
Backup Battery Analysis and Allocation against
Power Outage for Cellular Base Stations

Fangxin Wang , Student Member, IEEE, Xiaoyi Fan ,Member, IEEE,

Feng Wang ,Member, IEEE, and Jiangchuan Liu, Fellow, IEEE

Abstract—Base stations have been widely deployed to satisfy the service coverage and explosive demand increase in today’s cellular

networks. Their reliability and availability heavily depend on the electrical power supply. Battery groups are installed as backup power in

most of the base stations in case of power outages due to severe weathers or human-driven accidents, particularly in remote areas.

The limited numbers and capacities of batteries, however, can hardly sustain a long power outage without a well-designed allocation

strategy. As a result, the service interruption occurs along with an increasing maintenance cost. Meanwhile, a deep discharge of a

battery in such case can also accelerate the battery degradation and eventually contribute to a higher battery replacement cost. In this

paper, we closely examine the base station features and backup battery features from a 1.5-year dataset of a major cellular service

provider, including 4,206 base stations distributed across 8,400 square kilometers and more than 1.5 billion records on base stations

and battery statuses. Through exploiting the correlations between the battery working conditions and battery statuses, we build up a

deep learning based model to estimate the remaining lifetime of backup batteries. We then develop BatAlloc, a battery allocation

framework to address the mismatch between the battery supporting ability and diverse power outage incidents. We present an effective

solution that minimizes both the service interruption time and the overall cost. Our real trace-driven experiments show that BatAlloc

cuts down the average service interruption time from 4.7 hours to nearly zero with only 85 percent of the overall cost compared to the

current practical allocation.

Index Terms—Mobile network, backup power system, battery feature profiling, deep learning, battery allocation
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1 INTRODUCTION

WIRELESS mobile networks, particularly wide-area cellu-
lar networks, have seen deep penetration and broad

coverage in the past decades. Base stations play a key role in
4G/5G communications [1], [2], edge computing [3] and
vehicular network based applications [4]. Their reliability and
availability heavily depend on the electrical power supply, for
such modules as transceivers, air conditioners, monitoring
system are all power hungry. The modern power grid is
known to be highly reliable in urban areas, but still suffers
fromoutages due to the severeweather (e.g., storm, hurricane,
fire, earthquake) or human-driven accidents (e.g., vandalism
or theft) [5], [6]. In many rural areas, the outages can be quite
frequent, nomatter in developing or developed countries.

To avoid service interruptions, most base stations are
equipped with energy-storage battery groups as the backup
power. These batteries are usually kept in the float charge

state. Yet when a power outage happens, they will be acti-
vated to maintain cellular services until the electrical grid
recovers or diesel generators are launched. The capacity of a
backup battery group is limited, which typically lasts 10 to
12 hours during power outages. For remote areas or during
extreme weather, however, the power recovery can take a
long time (e.g., during the severe windstorm in March 2010,
the power outage in southwestern Connecticut as well as
parts of Long Island and New Jersey lasted for tens of
hours, and in some of the rural communities the outage
lasted as long as 6 days [7]), so for technicians to arrive at
the base station with diesel generators, not to mention that
many base stations would be affected at the same time. As
such, a long power outage without timely rescue will inevi-
tably drain the backup battery, resulting in service interrup-
tion during the extended power outage. In this situation,
these base stations have to rely on diesel generators whose
operating cost is about ten times greater than powering
through the electric grid [8]. Besides the possible long time
duration, some areas may suffer from frequent power out-
ages due to the bad weathers, e.g., it is reported that there
were as many as 5 severe power outages in Okanagan Val-
ley area in Canada in the first half of 2017 with an average
duration of 8.4 hours [9]. These situations seriously affect
the user experience and undermine the telecom operators’
service commitments, particularly considering the clients’
high reliance on the network during the incident.

Moreover, different from batteries for phones or electrical
vehicles which regularly experience full charge/discharge
cycles, a deep discharge of an energy-storage battery group
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(typically lead-acid) will severely affect its internal structure,
reducing its capacity and lifetime. Given the long time inter-
val between regular maintenances (usually three months
[5]), the poor working condition of the battery after a deep
discharge will further accelerate its degradation. In the worst
case, an overdischarge can permanently damage the battery.
Considering the transportation and labor costs, an emergent
battery replacement and maintenance can be prohibitively
expensive, particularly for remote areas.

In this paper, we closely examine the power outage
events and the backup battery activities from a 1.5-year
dataset of a branch of a major cellular service provider in
China, including 4,206 base stations and more than 1.5 bil-
lion records on base stations and batteries. Our analysis of
the data reveals the ineffectiveness of existing battery allo-
cation strategies during power outages. In particular, there
is a clear mismatch between the battery supporting ability
and the diverse power outage events.

Based on the logs of batteries, we further identify the
impact of power outages on the conditions of the battery
groups, and estimate the battery lifetime and reserve time
(indicating the duration a battery group can support)
through a deep learning based model. We accordingly
develop BatAlloc, a battery allocation framework that allo-
cates proper numbers of battery groups to each base stations
to address the mismatch between the battery supporting
ability and the diverse power outage incidents. We present
an effective solution that minimizes both the service inter-
ruption time and the overall cost. Our trace-driven experi-
ments show that BatAlloc reduces the average service
interruption time from 4.7 hours to almost zero (i.e., nearly
full service availability) with only 85 percent of the overall
cost, as compared to the current real deployment.

The rest of paper is organized as follows. Section 2 intro-
duces the related researches in the base station and battery
management. Section 3 introduces the background and
analysis of our dataset on base stations and backup battery
groups. Section 4 summarizes the existing problems in cur-
rent base stations and proposes the BatAlloc framework.
Section 5.3 formulates the multi-objective optimization
problem for battery allocation followed by a deep learning
based model and an effective solution for optimization. Sec-
tion 6 shows our experiments on voltage estimation and bat-
tery allocation. We provide some discussions in Section 7
and conclude our work in Section 8.

2 RELATED WORK

In this section, we first introduce some recent works related
to our research, including energy aware resource allocation
and battery feature profiling.

Many researches on energy related resource allocation
have been proposed towards better performance and cost
effectiveness. Wang et al. [10] proposed a novel resource
allocation scheme to improve the performance of D2D com-
munications. They considered battery lifetime as the optimi-
zation goal and employed a game-theoretic approach to
achieve effective power control and radio resource alloca-
tion. Holtkamp et al. [11] focused on minimizing the base
station supply power consumption by exploring the trade-
offs between three basic power-saving mechanisms.
Ramamonjison et al. [12] considered the resource allocation

in a two-tier wireless system and proposed newmechanisms
to efficiently allocate available energy over time. These two
works aimed to increase the base station service availability
by reducing the power consumption. Chamola et al. [13] con-
sidered both the grid energy cost and the quality of service,
and proposed a framework to explore the tradeoff between
the two aspects. Most of these works, however, focused on
reducing the power cost or improving the quality of service
given the fixed batteries [11], [13], [14]. Our work comple-
ments those aforementioned by investigating the energy
related problem in the base station from a different angle,
where we propose a battery allocation framework to achieve
better service availability and reduce the overall cost in
base stations.

Estimation of capacity and reserve time of batteries is an
everlasting topic and has attracted many efforts due to its
considerable importance for continuity of service and wide
use in large or small systems. A lot of approaches have been
proposed to estimate the battery state of charge (SOC)
and lifetime based on battery features, such as open circuit
voltage, ampere-hour characteristics, charge or discharge
curves etc. Kutluay et al. [15] proposed an online battery
SOC estimation based on the discharge rate versus dis-
charge time and coulometric measurement given in the
manufacturer’s data sheets. Anbuky et al. [16], [17] built up
an estimation model to predict battery SOC and reserve
time only based on the battery discharge voltage, which is
robust against discharge rate, ambient temperature, battery
degradation situation etc. with the error ratio less than 10
percent. Coleman et al. [18] incorporated the changes occur-
ring due to terminal voltage, current load and internal resis-
tance to predict electromotive force (EMF) of battery, and
further estimate SOC based on the EMF. Bhangu et al. [19]
utilized a Kalman Filter based approach for real-time SOC
estimation, and further predicted the state of battery health.
These methods all utilized traditional electrochemical the-
ory to analyze the battery characteristics, while they may
fail to achieve a high accuracy. Different from prior works,
our work strives to profile the battery features from the
aspect of big data analysis. With the advance of deep learn-
ing, we propose a learning-based approach for battery pro-
filing considering multi-battery deployment, which is based
on a large-scale real-world dataset of base station batteries.

3 BACKGROUND AND DATA ANALYSIS

In this section, we mainly profile the collected dataset and
the related observation on the base stations and backup bat-
tery groups. We collaborate with a branch of a major cellu-
lar service provider in China and collect a dataset from
July-28-2014 to February-17-2016, which covers 4,206 base
stations distributed across 8,400 square kilometers with
over 10,616,000 clients. Compared with our previous
work [20], we use a larger dataset and conduct a more com-
prehensive data analysis. This dataset consists of more than
1.5 billion1 records on battery activities, including such

1. When batteries are in floating charging state, the first-year dataset
has a higher resolution and the remaining half-year dataset has a rela-
tively lower resolution. Yet for all other battery states, the resolution is
the same across the whole dataset. Thus, this imbalance does not affect
our data driven observation and evaluation.
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information as the base station locations, battery voltages
and event records (e.g., power outage, low voltage alert,
high voltage alert, etc.), which are used to analyze the cur-
rent situation of base stations.

3.1 Power Supply in Base Stations

We first introduce a generic backup power system in the
base stations of mobile networks. The equipment in base
stations is usually supported by the utility grid, where the
battery group is installed as the backup power. In case that
the utility grid interrupts, the battery discharges to support
the communication switching equipment during the period
of the power outage. Fig. 1a shows two lead-acid battery
groups in a mobile network base station and each battery
group contains 24 cell batteries (the rated voltage of each
battery cell is 2v). The rated capacity of a battery group is
usually 500 AH and it can support about 10-12 hours (i.e.,
the reserve time of a battery group is 10-12 hours). Compared
to other types of batteries (e.g., Li-ion battery), lead-acid bat-
tery groups demonstrate some important advantages such
as the mature technologies, safe storage, high capacity and
low price, which make them widely used in base stations.
We observe the number of battery groups from more than
4,200 base stations and show it in Table 1. We find that
about 93.4 percent of base stations are equipped with one or
two battery groups while only very few base stations have
more. In Fig. 1b, the monitoring system connects to each cell
of the battery group and periodically records the voltage
and status in both normal and abnormal situations.

When the monitoring system reports an alert status, the
emergency repairing service is scheduled depending on the
accident severity. For instance, grid transmission lines can be
cut off in case of extreme weather (e.g., storm, hurricane and
heavy snow). Then the monitoring system in base stations
will report the power outage to the maintenance center and
an emergent maintenance should be scheduled according to
priorities of different base stations. Since few base stations
have the diesel generators permanently installed on site,
maintenance engineers have to spend a long time to take die-
sel generators as well as other necessary devices to the corre-
sponding base stations. The power outage can occur
frequently and severely in the rural areas and developing

countries due to the unstable utility grid. To make it even
worse, the construction of infrastructure often makes that
the base stations are difficult to reach, e.g., slippery rock
trails in the mountains, where the workers have to manually
carry the heavy generators to the site. So the power recovery
time is quite uncertain and can not be guaranteed.

We extract power outage situations of the base stations
and illustrate the practical distribution of the base stations
as well as the power outage situations in Fig. 2. It is clear
that in the urban regions most base stations have relatively
good power supply, while in the remote rural areas base
stations can suffer from long-time power outages. Fig. 3
shows the statistics of power outages of all base stations,
from which we can find that quite a few power outages last
very long time. However, according to the current battery
allocation in Table 1, base stations with inefficient backup
batteries are not able to sustain the long-time power outage
without timely emergent maintenance, which can lead to
service interruptions and cause serious consequences.

3.2 Backup Battery Features Analysis

In our dataset, we have obtained huge amounts of logs from
batteries of 4,206 base stations with totally 531 tables and
1,550,032,984 rows. As shown in Fig. 4, the main logs in our
collected dataset include two parts, i.e., historybattery and
historystatus. The historybattery logs record the collected
information of each battery cell such as equipmentid (the
unique device number related to a battery cell), recordtime
(the timestamp when this log record was generated), float-
voltage (the monitored float voltage for this cell) and signal-
severity (the level of emergency which decreases as the
value grows). The historystatus logs describes the status of

Fig. 1. The backup batteries and the monitor system.

TABLE 1
Statistics on Number of Battery Groups

for More than 4,200 Base Stations

number 1 2 3 4 other

percent 65.9% 27.5% 4.7% 1.6% 0.1%

Fig. 2. Base stations distribution and their power outage situations. Each
point shows the location of corresponding base station and the color rep-
resents the maximum single power outage duration in a year.

Fig. 3. Statistics of power outage duration each time for all base stations.
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battery or external environment, such as the equipmentid
(the unique identification of each battery cell), starttime (the
start time of a status), endtime (the end time of a status) and
the meanings (the specific status, such as power outage,
voltage low, voltage high, etc.).

3.2.1 Battery Discharge Analysis

Base station batteries are connected to the electrical grid and
kept in float charging state to compensate the capacity loss
due to the slow self-discharging process. When there is a
power outage, the backup batteries begin to discharge to
support base station services. The battery discharging pro-
cess can be divided into three regions: the coup-de-fouet
region [21], the linear region [17] and the hyperbolic
region [22]. Fig. 5 illustrates a typical discharging curve for a
lead-acid cell. The coup-de-fouet region appears at the start
of battery discharging, where the battery voltage first falls
quickly below its open circuit voltage and then rises to a
higher plateau voltage in a short time. This kind of voltage
change is a special characteristic usually observed from lead-
acid batteries. Then the discharging process goes into a long
linear region, where the voltage drop has an approximately
linear relationship with the discharging time. The discharg-
ing characteristic is robust to variations in operating condi-
tions as well as battery conditions, such as the discharging
mode (constant current or constant power), ambient temper-
ature, battery degradation condition [17], etc. A battery will
release most of its energy during the linear region. In the last
hyperbolic region, the voltage falls very fast while it can only
release a very small fraction of power.

During a long power outage, the backup batteries may
need to discharge to a deep level (e.g., to the hyperbolic
region in Fig. 5), which further exert an impact on the bat-
tery conditions. The conditions of lead-acid batteries are
largely dependent on the depth of discharge (DoD). If a
lead-acid battery frequently discharges to high DoDs, the
lead in the negative plate will form large lead sulfate

crystals adhered to the negative plate and further accelerate
the battery sulfation. This degradation process is accumula-
tive, which as a result greatly reduces the capacity and life-
time of lead-acid batteries. Therefore, it is not desirable to
allow a battery group to discharge completely, because the
battery group will be permanently damaged and become
incapable of being fully recharged to its rated capacity
again. According to the industry standard, a battery should
be replaced once its capacity falls below the 80 percent of
the rated capacity. So the fast battery degradation contrib-
utes to a high battery replacement cost. Fig. 6 presents a
comparison of the voltage change between two battery cells,
one of which was in good condition and the other suffered
from several deep discharges. We can see that the cell suf-
fering from deep discharges degrades quickly with the float
voltage showing a clear decreasing trend.

In base station power management, a low voltage discon-
nect (LVD) strategy is applied for battery protection. When
the battery voltage falls below a first pre-defined threshold,
the lead-acid battery groups will be disconnected from the
secondary devices and only provide backup power to pri-
mary communication devices. When the voltage continues
to drop below a second predefined threshold, power system
cuts off all the loads to avoid the battery groups from being
drained. Base stations usually have a low LVD setting to
prolong the backup power supply, yet actually the deep dis-
charge before LVD has already exerted an impact on battery
degradation process. Fig. 7 plots the relationship between
the power outage duration and the voltage drop (to avoid
the impact of battery group numbers, we only choose those
base stations with one battery group). We observe that the
discharge voltage could fall below 1.71v during a long

Fig. 4. A part of real logs of batteries.

Fig. 5. Typical discharge voltage versus time characteristics.

Fig. 6. The comparison of two battery cells under different discharge
situations.

Fig. 7. The relationship between power outage duration and voltage
drop.
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power outage, which in fact will seriously damage the bat-
tery condition.

3.2.2 Battery Voltage Analysis

The voltage of each cell battery is the most important fea-
ture that we have measured, as it reflects the power output
pattern of the battery. In general, we have observed two
representative categories of cell batteries, where we manu-
ally choose 1,578 batteries as the newly-installed group and
put 1,459 batteries into the nearly-dead group depending
on the repair records. The rated voltage of a cell is around
2.23 v and the rated voltage of a battery group is 53.5 v,
where 24 cell batteries are connected in serial as one battery
group. Based on this, we further analyze the typical status
of the voltage patterns inside the two representative cell bat-
tery categories. Fig. 8 shows the significant differences in
mean voltage between the newly-installed and nearly-dead
batteries. The blue solid line plots the mean voltage of
newly-installed batteries, which judders between 2.14 v and
2.24v. The red dotted line shows the decay trend on the
mean voltage of the nearly-dead batteries. There is a clear

downward trend close to the failure date, where the
battery power frequently falls down and becomes quickly
exhausted, causing many issues and alerts in the mobile
network base station.

Fig. 9 further plots how the mean voltage and the length
of remaining lifetime correlate with each other, which indi-
cates that the mean voltage has strong correlations with the
battery life. Fig. 10 shows the results on the voltage varian-
ces, where the blue solid line represents the newly-installed
battery can output a steady power and the variance of the
voltage keeps very close to zero. The red dotted line illus-
trates that the variance of the nearly-dead batteries increases
much faster than the newly-installed batteries.

Fig. 11 illustrates that the voltage variance has a correla-
tion with the length of the remaining lifetime, indicating
that the variance of the output voltage from the batteries
over time also reflects the aging trend of battery quality deg-
radation. These observations motivate us to correlate bat-
tery working conditions with the battery historical voltages.

3.2.3 Battery Status Analysis

Fig. 12 lists the number and percentage of some selected sta-
tus categories,2 and Fig. 13 also shows the frequency distri-
bution among all the 105 categories. We can see that the
distribution is highly skewed: the most popular category is
Alert (meaning that there are warnings such as irregular
voltage change), at about 28.09 percent; the second is Faulty
cell (meaning that the system infers that the corresponding
cell may have fault), at about 20.42 percent; and the third is
Discharge (indicating that the cell is discharging), at about
10.70 percent.

Fig. 8. Mean voltage versus battery status.

Fig. 9. Correlation between the remaining life and mean voltage.

Fig. 10. Voltage variances versus battery status.

Fig. 11. Correlation between the remaining life and voltage variance.

Fig. 12. The list of battery status categories.

2. In the figure, the status category of generator on charge indicates
that the generator is providing power. Too high means the monitored
float voltage of the corresponding cell surpasses a threshold. Failure
means that the power system or the communication system goes
wrong.
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We take three statuses as examples to further investigate
the correlations between the status and battery remaining
lifetime. These statuses are Low float voltage (i.e., the moni-
tored float voltage falls below a threshold), Discharge and
Faulty cell as shown in Figs. 14a, 14b and 14c, respectively.
We count the specific status number for each battery until
the batteries are replaced, and pick up 30 batteries with dif-
ferent numbers of statuses for observation. There are 576
days in our dataset, where the remaining lifetime of most
batteries in our dataset is longer than 576 days. Therefore
dash lines represent that those batteries on it have longer
remaining lifetime than 576 days. Figs. 14a and 14b plot the
correlation between Low float voltage, Discharge and remain-
ing lifetime. They clearly demonstrate that there exists a
strong correlation between battery remaining lifetime and
Low float voltage, as well as between battery remaining life-
time and Discharge. We further plot the remaining lifetime
against the number of faulty cell status in the system in
Fig. 14c, which does not show a noticeable correlation
between them. These results imply that the remaining life-
time is comprehensively affected by some statuses rather
than a specific one. The observations suggest that the diverse
statuses have different influences on the battery working
conditions, thus it is necessary to discriminatingly differenti-
ate these statuses for the accurate lifetime prediction.

4 BATALLOC FRAMEWORK

Our real trace-driven data analysis clearly reveals that in the
battery allocation strategy currently used in practice, there
exists a mismatch between the supporting ability of backup
batteries and the power outage situations in each base sta-
tion. The mismatch can lead to serious problems in base sta-
tions. First, due to the limited numbers and capacities of

backup battery groups, long time power outages can result
in service interruptions in many base stations. It is even
worse during severe weather in rural areas or remote pla-
ces, where maintenance engineers are not guaranteed to
arrive timely. Besides, as the emergent maintenance is
accompanied with service interruptions, more service inter-
ruptions also contributes to extra cost on emergent mainte-
nance. What is more, long time power outages can drain the
battery capacity, affecting battery structures and accelerat-
ing battery degradation. The results further lead to sooner
battery replacement and higher overall cost.

One intuitive solution is to allocate as many battery
groups as possible for every base station, yet such an over-
provision will cause a large waste of resources and dramati-
cally increase the overall cost. To this end, we propose
BatAlloc, a battery allocation framework to carefully address
this mismatch by allocating an appropriate amount of
backup battery groups for each base station. As shown in
Fig. 15, our framework consists of three major stages,
namely, Base Station Feature Profiling, Battery Feature Pro-
filing, and Battery Allocation Optimization, which will be
further explained as follows:

Base Station Feature Profiling. In this stage, we mainly
extract the features of base stations from massive data,
including the practical distribution of base stations, num-
bers of battery groups equipped in base stations, power out-
age situations, etc. The profiling results lay the foundation
for later analysis such as the severity of power outage, the
impact of service interruption, as well as the cost for emer-
gent maintenance and battery replacement.

Battery Feature Profiling. This stage conducts a solid anal-
ysis on the battery features, so that battery capacity, battery
lifetime and battery degradation under different levels of
discharges can be accurately estimated. Although the lead-
acid battery technology is mature, due to the large varia-
tions of real-world factors, it is still very difficult, if not
impossible, to do such estimations directly by the domain
knowledge. To this end, we develop a deep learning based
approach to well model the complicated relationships
between different real-world events and various battery
conditions, which will serve as a key component for the bat-
tery allocation optimization in next stage.

Battery Allocation Optimization. Based on the feature pro-
filing results of previous two stages, the battery allocation
can then be formulated as an optimization problem. This
problem involves multiple optimization goals, e.g., to mini-
mize the service interruptions and minimize the overall

Fig. 13. Distribution of battery status categories.

Fig. 14. Correlation between the remaining life and the number of different statuses.
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cost. In addition, a number of real-world factors can also be
considered into the optimization, such as the importance of
different base stations, the available budget, and the practi-
cal limitations on the number of battery groups that can be
installed on a base station. Besides, due to the large number
and space span of base stations, the optimization solution
should also be very efficient for computation.

It is worth noting that different battery types (e.g., lead-
acid batteries and Li-ion batteries) may have quite different
degradation characteristics. The battery feature profiling is
only one component of our framework and the remained
part can still be well applied to other chemical battery sce-
narios, as long as the battery profiling model is updated as
needed. We have analyzed the base station features in the
previous section. In next section, we present the deep learn-
ing based battery feature profiling model and the solutions
for battery allocation.

5 BATTERY ALLOCATION SOLUTIONS

In this section, we first formulate the battery allocation opti-
mization stage in our BatAlloc framework as a multi-objec-
tive optimization problem. Then we propose a deep
learning based approach integrated with battery discharge
features to model the battery reserve time and battery life-
time for a base station equipped with different numbers of
batteries. At last, we propose an efficient algorithm to solve
the formulated optimization problem. Table 2 lists the nota-
tions to be used in this section.

5.1 Problem Formulation

Current base stations are mostly equipped with one or two
battery groups, which are often insufficient to provide unin-
terrupted backup power during a long power outage.
Assume that we assign ns battery groups for a particular
base station s 2 N , where N is the set of all base stations.
We then need to calculate how long the ns battery groups
can support this base station during a power outage. Recall
that the battery has already severely suffered from deep dis-
charge at the hyperbolic region. To protect the battery, when
the battery discharges to the end of linear region (as illus-
trated in Fig. 5), we disconnect it from the workload. To this
end, we denote rts;ns as the total reserve time for station s
with ns battery groups at time t.

We denote the time duration from the beginning of
power outage to electrical grid recovery or diesel generator

Fig. 15. Systematical design of BatAlloc framework.

TABLE 2
Notations

ns number of battery groups at base station s
rts;ns the reserve time for station s at twith ns battery groups
ots duration from power outage to grid recovery or generator

launch for stations s at t
vs the importance factor of station s on service interruption

severity
Ts;ns the expected lifetime of each battery group when stations s

is equipped with ns battery groups
I the normalized total service interruption time
T the time-based index range
N the set of all the base stations
cb the replacement cost of a battery group
Cb normalized total cost on battery group replacement
xts a variable indicating whether station s needs an emergent

maintenance at t
cm;s emergent maintenance cost for station s
Cm the normalized total emergent maintenance cost
Call the normalized overall cost
nL lower limit of battery group number in a station
nU upper limit of battery group number in a station
B the budget limit
vkif float voltage of battery i in kth segment
ski voltage slope of battery i in kth segment
dki degradation of battery i in kth segment
eki the event set for battery i in kth segment
E the event set
D the degradation set
� the voltage drop at start of discharging
Ft

s percentage of remaining capacity of a battery group
vti the plateau discharging voltage of battery i at t
vE the end discharging voltage in linear region
vP plateau voltage at the beginning of discharging
t the rated reserve time before end voltage
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launch in station s as os ¼ fot1s ; ot2s . . . otis g, where ti is a time-
based index. Once the duration exceeds the battery reserve
time, there will be a service interruption. We assign impor-
tance factor vs to represent the service interruption severity
(e.g., the service interruptions in core station have more seri-
ous consequences). We use Ts;ns to denote the expected life-
time of each battery when station s is equipped with ns

battery groups under its specific working situations. Thus,
we have our first optimization objective, which minimizes
the total service interruption time

Min : I ¼
X

s2N
I s

¼
X

s2N

vs

P
t2T ½maxð0; ots � rts;nsÞ�

Ts;ns

;
(1)

where T is the time-based index range of the considered
period. We use Ts;ns as denominator for normalization(i.e.,
representing annual service interruption time).

Besides achieving as short service interruption time as
possible, telecom operators may also want to reduce the
overall cost, which includes the battery replacement cost
and emergent maintenance cost. Then the battery replace-
ment cost Cb (including purchase and installment) can be
represented as follows:

Cb ¼
X

s2N
Cs;b ¼

X

s2N

nscb
Ts;ns

; (2)

where cb is the replacement cost of a single battery group of
base stations. For simplification, we assume an average for
the shipment and labor cost, and combine all these costs
including the purchase cost as the replacement cost.

When there is a long power outage that the battery capac-
ity is not sufficient enough, engineers may be scheduled an
emergent maintenance to the corresponding base station for
power generation.

We use xt
s as a binary indicator that indicates whether an

urgent maintenance is demanded during a power outage
(xt

s is set to 1 if the battery reserve time is not enough when
there is a power outage at time t, and 0 otherwise). And cm;s

is the emergent maintenance cost of station s. Then we can
get the total emergent maintenance cost Cm for all the base
stations as follows:

Cm ¼
X

s2N
Cm;s ¼

X

s2N

P
t2T ðxt

scm;sÞ
Ts;ns

: (3)

Based on Equations (2) and (3), we then have our second
optimization objective, i.e., minimizing the overall cost Call
for telecom operators

Min : Call ¼ Cb þ Cm

¼
X

s2N

nscb þ
P

t2T ðxt
scm;sÞ

Ts;ns

:
(4)

In practice, there may be other requirements that limit
the number of battery groups being installed at a base sta-
tion. We thus use nL and nU to denote the lower limit and
upper limit on the number of battery groups that can be
installed, respectively, and have the following constraint:

8s; nL � ns � nU; ns 2 Nþ: (5)

Besides, telecom operators usually want to control the
overall cost within a give upper budget limit B. So we also
have the following constraint:

Call � B: (6)

5.2 Deep Learning Based Battery Profiling

In order to solve the optimization problem on battery alloca-
tion, we first need to model the lifetime and reserve time of
the batteries in a base station. Given that the battery voltage
is often used as a criterion for battery working conditions as
well as battery capacity, we thus can conduct battery profil-
ing to build up the models based on the historical battery
activities under different events recorded in our data logs.
Traditional time series estimation models such as ARIMA
[23] and linear regression [24] only explore the time series
features of battery voltages, while they are not able to cap-
ture the impact that external events have on batteries.
Although [25] considered the impacts of events on voltage
trend, its proposed approach can only be used to model a
single battery group. To this end, we develop a deep learn-
ing based approach that utilizes the deep neural network
(DNN) to accurately model the voltage trend based on pre-
vious events and voltages with the consideration of multi-
ple battery groups.

The degradation process of a battery is relatively a long
period impact derived from battery activities. So we focus
on the voltage trend rather than every single voltage value
at each time point. We first filter out the noise voltage data
generated during battery activities (e.g., charging and dis-
charging) and only extract the effective float voltage data.
Given a time series of float voltages for battery i, we divide
them into a number of time segments where the length of
each segment is l. For each segment k, we fit the voltage
decreasing trend by linear regression and obtain the voltage
change slope ski as well as the initial voltage value vkif . Then
each time segment can be represented as fðv1if ; s1i Þ; ðv2if ;
s2i Þ . . . ðvkif ; ski Þg. We define voltage degradation term as the
rate of change on voltage slope for a battery. Then we have
battery degradation dki as following:

dki ¼ ski � sk�1
i : (7)

For each segment, the battery voltage degradation is
ascribed to the battery activities, which are directly reflected
by the event logs. We define ei

k ¼ feki;1; eki;2; . . . eki;mg as the
input events for battery i in time segment k, where m is the
number of event categories. When a base station is
equipped with multiple battery groups, the impact of activi-
ties is actually shared by all these batteries. Then the impact
on every single battery should be proportionally reduced.

Thus, we can build up a learning model from events ei
k

ns
to

the battery degradation dki in segment k, where ns is the
number of battery groups in base station s.

Formally, the inputs are the event sets associated with
related segments. Let E denote the input space of the histori-
cal events and we have E ¼ fe1n1 ;

e2
n2
; . . . eNnN

gwith N examples.

The outputs are voltage degradations for each segment. Let
D denote the output space of voltage degradation and we
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have D ¼ fd1; d2; . . . dNg. The modeling process is actually a
mapping from E to D.

As illustrated in Fig. 15, we build up a DNN to model the
battery degradation process. Each node in the input layer is
associated with one kind of events and output layer has one
node for degradation estimation. Assuming the base
station’s situations keep statistically consistent every year,
we can then obtain the voltage degradation utilizing our
deep learning model. Given that the target time t falls in
segment kþ 1 and v

t1
if is the initial voltage value, the float

voltage can be calculated as follows:

vtif ¼ v
t1
if þ

Xk

j¼1

ðdji þ sj�1
i Þlþ ðdkþ1

i þ ski Þðt� klÞ: (8)

To further capture the internal voltage wavelet features, we
use ARIMA to calculate the fluctuation term wt

i for battery i
at time t. Then the final predicted float voltage is repre-
sented as vt0if ¼ vtif þ wt

i.
With the domain knowledge, a battery is judged in poor

quality when its float voltage is below a pre-defined thresh-
old u. Then we can obtain the lifetime of battery i in station
s if the float voltage falls below u at segment kþ 1

Ti ¼
u � v

t1
if �

Pk
j¼1ðd

j
i þ sj�1

i Þl
dkþ1
i þ ski

þ kl: (9)

When there is a power outage, the batteries begin to dis-
charge to provide backup power. According to the electro-
chemistry knowledge of base station battery features [26],
there is a voltage drop from the float charge state to the pla-
teaudischarging statemostly due to the cell internal resistance
and polarization. We denote the voltage drop as � and we can
calculate the plateau discharging voltage as vti ¼ vtif � �.

Recall that the battery degradation will lead to the bat-
tery capacity decrease. The battery discharge characteristics
can be utilized to estimate the battery state of charge and
battery reserve time [17], [27] in the linear region. The scaled
discharge curves of batteries with different degradation
keep highly consistent, and the plateau discharge voltage
drops with the degradation level. Thus we can build the
mapping from the plateau discharge voltage to the corre-
sponding capacity in the linear region. Let vE denote the
end voltage and vP is the plateau voltage of discharging
phase for a new battery cell. We use Ft

s to represent the per-
centage of remaining capacity of a battery group in the lin-
ear region at t. Then we can calculate Ft

s based on the
discharging voltage vti

Ft
s ¼

vt � vE
vP � vE

: (10)

Let t denote the rated battery reserve time of a new bat-
tery before the end voltage. The reserve time rts;ns defined in
the previous section can thus be calculated as follows:

rts;ns ¼ tnsF
t
s: (11)

5.3 Battery Allocation Algorithm

With the profiling results of base station features and battery
features, we next solve this battery allocation optimization

problem. Recall that our objectives are minimizing both the
service interruption time (Equation (1)) and the overall cost
(Equation (4)). Then we have two constraints: the number of
battery groups in each station falls within the limit range
(Equation (5)) and the overall cost does not exceed the bud-
get limit (Equation (6)). This multi-objective optimization
problem is actually a multi-objective integer programming
problem, where the battery group number ns must be an
integer between a lower bound nL and an upper bound nU .
This makes the problem NP-hard and we thus design a heu-
ristic algorithm to solve it efficiently.

Before jumping to the algorithm design, we first briefly
analyze the characteristics of this optimization problem. Intu-
itively, given the same external incidents happening to a base
station, the base station can sustain longer power outages
when equipped with more battery groups. The total service
interruption time is thus reduced. Meanwhile, since the
emergentmaintenance is accompaniedwith service interrup-
tions, fewer service interruptions also cut down the cost of
emergent maintenance. Thus in our allocation model when
the battery group number keeps increasing, both the service
interruption time and the emergent maintenance cost will
monotonously decrease until no service interruption occurs.

Algorithm 1. Battery Allocation

Input: Results of base station and battery features
profiling.

Output: The allocation results ns for every station s.
1: foreach s inN do
2: Set initial battery assignment as ns = nL and calculate I s

and Cs;all;
3: while ns � nU do
4: Increase ns when both I s and Cs;all keep decreasing;

Record ns that results in the smallest I s and Cs;all;
5: When Cs;all begin to rise as ns increases, prune this

branch and switch to next station;
6: while Call � B do
7: Try to pre-allocate one more battery group for each

station s and calculate the I s and Cs;all;
8: Choose station s that leads to maximum Gain and still

keeps the correspondingly calculated Call � B;
9: Do add one battery group for station s and update

the Call and I ;
10: return ns for all the station s;

However, the battery replacement cost is different, where
the process can be divided into two stages: In the first stage,
when the battery group number of a base station increases,
the additional backup power helps the base station sustain
long power outages and reduce deep discharging of batteries.
So the battery lifetime is prolonged, achieving a lower battery
replacement cost. In the second stage, if we continue to
increase the battery group number, the extra backup power
becomes redundant due to enough power supply. Then the
service interruption time remains unchanged or decreases
very little, while the battery replacement cost increases due
to the unavoidable battery degradation process. Note that the
lead-acid battery itself has a self-aging process so that too
many battery groups will lead to a high average replacement
cost (due to the self-aging process). Therefore, theremay exist
three situations for battery replacement cost according to
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different conditions of the corresponding base station, i.e., the
cost first drops and then rises (both stage 1 and stage 2), the
cost keeps decreasing (only stage 1), and the cost keeps
increasing (only stage 2). As the sum of battery replacement
cost and emergent maintenance cost, the overall cost can also
have this characteristic when the battery replacement cost
dominates, which is future verified by our real data-driven
experiments in Section 6.

Based on the above analysis, it is easy to see that the two
objectives in our model are conflicting and multiple Pareto
optimal solutions may exist. Considering the practical situa-
tion of telecommunication industry, the most important
objective for telecom operators is to provide more reliable
cellular communication services. So we utilize a lexico-
graphic method [28] to solve this problem. The lexico-
graphic method assumes that the objectives can be ranked
in the order of importance, and repeatedly solve the most
important objective by fixing other less important objectives
with a bound. We first consider minimizing the service
interruption time when the overall cost has an upper limit
B. Then we strive to minimize the overall cost without
increasing the service interruption time.

The designed heuristic algorithm is shown inAlgorithm 1,
where we divide the solving process into two stages. In the
first stage (lines 1-5), for each base stationwe keep increasing
the battery group number until the overall cost begins to rise.
We thus stop and record the battery allocation results in the
first stage. The first stage of our allocation algorithm has the
following property as shown in Theorem 1.

Theorem 1. The allocation result of the first stage is optimal
with the minimum possible budget constraint.

Proof. Based on our analysis, in the first stage of allocation,
both I s and Cs;all are monotonously decreasing as we
increase the battery group number for each base station.
So the two optimization objectives are currently not con-
flicting. The allocation result of the first stage has the min-
imum overall cost in any case, because a lower budget is
not sufficient for normal management of all the base sta-
tions and batteries. The allocation results in the first stage
thus must be optimal under the same budget limit. tu

In the second stage (lines 6-9), the two objectives are con-
flicting because the battery replacement cost begins to rise.
As aforementioned, we consider reducing the service inter-
ruption time when the overall cost does not exceed the bud-
get limit. To better balance the tradeoff between them, we

define Gain as the ratio of the weighted service interruption
decrease and the overall cost increase

Gain ¼ I sðnsÞ � I sðns þ 1Þ
Cs;allðns þ 1Þ � Cs;allðnsÞ

: (12)

We each time select the base station with the maximum
Gain and add one battery group to it until we reach the
budget. By utilizing such a greedy approach we guarantee
to reduce the most service interruption time with the least
cost increase for each step.

We next analyze the complexity of our heuristic algorithm
to show its efficiency. In the first stage, we only access each
station once and the complexity is OðnÞ where n is the total
number of the base stations. In the second stage, we calculate
Cs;all and iteratively select station with the maximum Gain,
which contributes the complexity of OðnlogðnÞÞ. So the total
complexity of this heuristic algorithm isOðnlogðnÞÞ.

6 EVALUATION

In this section, we present the evaluation of our BatAlloc
framework based on real trace-driven experiments. We first
evaluate our battery feature profiling process and compare
our model with commonly used time series estimation meth-
ods, such as ARIMA [23] and Linear Regression (LR) [24].
Based on the base station and battery profiling results, we
present the performance evaluation on the overall BatAlloc
framework.

6.1 Experiment Setup

We conduct data processing on our dataset from a major
cellular service provider in China and extract useful fea-
tures on base stations and backup batteries. We process the
massive data on our workstation as illustrated in Fig. 17,
including dual Gigabyte AORUS GeForce GTX 1,080 Ti
Xtreme Edition 11 GB Video Card, dual Intel I7-6850 K
BROADWELL-E Processor 6 Core 15 M Cache 3.6 GHz
CPU, Corsair Dominator Platinum 32 GB 2 � 16 GB DDR4
3,000 MHz Memory Kit, Samsung 850 EVO 1 TB SATA 3
Solid State Drive, and etc. We construct the deep learning
based model using Keras [29], which is a neural network
library on top of TensorFlow [30] and Theano [31].

The parameter settings of our experiments are extracted
from our dataset as well as adapted from the typical settings
based on the domain knowledge. The normal float voltage is
2.25 v and the plateau discharging voltage vP is set as 2.08 v

Fig. 16. RMS errors on the voltage estimation by three models under different battery group number.
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for a new battery cell. According to the industry standard,
the battery used in cellular communication base station is
designed to provide power supply for about 10 to 12 hours
and we thus set t to 10. The second low voltage disconnect
of base stations is usually set as 1.8 v, and we set the end
voltage vE as 1.85 v to avoid extreme deep level discharge.
In our experiments, we set the importance factor vs based
on the population that a base station covers, which is nor-
malized to a value between 0 and 1. According to the real
world market [32], we set the price of battery cost cb as
$5000. The emergent maintenance cost cm mainly consists of
two parts: labor cost for a visit and diesel consumption cost
for power generation. The labor cost is calculated as
ceðtd þ tmÞ, where ce is the average wage for engineers per
hour ($30/hr with at least two engineers [33]), td is the time
spent on road (calculated by location information), and tm is
the emergent maintenance time at a base station. The diesel
cost is computed by cdtm, where cd is the diesel cost per
hour and we set cd as $7.6/hr [5].

6.2 Experiment on Voltage Prediction

We first evaluate the performance of our deep learning
based battery profiling model. We use the data of the first
365 days as the training set and the data of the next 120
days as the testing set. And we compare our model with
ARIMA and LR. In our evaluation, the LR and ARIMA
method only capture the time series features of the past vol-
tages, e.g., the voltage trend and the voltage variance, and
use the captured features to predict the future change of bat-
tery voltages. We use a multiplicative seasonal ARIMA
model to learn the voltage features considering the variance
of the wave and estimate the parameters based on the Mat-
lab economics toolbox automatically.

Fig. 16 shows the root mean square (RMS) errors between
the estimation results by the three models and the actual

voltage data. We can see that under various numbers of bat-
tery groups, the deep learning based model used in the
BatAlloc framework can always achieve better accuracies
with the RMS error less than 0.008 v. This means our deep
learning based model can effectively capture the influences
that different events exert on battery conditions. ARIMA
and LR only extract the features of time series from the vol-
tages and make corresponding estimations. Although their
RMS errors are relatively small due to the stationary voltage
trend when ns is large, they become worse when ns is small.
Integrated with the accurate estimation on the future volt-
age trend and the domain knowledge of battery features,
we can then obtain the battery lifetime and reserve time
used for the battery allocation optimization in the BatAlloc
framework, which will be evaluated next.

We then select one representative battery as a case study
example to illustrate the voltage trend using different pre-
diction methods as shown in Fig. 18. We can see that our
approach captures the voltage varying trend more accu-
rately and the predicted voltage is relatively close to the real
data, while the ARIMA approach fails to capture the voltage
varying trend. This is because ARIMA focuses on extracting
the internal time series features of battery voltages, and
does not consider the impacts of external events on battery
working conditions.

6.3 Experiment on Battery Allocation

We next evaluate our BatAlloc framework on battery alloca-
tion results. For comparison, we extract the current battery
deployment as a baseline from the real world dataset and
use the Original allocation to represent it. Fig. 19 plots the
annual average service interruption time with different
budget limit B. For ease of comparison, the budget limit is
normalized by the baseline budget (i.e., 100 percent means
the budget limit is equal to 100 percent of the original base-
line budget). The minimum budget we need is 69 percent of
baseline, which is actually the allocation result of the first
stage in our optimization algorithm. Even with the 69 per-
cent of baseline budget, our framework can still achieve a
lower average service interruption compared to the original
allocation, which is at least a 30 percent cost saving. The ser-
vice interruption time drops observably as the budget limit
increases and we can achieve nearly full service guarantee
with only 85 percent of the baseline budget. These results
demonstrate that our BatAlloc framework is capable of pro-
viding much more reliable service with a remarkably
reduced cost.

Fig. 17. Our work station for data processing.

Fig. 18. Voltage prediction of a battery using different predictingmethods.

Fig. 19. The average overall service interruption duration on different
budget limit.X-axis is based on the percentage of original budget.
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To better understand the impact of different battery
group numbers on base stations, we conduct a case study
shown in Fig. 20, which plots our different metrics for a typ-
ical base station when equipped with different numbers of
battery groups. As the number of battery groups increases
from 1 to 4, the emergent maintenance cost and the service
interruption time decrease monotonously due to more suffi-
cient backup power. On the other hand, the battery replace-
ment cost achieves minimum when the number of battery
groups is 2 since the additional battery group can drastically
reduce the impact of overdischarging and prolong the bat-
tery lifetime. If we keep increasing battery groups, the extra
battery power continues to reduce the service interruption
time, while the battery replacement cost rises largely mostly
due to the unavoidable battery degradation process.

Fig. 21 compares the different allocation results on bat-
tery group number between the original allocation scheme
and our BatAlloc framework. The original battery allocation
result is largely skewed that over 65 percent base stations
are equipped with only one battery group. Our framework
considers both the base station situations and battery fea-
tures, allocating 2 battery groups to most base stations and
3 or 4 battery groups to those with long-time power outages.

We also investigate the impact of different battery alloca-
tion strategies on battery lifetime. As shown in Fig. 22, in
the original allocation the average battery lifetime is only
around 1.5 years and far less than expected. After using
BatAlloc to allocate suitable numbers of battery groups for
base stations, the average battery lifetime has achieved to
4.3 years, roughly 1.8 times longer than that of the original
allocation. The results indicate that our framework can also
better protect base station batteries and significantly pro-
long their average lifetimes.

7 FURTHER DISCUSSION

Though each single power outage of one given base station
is truly hard to predict precisely, the statistical long-term
power outage trends (e.g., in every year) can have a very
similar pattern (e.g., a base station built in cold area may
suffer from several power outages due to the heavy snow
every year). In this paper, restricted by the 1.5-year time-
span of the data, the long-term characteristics of the power
outages for each base station might still not be able to be
captured with very high accuracy. In practical application,
however, the service provider can have data for as long as
tens of years and such data can be mined for better power
outage prediction. From this perspective, our framework
can still apply well in the practical battery allocation as long
as the statistical long-term power outage trends can be pre-
dicted with more abundant data.

Different base stations may set different low voltage dis-
connect value according to their practical situations. A high
LVD value may potentially help extend the battery lifetime
by avoiding deep discharging but will increase the service
interruption time and result in high service interruption
cost. Thus in reality, most mobile service providers would
set LVD to a quite low value given the service interruption
cost can usually be higher compared to the cost introduced
by shortened battery lifetime due to deep discharge. In this
paper, we focus on studying the relationship between the
power outage and the battery lifetime duration with the
consideration of allocating multiple battery groups. The
trade-off between the setting of LVD, battery lifetime and
service interruption cost can be an interesting future work
for further exploring.

8 CONCLUSION

Current cellular communication base stations are facing
serious problems due to the mismatch between the power
outage situations and the backup battery supporting abili-
ties. In this paper, we proposed BatAlloc, a battery alloca-
tion framework to address this issue. We first conducted a
systematical analysis of a massive dataset of base stations
and batteries. Then we built up a deep learning based
model to precisely capture the battery conditions and fur-
ther profile the battery features. With the profiling results,
we formulated this battery allocation issue as a multi-objec-
tive optimization problem and designed an efficient algo-
rithm to solve it. Our real trace-driven experiments showed
that compared to the current practical deployment, our

Fig. 20. Various metrics for a typical base station when equipped with dif-
ferent numbers of battery groups.

Fig. 21. The percentage of base stations with different numbers of bat-
tery groups.

Fig. 22. The comparison of battery lifetime in original allocation and life-
time after re-allocation based on BatAlloc.
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framework can remarkably reduce the service interruptions
as well as the overall cost. It is worth noting that although
our battery profiling model focuses on lead-acid batteries,
the general allocation framework can still be well applied to
other chemical battery scenarios (e.g., Li-ion batteries) once
the battery degradation aspect is updated.
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