1) multiple

decisions need to be made in large search spaces, 2) the

decision made based on the current batch affects the inference

performance of the next batch, and 3) Accuracy(ci), the key

function for the optimization objective, is unknown and can

hardly be obtained analytically.

IV. DRL-BASED BATCH ADAPTATION

To deal with the hardness of the formulated problem,

we propose a two-step solution, which selects batch pi and

batch ti for each batch individually. In the first step, we con-

duct an incremental profiling that gradually increases batch pi
until a quality set of configurations are generated. After this

profiling step, we leverage the nice characteristic that, given

the current conditions (state), the controller (agent) needs to

make a choice of batch ti (action) whose benefit (reward)

will be recognized in the process of streaming and processing

(environment). As it naturally falls into the scope of DRL, we

take advantage of this advanced technique to smartly select

batch ti in the second step of our solution.

A. Profiling with Early Quit

The goal of profiling is to generate C, the Pareto-optimal

set of configurations for the batch. Intuitively, we can always

set batch pi=batch ti and profile the whole batch to get the

final C, which however may introduce unnecessary overhead.

Hence, it is better to keep batch pi as small as possible while

we can still obtain the same (or a close-enough) C. A good

setting of batch pi will not make suggestions based on too

few frames, but can allow the profiling process to “sense” the

general content features of the whole batch. We vary batch pi
to increase the profiling window and for each profiling window

we track the highest accuracy can be achieved by assuming

that the profiling result is applied to the whole current batch.

We observe that the overall accuracy on the batch increases

rapidly at first and then keeps relatively stable (see the detailed

result in Fig. 8 and more illustrations later). Therefore, we

infer that the optimal configuration can likely be found at an

early stage before the profiling window gets very large.

Given the above observation, we design the first step of

our solution to work as follows. In general, when a batch



of encoded frames is received, we profile from the start

and gradually increase batch pi with a small step size. This

profiling process should stop at the earliest possible time. The

key question is when to quit early. For each batch pi, we

find the corresponding C and keep a record of the historical

Cs. Given the current bandwidth estimation, once the top-k
configurations and their rankings become stable, the profiling

window stops increasing. Fig. 6 plots the top-k configurations

(for cri and cfi ) and their accuracy (calculated within the cur-

rent profiling window rather than the whole batch to simulate

actual online processing) curves as batch pi increases for the

two test videos in different types. The results show that the

sequence of the top-k configurations remain the same after

the profiling window reaches a certain point. For example,

after 30 frames for video 1 and 10 frames for video 2, the

top-3 configurations are observed in order of blue, green, and

red. When this ranking is found to repeat later, the profiling

terminates early. With the selected batch pi, we are now

able to obtain the corresponding Pareto-optimal set of the

configurations. The enhancement details for efficient runtime

execution will be discussed in Section V-C.

B. DRL Model for Batch Size Selection

Upon obtaining batch pi and C, we next discuss how to

select the best batch size batch ti so that the current accuracy

can be maximized. The batch size selection problem can be

viewed as a sequential process where the previous and current

selections will have an impact on the subsequent states, which

calls for careful decisions at every step. Deep reinforcement

learning (DRL) has been widely explored in recent years

and demonstrates powerful capabilities in mining such hidden

characteristics and making proper decisions. We advocate that

DRL is most appropriate in our context and thus propose a

DRL-based algorithm for batch allocation. The detailed DRL

model design is described as follows.

State Space. In our context, the final decided configuration

ci will be applied to time step i, which together with the

batch ti decided at the last step will affect the current ac-

curacy. Our target of DRL model is to decide the most proper

batch size at every time step. Intrinsically, the selection of

transmission batch size depends on the video content features

and the available bandwidth conditions, which are usually

highly dynamic and sequentially dependent. From the video

content perspective, a representative example is that compared

to stable scenes, dynamic scenes usually need more frequent

profiling, i.e., smaller transmission batch size, to adapt the fast-

changing video features. From the bandwidth perspective, the

available bandwidth for the next period also affects the con-

figuration selection and transmission batch size selection, e.g.,

lower available bandwidth usually requires higher compression

rate or larger batch size. Therefore, we consider including

these metrics in the state space for future batch selection. The

state space can be represented as si = {−→ci ,−→Bi,
−−−−−→
batch ti}.

Here −→ci indicates the past k configurations;
−→
Bi indicates

the past k available bandwidth;
−−−−−→
batch ti indicates the past

k transmission batch selections. Here we consider the past
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Fig. 7. Design of the actor-critic network

consecutive k samples in a state since all the metrics are

changing gradually and the changing patterns therein will help

the DRL agent better capture the hidden characteristics. The

default value of k can be from 4 to 8.

Action Space and Policy Network. With the state si at

every step i, the DRL agent will take an action ai that corre-

sponds to the next selected transmission batch size batch ti+1

to maximize the further accuracy. Originally, the batch size

selection is a continuous variable within a reasonable range.

In practical model setting, however, two very close batch size

will not lead to obvious configuration difference. Thus, we

can actually simplify this problem by discretizing this variable

with certain granularity, e.g., using every 0.1 second as a gap.

In reinforcement learning, our target is to obtain a policy to

conduct the action selection. In our DRL model, we design

a deep neural network as the policy network, which at every

time step i will make the proper batch ti+1 (i.e., ai) selection

once be well trained.

Reward Setting. In the DRL model, each time after the

agent takes an action, a corresponding reward from the envi-

ronment will be received. The agent will be trained towards

the objective of maximizing the accumulated rewards. Thus,

we design the model reward to align with our optimization

objective, i.e., maximizing the inference accuracy throughout

the entire video analysis process. The reward at step i is then

represented as ri = batch ti ∗Accuracy(ci).
Learning Architecture. We use an actor-critic architec-

ture [11] for DRL model training. Actor-critic architecture

consists of two components, an actor network that outputs

the probability distribution of the possible batch ti for action

selection, and a critic network that learns an estimate of the

expected total reward and guides the update direction of the

actor network. The network design of our DRL model is

illustrated in Fig. 7.

Besides, we find that using traditional policy gradient

methods in our model context is not enough, which can

easily experience quite large policy update, leading to unstable

convergence and poor data efficiency. To address this problem,

we integrate a clipped surrogate objective inspired by Proximal

Policy Optimization Algorithms (PPO) [12] in our policy

update process to stabilize the policy and further achieve more

robust performance. The updating steps for the actor and critic



networks are as follows:

a) Critic network: Denote the parameters in the critic

network and actor network as θv , θa respectively. Then the

estimation of state value V πθ (sk) under policy πθ is the

output of critic network. We update the critic network by mean

squared error as follows:

θv ← θv − β
∑

k

∇θv (R
(n)
k − V πθ (sk))

2 (11)

The n-step estimated return is defined as:

R
(n)
k =

n−1∑

t=0

γtrk+t + γnV πθ (sk+n) (12)

where γ is the discount factor.

b) Actor network: The actor network is updated by the

clipped surrogate objective LCLIP as follows:

θa ← θa + αLCLIP∇θ log πθ(at|st) (13)

where α is the learning rate. The surrogate objective will be

modified by clipping the probability ratio as follows:

LCLIP = min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât) (14)

where the probability ratio rt(θ) =
πθ(at|st)

πθold
(at|st) and Ât is the

advantage value which is equal to subtract R
(n)
k and V πθ (sk).

V. ENHANCEMENTS FOR IMPLEMENTATION

In this section, we discuss the enhancements for our DRL-

based batch adaptive solution to address important issues

towards a practical implementation.

A. Offline Profiling and Pre-training

Before applying our DRL-based solution, we need to ex-

tract the relationship between encoding time and configura-

tion (function g(·)) and the relationship between frame size

and configuration (function f(·)), respectively. Fortunately,

there are researches conducted in the area of rate-distortion-

complexity analysis for video encoding, of which we can take

advantage. For instance, the bitrate of encoded frames can

be estimated through modeling [13] or learning [14]. With

today’s highly-optimized encoders, video encoding is usually

fast enough and thus the encoding time is not a concern, which

can also be carefully managed [15]. As the encoding features

are usually shared across video contents and encoders, we

can reduce the difficulty of acquiring g(·) and f(·) by offline

profiling the similar types of existing videos.

DRL algorithms are known to be data inefficient [16].

Integrating prior knowledge into DRL algorithms is an im-

portant way to improve learning efficiency since it helps to

build useful representations [17]. To pre-train our DRL model,

we build a simulator that faithfully models the dynamics

of video streaming in video analytics applications given the

video frames for inference and the input network traces. The

simulator contains an object detector running the DNN model

on the batch of frames that transcoded from the original video

frames using the selected configuration. A network controller

responsible for applying the transmission delays based on

the given bandwidth is also maintained in the simulator.

The simulation environment can provide our DRL model a

considerable amount of video analytics experience.

B. Accuracy Indicator at Runtime

During the pre-train in the simulator, the inference accuracy

can be directly obtained by comparing the object detection

boxes in the transferred frames and those in the raw frames.

This ground truth about inference performance can help ac-

celerate the initial learning and lead to a reasonable policy

quickly. However, when the video analytics application pro-

ceeds online, the server usually does not have raw frames and

thus needs other metrics to evaluate the inference performance.

We aim to adjust the batch size at runtime in the streaming

for video analytics, and thus cannot rely on the previous offline

evaluations. We notice that for most object detectors such as

YOLO, the confidence value can be output along with the

bounding box. To this end, we use the cumulative confidence

(CC) [18] as an instantaneous accuracy indicator, which is the

sum of the confidence values for all the recognized objects.

The feedback for inference performance can be instantly

acquired at runtime on the server for each processed frame.

C. Accelerating Configuration Search

Profiling could be resource-consuming for periodic exhaus-

tive search for the optimal configurations [19]. In our model,

the best configuration can be found once the following three

factors are fixed: profiling window, batch size, and available

bandwidth, which can be quite dynamic at runtime and hence

potentially lead to a huge search space. Our solution requires

profiling for two different tasks: detecting the best profiling

window and obtaining the Pareto-optimal set of configurations.

We reduce the search steps by taking advantage of two facts

observed in previous studies [19], [20]: (1) the top-k con-

figurations are stable over a short-period duration for similar

videos; (2) the relationship between two configurations follows

the rule that higher accuracy demands more resources (knobs

with higher resource demands can achieve higher accuracies).

For the first task, detecting the profiling window, we let the

batch size and the available bandwidth be fixed as the latest

setting or estimation. As discussed before, we keep tracking

the top-k configurations and their rankings, and stop increasing

the profiling window when both of the results become stable

over the last several steps. For the second task, obtaining the

Pareto-optimal set, we let the batch size and the profiling

window be fixed as the latest settings. We take the current

bandwidth estimation as a base point and vary the available

bandwidth to gradually increase and decrease within a certain

range r, a parameter reflecting the bandwidth dynamics. Given

the base bandwidth, we can have a best configuration of this

case as the root. As the configurations change “monotonically”

in the accuracy-resource trade-off, we can search from the

root in the direction that accords to the bandwidth change. By

applying the above techniques, we are able to accelerate our

profiling process significantly.



VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate

our DRL-based batch-size adaptation approach and compare

its performance with that of the other baselines.

A. Evaluation Setup

1) Data Sets: For the test videos, we collect three types of

videos from YouTube: surveillance for crossroad, dash cam-

eras, and mall cameras. Each type contains four test videos,

whose detailed IDs are listed in Table I. To emulate the real-

world network conditions and the bandwidth fluctuation, we

replay the bandwidth traces from a public 4G/LTE dataset [21].

Since the bandwidth in some traces is quite high, we linearly

scale each trace to emulate different network conditions.

2) Settings: We use YOLOv3, one of the state-of-the-art

object detection models, as the object detector running a

server with Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz

and Tesla T4 GPU x 4. As the source videos have the frame

rate of 30fps, we set the granularity for searching batch size

as 10 frames/30fps=0.33s. We check the top-3 configurations

to decide the profiling window. For the DRL training, we use

the following settings: the number of past samples k = 5, the

actor network’s learning rate α = 0.0002, the critic network’s

learning rate β = 0.0005, the discount factor γ = 0.999, and

the clipped parameter ε = 0.2.

3) Methods for Comparison: We implement two baseline

adaptive streaming approaches for video analytics applications.

Chameleon [19] adopts a video streaming adaptation by pe-

riodically profiling the beginning part of each batch to output

the configuration update. AWStream [20] uses a streaming

approach that fully relies on server side offline profiling

to examine the accuracy-resource trade-off and applies the

proper configuration under the available bandwidth. Unlike

our method, both baselines work with the fixed batch size

and cannot adjust batch size during the video streaming.

4) Performance Metrics:
Accuracy. We calculate the accuracy of a single transferred

frame by comparing the detected objects with the objects

detected by the original (highest quality) frame. The F1 score,

which is the harmonic mean of precision and recall, can

be obtained by checking whether each object is detected as

expected in raw frames.

Normalized Bandwidth Consumption. We track the band-

width consumed by each streaming approach, and then nor-

malize the result over the bandwidth cost for transferring the

encoded raw frames (with GOP=30) in the highest quality.

Response Delay. We calculate the response delay for each

streaming approach following the definition in SectionIII-B.

B. Effectiveness of Profiling with Early Quit

We first validate our approach of profiling with early

quit. We conduct the profiling process in which the profiling

window gradually increases with the batch size fixed at 2s

(60 frames). For each profiling window, we check the best

configuration and calculate the corresponding response delay.

Fig. 8 shows the profiling process which early quit at different

steps, each curve plots the inference performance of the config-

uration output from corresponding profiling window, assuming

it is applied to the current batch without delay. We can see

that the quality of the configuration suggestion improves first

and then does not change as the profiling window increases.

We check the change of the response delay in Fig. 9, which

suggests that larger profiling windows will contribute to longer

response delays. Finally, Fig. 10 shows the actual inference

accuracy when each configuration output takes effect after the

corresponding delay. The accuracy for each profiling process

first increases as the suggested configuration is getting better,

and then it keeps stable and almost drops at the end since the

response delay is so large that the configuration is outdated

when it is applied, it may also go up after a larger response

delay since the suggested configuration still performs well (the

purple line marked with diamonds). The results imply that

we can and more importantly we should early terminate the

profiling at the right time to achieve the best performance with

the least overhead.

C. Accuracy–Bandwidth Trade-off

We next examine the accuracy-bandwidth trade-off that can

be achieved by different approaches. As the baselines cannot

adjust batch size, we execute each streaming approach multiple

times with fixed batch sizes of 1s, 2s, 3s, and 4s, respec-

tively. We plot the accuracy and the normalized bandwidth

consumption for the three types of videos in Fig. 11, Fig. 12,

and Fig. 13, respectively. As we can see, our batch adaptive

streaming approach can achieve the highest accuracy for all

three types of videos, whose performance is better than the

non-adaptive approaches under all batch size settings.

On the other hand, our proposed batch adaptive approach

costs moderate bandwidth, which is reasonable as our goal

was to maximize accuracy under bandwidth constraint. There

is a clear trend that AWStream and Chameleon share: larger

batch sizes demand less bandwidth. This is consistent with our

analysis in Section II. The results suggest that our approach

can achieve our optimization objective, while sometimes it

may consume more bandwidth.

It is worth pointing out that there is no clear relationship be-

tween accuracy and batch size. Looking into the performance

of AWStream and Chameleon for all three types of videos,

it is not true that more bandwidth leads to higher accuracy.

AWStream and Chameleon exhibit the worst inference perfor-

mance when the batch size is 1, which implies that a batch

size too small may not utilize the bandwidth efficiently (as the

TABLE I
YOUTUBE IDS OF THE TEST VIDEOS

Surveillance DashCam Mall
Video 1 HpdO5Kq3o7Y ULcuZ3Q02SI vrvcCtOrNA0
Video 2 RQA5RcIZlAM HZaLvgP-R8E NGA54YdyiUw
Video 3 WsYtosQta5Y diGHJLCg6i4 dlNRXjF8Y7Q
Video 4 1EiC9bvVGnk BQjavqQqi-0 Xd5ssXY BVA
1The video can be accessed from the URL:
https://www.youtube.com/watch?v=YouTube ID
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Fig. 11. Accuracy vs. Bandwidth for Surveillance
Videos

Fig. 12. Accuracy vs. Bandwidth for DashCam
Videos

Fig. 13. Accuracy vs. Bandwidth for Mall Videos

compression ratio drops). It proves the hardness of our batch

size adaptation problem as the effect of adjusting batch size

is complicated.

D. Response Delay of Server-Driven Streaming

We further compare the average response delay of our

proposed approach with that of the other baselines for all three

types of videos. The results presented in Fig. 14, Fig. 15, and

Fig. 16 are similar to the results for normalized bandwidth

consumption. Our batch adaptive approach does not perform

the best nor the worst in this comparison. AWStream has

a lower response delay than Chameleon since AWStream

uses a streaming approach which relies on server side offline

profiling. We can see that server-driven adaptation approaches

have long response delays as the streaming adaptation is

made based on feedback. Another general observation is that

AWStream and Chameleon both show the trend of longer

response delays caused by larger batch sizes.

E. Effectiveness of Batch Size Adaptation

Finally, we check if our proposed approach can well adapt to

network dynamics and video contents. Fig. 17 is a snapshot

of the streaming process for object detection in Video 1 of

Type 2, which shows the traces of the adaptation decisions

(one segment for a batch and one color for a configuration)

and the available bandwidth. We can see that our approach in

general can adapt to network fluctuations. In some scenarios,

when the bandwidth drops, the accuracy still remains by

adjusting the batch size and the configuration, which validates

the effectiveness of streaming adaptation.

VII. RELATED WORK

A. Video Analytics Systems

The pervasive camera deployment nowadays generates sig-

nificant demands for analyzing visual data. With the rapid

development of DNN-based learning in recent years, video

analytics has been enabled and enhanced to efficiently process

large volumes of video data. Glimpse [22] is one of the

pioneering video analytics systems, which provides real-time

object recognition by capturing and tracking objects of interest

from a subset of frames held in an active cache with the

assistance of detecting and labeling by server. VideoStorm [23]

aims at processing video analytics queries on live video

streams at scale. It allocates resources more efficiently by

considering the resource-quality profiles of queries, which are

handled differently given the distinct quality and lag require-

ments. Since the new edge computing paradigm emerges,

researchers have investigated the improvement of video an-

alytics systems utilizing the capability of edge resources.

DeepDecision [24] enables real-time object detection for AR

applications by offloading the computation to the edge/cloud.

It examines the complex interaction between model accuracy,

video quality, battery constraints, network data usage, and

network conditions to choose where and which deep learning

model to run based on application requirements. To overcome
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Fig. 17. A snapshot trace of streaming adaptation

the long latency of existing offloading techniques, Liu et

al. [25] designed a video analytics system that enables high

accuracy object detection at 60fps. Low latency offloading

techniques were designed and employed, including decoupling

the rendering pipeline from the offloading pipeline and fast

object tracking to maintain detection accuracy. CloudSeg [26]

is an edge-to-cloud framework for vision analytics designed

to achieve high inference accuracy with low streaming cost. It

sends the video stream in low resolution, and recovers them

into the high-resolution frames via a cloud-assisted super-

resolution procedure. It trades computation resources in cloud

for bandwidth saving with negligible accuracy degradation.

B. Adaptive Streaming for Video Analytics

Besides processing video data, video streaming is also a cru-

cial part of video analytics, whose optimization has been a fo-

cus in prior works. Adaptive streaming in video analytics sys-

tems generally attempt to achieve better accuracy-bandwidth

trade-off by finding the optimal configuration through certain

procedures such as profiling or filtering. Chameleon [19]

applies new configuration for the video analytics pipeline

based on periodical profiling. As the best configurations likely

remain stable over short-period of time and are shared in

a group of similar cameras, Chameleon reduces computa-

tion and transmission while satisfying the target accuracy

by exploiting the spatial and temporal correlations between

optimal configurations [27]. AWStream [20] offline profiles

the Pareto-optimal set of configurations and online tunes the

data rate by using the mapping of bandwidth consumption

and application accuracy. Reducto [28] applies the adaptation

logic mainly on the source camera. It filters video frames

according to features and thresholds selected by server, and

offloads filter computation to the camera side to reduce the

bandwidth consumption. This source-driven approach is ar-

guably sub-optimal since the camera’s computation capability

may be insufficient to extract content features as well as the

server, which motivates the design of server-driven streaming

protocols letting the server decide what/when to stream from

the camera [29]. DDS [5] is a video analytics system built

with a server-driven adaptive streaming approach. The camera

sends two rounds of video data: the first stream is delivered

in low resolution, which is analyzed by the server to generate

the re-transmission suggestions, while the second stream is

sent in high quality to improve inference accuracy, which

only encodes the requested subregions of the frames. DDS

maintains higher accuracy while reducing bandwidth usage at

the cost of increased response delay.

VIII. CONCLUSION

In this paper, we proposed the batch adaptive streaming for

video analytics applications. We first identified the necessity

of batching in transmission and computation. We also inves-

tigated the impacts of changing batch size on various factors

to show that batch size adaptation can help improve video

analytics. We formulated the optimization problem for batch

adaptive streaming and further solved it using instant profiling

and a DRL-based adaptation. The implementation issues were

addressed to develop a practical solution, whose performance

was evaluated and proved to be superior through extensive

trace-driven simulations.
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