
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009 5083

An Adaptive Delay-Minimized Route Design for
Wireless Sensor–Actuator Networks

Edith C.-H. Ngai, Jiangchuan Liu, Senior Member, and Michael R. Lyu

Abstract—Wireless sensor–actuator networks (WSANs) have
recently been suggested as an extension to conventional sensor
networks. The powerful and mobile actuators can patrol along
different routes and communicate with the static sensor nodes.
Obviously, it is crucial to optimize the routes for the actuators
to collect the sensor data in a timely fashion. Given the nonuni-
form and time-varying distribution of sensors and events in large
networks, the route design has to be dynamic and scalable as
well as balance the loads of the actuators. In this paper, we
propose probabilistic route design (PROUD), which is an effec-
tive and adaptive algorithm for weight-differentiated route cal-
culation. PROUD constructs an a priori route that covers the
sensor locations, following which, the actuators probabilistically
and cyclically visit the sensor locations according to their weights.
We show that this probabilistic approach adapts well to network
dynamics without frequent recalculation of the whole route. It
works for both small-scale sensor–actuator networks and large-
scale sensor–actuator networks with partitioning. We further de-
velop a distributed implementation of PROUD and extend it to
accommodate actuators with variable speeds. Finally, we devise
a multiroute improvement and a task-exchange algorithm that
enable load balancing. Our performance evaluation shows that
PROUD effectively reduces the overall data-collection time and
evenly distributes the energy consumption across the actuators, as
compared with other state-of-the-art solutions.

Index Terms—Actuators, route design, wireless sensor networks
(WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been applied
in a broad spectrum of applications, ranging from en-

vironment monitoring and target tracking to battlefield surveil-
lance and chemical attack detection [1]–[4]. The asymmetric
communication patterns from the sensors to the sink, however,
often overload the sensors close to the sinks and consequently

Manuscript received October 15, 2007; revised December 6, 2008. First
published June 2, 2009; current version published November 11, 2009. This
work was supported in part by the Research Grants Council of the Hong
Kong Special Administrative Region, China, under Project CUHK4158/08E.
The work of E. C.-H. Ngai was supported by the Uppsala VINN Ex-
cellence Center for Wireless Sensor Networks, which is supported by
VINNOVA, Sweden. The work of J. Liu was supported by the Natural Sci-
ences and Engineering Research Council of Canada under a Discovery Grant
and a Strategic Project Grant. The review of this paper was coordinated by
C. Lin.

E. C.-H. Ngai is with the Department of Information Technology, Uppsala
University, 751 05 Uppsala, Sweden (e-mail: edith.ngai@it.uu.se).

J. Liu is with the School of Computing Science, Simon Fraser University,
Vancouver, BC V5A 1S6, Canada (e-mail: jcliu@cs.sfu.ca).

M. R. Lyu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong Kong (e-mail: lyu@cse.cuhk.
edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2009.2024155

reduce the network lifetime. Moreover, network partitions may
occur in sensor networks, which make multihop communica-
tions impossible. To alleviate these problems, mobile elements
such as mobile sinks [5] or mobile relays [6] have been sug-
gested for collecting data in WSNs. Actuators, which have
stronger computation and communication power than unipur-
pose microsensors, have also been introduced [7], [8]. In a
wireless sensor–actuator network (WSAN), a mobile actuator
can move around to cover the sensing field and interact with
static sensors. Each static sensor maintains a size-limited buffer
that temporarily stores the sensed data until some actuator
approaches; it then uploads the data to the actuator with short-
range communications and frees the buffer [9], [10].

The amount and frequency of data generation across a sens-
ing field are, in general, nonuniform [11]. The sensors with
higher data generation rate or the locations with higher event-
occurring probability naturally expect more frequent visits.
More formally, there is a route design problem (RDP) for the
actuators to minimize their average interarrival time to the
static sensors [12]. Given that the weight of sensors and event
frequency are time varying, an adaptive solution is expected.
For a large-scale sensor network with multiple actuators, a
distributed and load-balanced implementation is also necessary.

In this paper, we propose probabilistic route design
(PROUD), which is an effective and adaptive algorithm for
weight-differentiated route calculation. PROUD constructs an
a priori route that covers the sensor locations, following which,
the actuators probabilistically and cyclically visit the sensor lo-
cations according to their weights. This probabilistic approach
with prior route adapts well to network dynamics without fre-
quent recalculation of the whole route. It works for both small-
scale sensor–actuator networks and large-scale networks with
partitioning. We further develop a distributed implementation
of PROUD and extend it to accommodate actuators with vari-
able speeds, targeting applications with bounded interarrival
time demand. Finally, we devise a multiroute improvement
and a task-exchange algorithm to provide load balancing to
the actuators. Our simulation results show that PROUD can
effectively reduce the overall data collection time and evenly
distribute the energy consumption across the actuators.

The remainder of this paper is organized as follows. The
related work is presented in Section II, followed by an overview
of the RDP in Section III. The PROUD algorithm is described
in Section IV, and a distributed implementation is shown in
Section V. In Section VI, we discuss possible enhancements for
integrating actuators with variable speeds and balancing their
workloads. Simulation results are presented in Section VII.
Finally, Section VIII concludes the paper.

0018-9545/$26.00 © 2009 IEEE



5084 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

II. RELATED WORK

Recently, mobile elements have been suggested for assisting
data delivery in diverse wireless networks. Pathirana et al. [13]
examined the location estimation and trajectory predication
for mobile base stations with a focus on cellular networks.
Zhao et al. [14] proposed a message ferrying approach to ad-
dress the network partition problem in sparse ad hoc networks.
Somasundara et al. [11] further formulated the problem of
scheduling the mobile element with deadlines and presented
earliest deadline- and minimum-weight-based heuristics.

For sensor networks, Shah et al. [15] presented an archi-
tecture using moving entities (data mules) to collect sensing
data. There have also been studies on mobile sinks with pre-
dictable and controllable movement patterns [16], [17] and the
optimal time schedule for locating sojourn points [5]. Luo and
Hubaux [6] further investigated a joint mobility and routing
algorithm with mobile relays to prolong the lifetime of WSNs.
Gu et al. [9] proposed a partitioning-based algorithm to sched-
ule the movement of mobile elements, which minimizes the
required moving speed and eliminates buffer overflow. Their
solution was customized for an “Eye” topology, where the
events are concentrated at certain locations. Solutions for sensor
networks with general distributions remain to be explored.
Recently, Bisnik et al. [18] studied the problem of providing
quality coverage using mobile sensors and analyzed the effect
of controlled mobility on the fraction of events captured. Their
focus, however, is not on the route design.

Our work is motivated by the above studies. The key dif-
ference is that we focus on adaptive and distributed route
design for multiple mobile elements in WSANs, specifically,
actuators moving along independent routes. We also address
the nonuniform weights of the static sensors with a novel
probabilistic solution.

Route design for mobile elements has also been studied in
delay-tolerant networks [19], but the target is on point-to-point
data transfer. The vehicle routing problem (VRP) is another
related problem, which considers scheduling vehicles stationed
at a central facility to support customers with known demands
[20]. There are a number of variations to VRP, e.g., capacitated
VRP [21] and VRP with time windows [22], yet the unique
characteristics of actuators and the heterogeneity of sensor
weights make the route design in WSANs different.

III. OVERVIEW OF THE RDP

We consider a WSAN consisting of M mobile actuators and
N static sensors. Each of the sensors and actuators is equipped
with a wireless transceiver. The actuators move in the sensing
field along independent routes, at constant or variable speeds.
Each static sensor maintains a size-limited buffer to temporarily
store the sensed data. When an actuator approaches, the sensor
uploads the data to the actuator and frees the buffer. The sensors
may have different weights related to their data generation
rates or event-occurring frequencies, which may also change
over time.

The routes of the actuators should be designed to minimize
the expected delay for data uploading, and intuitively, the
sensors with higher weights expect shorter average actuator

Fig. 1. Two examples of route design with a single actuator, where the visiting
sequence along the route is marked next to the edges.

interarrival times. Formally speaking, the RDP strikes to mini-
mize the weighted average actuator interarrival time to sensors,
that is

Minimize
∑

∀i

AiwiNi (1)

where Ai and Ni are the actuator interarrival time and the total
number of sensors with weight wi, respectively. We focus on
cyclical routes that starts from and ends at the same location,
and hence, only the optimal route of each cycle needs to be
calculated.

Fig. 1 illustrates two examples of route design in a single-
actuator case. The set of black nodes Sb and the set of white
nodes Sw have weights of Wb = 1.0 and Ww = 0.5, respec-
tively. Let Ab and Aw be the respective actuator interarrival
times of all black and white nodes. Assuming that actuators
move at a constant speed, obviously, we expect that the in-
terarrival time of Sb will be half of Sw, such that Aw = 2Ab.
As illustrated in Fig. 1(a), the actuator will visit the black
nodes twice and the white nodes once every cycle. The average
interarrival time of white nodes is thus

Aw = T (Sb) + T (Sw) + 2t(Sb, Sw) (2)

where T (Sb) is shortest possible travel time taken to visit the
set of nodes Sb in one cycle, and t(Sb, Sw) is the shortest
travel time for the actuator to walk between the sets Sb and Sw.
The travel time between two nodes depends on the landscapes,
obstacles, and moving speed of the actuator. Our problem for-
mulation generally applies to networks deployed over diverse
terrains and with actuators of various types of engines.

The shortest possible travel times T (Sb) and T (Sw) can be
modeled as the lowest possible cost in the traveling-salesman
problem (TSP). Note that the TSP itself is an NP-complete
problem but with fast and bounded approximation algorithms
[23]–[26]. Fig. 1(b) shows a more complicated example. Again,
it is easy to see that the RDP is NP-hard, even in this single-
actuator case.

In practice, we may also model the cost between two nodes
as any nondecreasing function of their distance, instead of the
travel time taken by individual actuators.

IV. PROUD ALGORITHM

We now describe our PROUD algorithm. In PROUD, an
a priori route is calculated during network initialization; the



NGAI et al.: ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN FOR WIRELESS SENSOR–ACTUATOR NETWORKS 5085

Fig. 2. Probabilistically visiting nodes according to their weights.

sensors are then probabilistically visited along the route ac-
cording to their weights. For instance, sensors with a visiting
probability of 1.0 are visited in every cycle, while sensors with
a visiting probability of 0.5 only have half a chance to be
visited in each cycle. By resetting the visiting probabilities, an
actuator can easily update the interarrival times based on data
generation rates or event-occurring frequencies. As such, the
network dynamics can be accommodated without frequently
recalculating the whole route.

In the following, we first give a centralized design that is
executed by one particular actuator or the base station. We will
extend it to a distributed implementation in the next section.

A. Small-Scale Networks With No Partitioning

1) Forming an A Priori Route: An a priori route is formed
by constructing a TSP path that contains all locations to be
visited. We adopt the well-known Approx-TSP-Tour algorithm
[26] here for its low cost and bounded performance. This
algorithm first creates a minimum spanning tree (MST) [26],
whose weight is a lower bound on the length of an optimal
traveling-salesman tour. It then creates a tour based on the MST,
with the cost being no more than twice that of the optimal. Both
calculations are done in polynomial time.

2) Probabilistically Visiting Sensors: We then apply a prob-
abilistic visiting model, in which an actuator sequentially but
selectively visits related sensors along the a priori route. Let
s1, s2, . . . , si, si+1, . . . , sn be the sequence of sensor locations
along the a priori route. After visiting location si, the actuator
determines whether to visit si+1 by generating a random num-
ber between 0 and 1. If the random number is smaller than the
visiting probability of si+1, i.e., pi+1, then it visits si+1 in the
next step. If not, the actuator skips si+1 and determines whether
to visit the next location si+2, and so forth.

Intuitively, the sensors with higher weights should be as-
signed with a higher probability such that they are visited
more frequently. Hence, we set the visiting probability pi of a
location i to be wi, where wi is the (normalized) weight of the
sensors. Fig. 2 shows an example of PROUD with two types of
sensor nodes. The black nodes have a visiting probability of 1.0,
which indicates that they will be visited in every cycle. On the
other hand, each white node is visited only with a probability
of 0.5 in every cycle.

3) Allocating the Actuators: For a small network with no
partitioning, the actuators can evenly be placed along the

a priori route during initialization. The expected route length
with probabilistic visiting can be calculated by

E[R] =
n−2∑

r=0

n∑

i=1

C(i, i + r)pipi+r+1Πr
k=1(1 − pi+k) (3)

where 1, . . . , n is a sequence of nodes on the route R, C(i, j) is
the travel cost between i and j, and pi is the visiting probability
of i. Note that E[R] depends not only on the visiting probability
but also on the network topology. For instance, an actuator may
have to visit several sensor nodes before visiting a particular
one if these nodes are all located along the same segment.

For a sensor i with a visiting probability pi, its average
actuator interarrival time Ai is thus

Ai =
E[R]
pivM

(4)

where v is the average moving speed of the actuators.
In a dynamic environment, the visiting probability of the

sensors can be updated according to their data generation rate or
event frequency, but the route does not have to be recalculated
for each individual change.

Time Complexity Analysis: Recall that N and M are the
number of sensors and the number of actuators, respectively.
The running times of the steps in the PROUD algorithm are
then given as follows.

Step 1: The running time of the Approx-TSP-Tour algo-
rithm is O(E) = O(N2), since the input is a com-
plete graph.

Step 2: The time is O(N) for an actuator to select the next
locations according to the visiting probability in
every cycle.

Step 3: The time of actuator allocation is O(M).

In summary, the PROUD algorithm has an overall time
complexity of O(N2 + M).

Bound Analysis: Since the interarrival time Ai is propor-
tional to the weights of sensors, we can focus on analyzing
the Ai of the locations in the lowest weight range. Let Ai

and A∗
i be the average actuator interarrival time for sensors

Si in the lowest weight range wi in PROUD and the optimal
algorithm, respectively. The optimal algorithm would visit all
locations in the lowest weight range at least once in a cycle.
Thus, the actuator will walk along a route with a length of at
least |TSP(Si)|. Since there are M actuators in the network,
we have

A∗
i ≥

|TSP(Si)|
vM

(5)

which gives the lower bound of the optimal solution.
The ratio of Ai/A

∗
i is equal to

Ai

A∗
i

≤ E[R]
pi |TSP(Si)|

. (6)

From (4), the interarrival time Ai for the sensors in the
weight range i in PROUD depends on the expected route length



5086 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

Fig. 3. Two actuators walking along (a) the same route and (b) distinct routes.

E[R]. Since an actuator visits only a subset of the sensors
along the prior route in each cycle, the expected route length
E[R] cannot be longer than the prior route constructed by the
TSP path that contains all the sensors S in the network, i.e.,
E[R] ≤ |TSP(S)|. The interarrival time Ai of the sensors in the
weight range i is thus bounded by

Ai ≤
|TSP(S)|
pivM

. (7)

B. Large-Scale Network With Partitioning

In large-scale sensor networks, network partitions may hap-
pen, dividing the sensors into different clusters. In this case,
letting actuators share the same route may not be as efficient as
walking along distinct routes. Consider the network in Fig. 3,
where the route designs with two actuators walking on the
same route and distinct routes are depicted in Fig. 3(a) and (b),
respectively. Clearly, the routes in Fig. 3(b) can achieve shorter
interarrival times than those in Fig. 3(b) if

C(q1, q4) + C(q2, q3) ≤ C(q1, q2) + C(q3, q4). (8)

This suggests that the sensor distribution should be an important
consideration on route design. In particular, the sensors in dif-
ferent clusters should be visited by actuators along independent
routes to minimize the interarrival time.

1) Forming Clusters: We use a recursive algorithm for clus-
tering the sensors, as shown in Algorithm 1. In each recursion,
it divides the MST into two subtrees by removing its longest
edge e, provided that w(e)/w(m) ≥ δ, where w(e) is the cost
of edge e. By doing this, the sensors that are geographically far
away will be involved in different subtrees and, later, distinct
routes. Note that δ is set to ensure that the number of clusters is
smaller than the number of actuators.

Algorithm 1 Clustering the sensors
Function Cluster(MST(S))
Find the edge m with the median length;
Find the longest edge e;
if w(e)/w(m) ≥ δ then

delete edge e;
Cluster(MST(S1));
Cluster(MST(S2));

end if

2) Forming A Priori Routes and Probabilistically Visiting
Sensors: After clustering the sensors, the PROUD algorithm

can be applied in each cluster following the simple case of
small-scale networks.

3) Allocating the Actuators: Multiple routes are formed
from the above. They may have different expected route lengths
due to the heterogeneous sensor locations and visiting proba-
bilities in the clusters. The uneven expected route lengths may
cause unequal interarrival times for the sensors with the same
weight. To address this problem, we allocate different numbers
of actuators to the routes. Intuitively, routes with longer ex-
pected lengths should be allocated with more actuators. This
is illustrated in Algorithm 2, where NR is the total number of
routes, remaina is the number of remaining unassigned actua-
tors, and nj is the number of actuators assigned to route Rj .

Algorithm 2 Actuator allocation for distinct routes
for j = 1 to NR do

nj = 1;
end for
remaina = M − NR;
while remaina > 0 do

Find the maximum E[R∗
j ];

E[R∗
j ] = E[R∗

j ]n
∗
j/(n∗

j + 1);
n∗

j + +;
remaina −−;

end while

V. DISTRIBUTED IMPLEMENTATION

For large-scale networks, it can be difficult for a single
node to collect the information and execute the route design
algorithm in a centralized manner. To this end, we next present
a practical distributed implementation for PROUD, in which
sensors and actuators form clusters by cooperatively construct-
ing MSTs.

A. Forming R-Clusters

First, the sensors locally construct MSTs by communicating
with their neighbors. Given the communication range of sen-
sors, i.e., Rs, the weight of each edge e in the MST must be
smaller than or equal to Rs, that is, w(e) ≤ Rs. We refer to
such an MST as an R-Cluster, i.e., RC(V,E). The cost of the
R-cluster is denoted by Cost(RC), which is the sum of w(e),
∀e ∈ E. It will be stored by the sensors in RC(V,E). There are
many existing distributed algorithms for forming an MST [27],
[28], and we apply a fast algorithm from [29] for this purpose.

B. Connecting R-Clusters

An R-cluster forest is formed by the sensors as above. These
R-clusters can be connected together to form MSTs that contain
more sensor locations. We divide the network into M subareas,
each of which is explored by one actuator. Each actuator looks
for the R-clusters in its area and connects them if they are
within a certain distance, e.g., C(RC1, RC2) ≤ δ. Then, a
new cluster is formed with cost Cost(RC1) + Cost(RC2) +
C(RC1, RC2).



NGAI et al.: ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN FOR WIRELESS SENSOR–ACTUATOR NETWORKS 5087

Similarly, the actuators also connect their R-clusters/clusters
with those in their neighboring areas. Algorithm 3 shows how
two actuators A1 and A2 connect their R-clusters RC1 and
RC2, where BD is the boundary of the two corresponding
areas.

Algorithm 3 Connecting the R-Clusters
Function Connect-Cluster(RC1(V1, E1), RC2(V2, E2))
if (C(RC1, BD) ≤ δ) and (C(RC2, BD) ≤ δ) then

Actuators A1 and A2 exchange locations close to BD;
Find the shortest edge e that connects RC1 and RC2;
if w(e) ≤ δ then

Form new cluster Cnew(V,E);
V = V1

⋃
V2;

E = E1

⋃
E2

⋃
{e};

Cost(Cnew) = Cost(RC1) + Cost(RC2) + w(e);
end if

end if

C. Allocating Actuators

Then, the actuators are to be allocated to the clusters, such
that each cluster is served by at least one actuator. Each actuator
associates itself to any unassigned clusters in its area. If the
associated cluster is crossing two or more areas, the actuator
has to inform the actuators in those areas. It is possible that
the number of clusters is greater than the number of actuators.
The unassigned clusters can be connected with some assigned
clusters to ensure that they are served by at least one actuator.
On the contrary, a remaining actuator can associate itself with
a nearby cluster with the highest cost. If multiple actuators are
serving one cluster, they can equally divide it and independently
serve the sensors involved. Finally, an a priori route is com-
puted by the actuator in each cluster using the Approx-TSP-
Tour algorithm [26].

VI. ENHANCEMENTS TO PROUD

So far, we have considered actuators with constant speeds
only. We next explore actuators with variable speeds to fur-
ther reduce the interarrival time for heterogeneous networks.
We also present two enhancements for load balancing among
actuators.

A. Actuators With Variable Speeds

Let oi be the expected average actuator interarrival time
for the sensors with weight wi. The highly weighted sensors
intuitively have shorter expected average actuator interarrival
times than the others, i.e., o1 < o2 . . . < oi < . . . om, where
om is the expected average actuator interarrival time of the
least weighted sensors. To achieve this, the highly weighted
sensors will be assigned with higher visiting probability. For
simplicity, we normalize the visiting probability pi for the
sensors according to their expected average actuator interarrival
time oi. We set the visiting probability p1 = 1 for the sensors
with the shortest expected average actuator interarrival time
o1. The visiting probability pi of the remaining sensors with

the expected average actuator interarrival time, e.g., oi, are
calculated by pi = o1/oi. The visiting probability to sensors
can adaptively be updated by the actuators according to the
dynamic change of the expected average actuator interarrival
time. By adjusting the speeds of the actuators, we can ensure
that sensors with the same visiting probability achieve similar
interarrival times, even if they are visited by different actuators
along distinct routes.

Assume that node i on Rj has a probability pi to be visited
by actuator j every cycle. Its average actuator interarrival time
Ai can be calculated as

Ai = E[Rj ]/pivj (9)

where vj is the moving speed of actuator j.
Given the expected average actuator interarrival time oi, we

can calculate the minimum moving speed of the actuator to
satisfy this requirement, i.e., Ai ≤ oi.

From (9), we obtain

E[Rj ]/pivj ≤ oi. (10)

Note that E[Rj ], pi, vj , and oi are all greater than zero. From
(10), we will get the minimum moving speed as

vj ≥ E[Rj ]/pioi. (11)

Without loss of generality, vj can easily be determined by
assuming pi = 1, that is, vj ≥ E[Rj ]/o1.

B. Load Balancing in Route Design

Since the energy consumption of mobile actuators increases
with their speeds [30], the unequal moving speeds might cause
imbalanced energy consumption. To tackle this problem, we
propose two algorithms for balancing load across the actuators,
which still retain the energy efficiency of the route design.

1) Multiroute Improvement Algorithm: Since the actuator
having a longer route consumes more energy, the loads of
actuators can be balanced by forming routes with identical
expected lengths. To this end, a loaded actuator may assign
some of its sensor locations to its neighboring actuator with the
minimum expected route length.

Consider two routes R1 and R2 involved in the multiroute
improvement. Their new expected route lengths become ideal
if E[R′

1] = E[R′
2] = (E[R1] + E[R2])/2. In other words, R1

should transfer a length of (E[R1] − E[R2])/2 to R2. Although
the sensor locations can be transferred one by one from R1 to
R2, until the expected lengths of the two routes become equal,
the serial operation can be quite inefficient. Hence, we provide
a fast approximation to find the proportion of sensor locations
ξ to be transferred from MST1 to MST2

cost(ξ)
cost(MST1)

=
(E[R1] − E[R2]) /2

E[R1]
(12)

where cost(ξ) and cost(MST1) represent the costs of the MSTs
that contain the sensor locations in ξ and R1, respectively.



5088 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

Fig. 4. Routes involving (a) different amount of sensors and (b) sensors with
different weights.

TABLE I
SIMULATION PARAMETERS

2) Task-Exchange Algorithm: In a network involving clus-
ters with different sizes or weights, it can be more efficient for
one actuator to take up more load than another. For example, the
two actuators walking along two distinct routes with unequal
lengths (see Fig. 4) achieve better performance than those
along routes with identical lengths. In this case, enforcing load
balancing by equalizing the lengths of the two routes may not
be the best choice. Instead, load balancing among the actuators
can be achieved by exchanging their routes.

Intuitively, an overloaded actuator may exchange its route
with another actuator traveling at a lower speed. More formally,
we define EnergyA1 and EnergyA2 to be the remaining
energy of actuators A1 and A2 and v1 and v2 to be the minimum
actuator speeds on routes R1 and R2. A task-exchange algo-
rithm is executed when actuator A1 has less remaining energy
than A2, but it requires a higher moving speed. The tasks of
the two actuators are exchanged by swapping their routes. By
doing this, A1 can walk on a shorter route at a lower speed and
reduce its energy consumption. On the contrary, A2 consumes
more energy with a higher moving speed, but load balancing is
achieved as it has more energy than A1.

VII. PERFORMANCE EVALUATION

We have conducted extensive simulations to evaluate our
proposed PROUD algorithm and to compare it with state-of-
the-art solutions. Unless otherwise specified, the network con-
figurations summarized in Table I are used in our simulations.
The configurations are mainly drawn from existing works [8],
[31], [32]. The energy consumption for communications is
based on the CC1000 RF transceiver [33] in the widely used

MICA2 Motes [34]–[36]. We also used four typical network
topologies in our simulations to comprehensively examine the
algorithms, including the uniform sensor distribution, the “Eye”
topology, the cluster-based uniform sensor distribution, and the
cluster-based nonuniform sensor distribution.

A. Average Actuator Interarrival Time

In the first set of experiments, we evaluate the average
actuator interarrival time Aavg under the series of typical sensor
distributions with the average moving speed of the actuator
at 1 m/s.

We also compare PROUD with two state-of-the-art al-
gorithms: the partitioning-based scheduling (PBS) algo-
rithm [9] and the bounded event loss probability in the
2-D space (BELP-2D) algorithm [18]. The PBS algorithm
partitions all nodes into several groups (called bins) and forms
a schedule that concatenates them such that buffer overflow
can be avoided in sensors with different data-generation rates.
The BELP-2D algorithm deals with the bounded event loss
problem in a 2-D space, which ensures that the time that elapsed
between two consecutive visits is less than a critical time. It
uses the solutions of the TSP with neighborhoods to find routes.
To achieve a fair comparison, we adopt the Approx-TSP-Tour
algorithm [26] to approximate the TSP paths in all the three
algorithms.

1) Uniform Random Sensor Distribution: Fig. 5(a) shows
the average interarrival time Aavg for an actuator to periodically
visit the sensors under uniform random sensor distribution with
N = 100 and M = 5. It evaluates the interarrival times Aavg to
the sensors with weights in the ranges 0.0–0.2, 0.2–0.4, 0.4–0.6,
0.6–0.8, and 0.8–1.0, respectively.

The results demonstrate that PROUD, PBS, and BELP-2D
have comparable interarrival times Aavg for sensors with w=1.
Both PROUD and PBS differentiate the actuator interarrival
times according to the weights of sensors. The sensors with
higher weights achieve shorter interarrival times Aavg. How-
ever, the Aavg of PBS is impractically long for most sensors
with lower weights. This is simply because the locations of bins
are widely spread under uniform random sensor distribution.

On the other hand, BELP-2D constantly achieves a low Aavg

for all sensors, although it does not differentiate the interarrival
times at all. This is because the route in BELP-2D is the shortest
TSP path that contains all the sensor locations. Nevertheless,
the Aavg of sensors with w = 1 in PROUD is slightly lower
than that in BELP-2D. PROUD is still more suitable for sensor
networks with different weights as it can satisfy a shorter Aavg

requirement for sensors with w = 1.
2) “Eye” Topology: Next, we evaluate our algorithm under

the “Eye” topology [9]. In this topology, events are concen-
trated at the center of the network. A sequence of concentric
circles divides the network area into several ring-shaped re-
gions. The sensors in the innermost region are assigned with the
highest weight. The weights decrease for sensors in the radially
outward regions.

Fig. 5(b) shows that PBS performs pretty well under this
particular “Eye” topology. It achieves a shorter Aavg than both
PROUD and BELP-2D for highly weighted sensors. Its Aavg



NGAI et al.: ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN FOR WIRELESS SENSOR–ACTUATOR NETWORKS 5089

Fig. 5. Actuator interarrival time under (a) uniform random, (b) “Eye” topology, (c) cluster-based uniform, and (d) cluster-based nonuniform sensor distribution.

is also reasonable for sensors with lower weights. This is not
surprising given that PBS is customized for the “Eye” topology.
Nevertheless, such a topology is not very common in sensor
networks.

3) Cluster-Based Uniform Sensor Distribution: We further
evaluate our algorithm under cluster-based sensor distribution.
Specifically, we place the sensors into three clusters and uni-
formly and randomly generate the weights of sensors in this
experiment.

Similarly, Fig. 5(c) shows the average actuator interarrival
time Aavg of the three algorithms. Under this cluster-based
sensor deployment, PROUD achieves a shorter Aavg than both
the BELP-2D and PBS algorithms for sensors with high and
median weights. PROUD is able to differentiate the sensor
visiting frequency and provide the shortest Aavg to highly
weighted sensors, which satisfies our main objective. An in-
teresting observation is that the Aavg under the cluster-based
sensor deployment is generally shorter than that under uniform
random deployment in all the algorithms. The reason is that the

sensors are more concentrated under cluster-based deployment
so that they appear to have shorter distances, leading to shorter
routes.

4) Cluster-Based Nonuniform Sensor Distribution: We also
evaluate our algorithm under a cluster-based nonuniform sen-
sor distribution. Apart from deploying the sensors into three
clusters, we also put the sensors with similar weights into one
cluster here. The weights of the sensors in the three clusters fall
into the ranges 0–0.33, 0.33–0.66, and 0.66–1.0, respectively.

Again, Fig. 5(d) shows the results for the same network
with M = 5. We observe that PROUD generally performs
better than BELP-2D. It achieves a relatively short Aavg for
sensors with high and median weights. It again differentiates
the Aavg among sensors according to their weights. PROUD
also achieves a comparable Aavg with PBS for w = 1 and a
much lower Aavg for all the remaining sensors.

Overall, PROUD performs better than BELP-2D and PBS
under various sensor and weight distributions. It generally
achieves a shorter Aavg than BELP-2D for highly weighted



5090 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

TABLE II
MINIMUM MOVING SPEED OF ACTUATORS (IN METERS PER SECOND)

sensors and a much shorter Aavg than PBS for most of the
sensors.

B. Minimum Moving Speed of Actuators

We next compare the minimum moving speeds of actuators
in PROUD, BELP-2D, and PBS. Supposed that the expected
average actuator interarrival time o1 for the sensors with w = 1
is 5 min. The corresponding expected average actuator interar-
rival times for the sensors with weights w = 0.8, 0.6, 0.4 and
0.2 are 10, 15, 20, and 25 min, respectively. The minimum
moving speeds for the actuators to satisfy these requirements
are listed in Table II. The actuators in PROUD can walk at the
lowest moving speed among the three algorithms to achieve
the above expected average actuator interarrival times in all
topologies. BELP-2D requires a higher moving speed than
PROUD as its actuator route length is always longer than the
average actuator route length in PROUD so that the actuators
in BELP-2D have to walk faster than those in PROUD to visit
the sensors with w = 1 at the same time interval. PBS requires
very high minimum moving speeds in both uniform random
and cluster-based uniform topologies. This is because its route
length is extremely long in these two topologies. Since the
sensors with w = 0.2 are visited only once in every cycle in
PBS, the actuators have to move at a high speed to ensure
that the least weighted sensors are visited every 25 min on the
average.

To measure the energy consumption of the actuators, we
adopt a motion power model [30] based on the popular Pio-
neer 3DX robots [37]. The motion model is built from real
measurement results and is shown to provide very accurate
approximation to the actual power consumption [30], [38]–[40].

The motion power pm(v) (in watts) is given by

pm(v) = 0.29 + 7.5v (13)

where v is the moving speed of the actuators in meters per
second.

The actuators broadcast their arrivals to the surrounding sen-
sors every 10 s in our simulation. The sensors store their sensing
data in the buffer and report them when the actuators approach.
Each sensor can buffer up to ten packets for reporting. The
energy consumption for the actuators to operate for 1 h is shown
in Table III. Clearly, the actuators in PROUD consume less
energy than those in BELP-2D and PBS as their moving speeds
are lower than those in the other two algorithms. We also find
that the energy consumption for communications is usually less
than 1 J/h with the above settings, which indicates that the
energy consumption for motion constitutes the major part of
the total energy consumption.

TABLE III
ENERGY CONSUMPTION OF ACTUATORS (IN KILOJOULES)

C. Coordination of Actuators in PROUD

In the previous experiments, we compared the performance
of PROUD with BELP-2D and PBS for actuators moving at
constant speeds. Different from BELP-2D and PBS, PROUD
also considers actuators moving along distinct routes at various
speeds. We now investigate the coordination among the actua-
tors with variable speeds in PROUD. We evaluate our algorithm
in a network with M = 8 and set the expected average actuator
interarrival time o1 for the sensors with the highest weight to
be 2 min.

1) Uniform Random Sensor Distribution: Fig. 6(a) shows
the minimum moving speeds of actuators under the uniform
random sensor deployment. The eight actuators have similar
minimum moving speeds as they are walking in the subareas
where the sensor locations and weights are randomly generated.
It is likely that the actuators will achieve comparable expected
route lengths, even when they are walking on different subareas.
The figure also shows that the minimum speeds increase with
the number of sensors because the actuators need to walk on
longer routes to visit more sensors.

2) “Eye” Topology: Fig. 6(b) shows similar results under
the “Eye” topology. Since the highly weighted sensors are
located only at the center, the expected route lengths here are
shorter than that in a network with random sensor distribution.
Again, the eight actuators have comparable minimum moving
speeds as they are walking in the subareas where the sensor
locations are randomly generated, although the sensor weights
follow a special eyeball pattern.

3) Cluster-Based Uniform Sensor Distribution: Fig. 6(c)
shows the result under the cluster-based uniform sensor dis-
tribution. Similar to the previous experiment, the sensors are
deployed into three clusters. Again, the weights of sensors are
random here. The experiment results show that the required
moving speeds of actuators under cluster-based sensor deploy-
ment are lower than those under uniform random deployment.
The reason is that the sensors are concentrated in smaller areas
and therefore can be walked through with shorter routes.

4) Cluster-Based Nonuniform Sensor Distribution:
Fig. 6(d) shows the result in a network under cluster-
based nonuniform sensor distribution. Similar to the above,
three clusters are formed, with the weights falling in the ranges
0–0.33, 0.33–0.66, and 0.66–1.0, respectively.

We observe that the actuator speeds converge to three distinct
lines. The effect is particularly obvious in Fig. 6(d), due to its
special distribution pattern of sensor weights. The three clusters
are consistently walked through by three routes with a constant
number of actuators on them. Clusters I, II, and III with weight
ranges 0–0.33, 0.33–0.66, and 0.66–1.0 are patrolled by two,
three, and three actuators, respectively. Since cluster III has



NGAI et al.: ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN FOR WIRELESS SENSOR–ACTUATOR NETWORKS 5091

Fig. 6. Minimum speed of actuators under (a) uniform random (b) “Eye” topology, (c) cluster-based uniform, and (d) cluster-based nonuniform sensor
distribution.

the longest route length, its actuators (actuators 6–8) require
the highest moving speed. On the contrary, the route length in
cluster I is relatively short that its actuators (actuators 1 and 2)
can walk at the lowest speed.

D. Effectiveness of Multiroute Improvement

We next evaluate the performance of PROUD with the
multiroute improvement in this experiment. A network with
100 sensors is deployed with the uniform random distribution,
together with two actuators. The actuators are assigned to two
subareas at initialization and separately form distinct routes.
Since the weights of sensors dynamically change, the two
actuators have to accordingly update their routes.

We let the actuators update their routes every 10 min. The
speeds of the actuators with and without multiroute improve-
ment are compared. Fig. 7 shows that the two actuators with
multiroute improvement walk at closer speeds than those with-

out. It is clear that the multiroute improvement balances the
expected lengths of the two routes and effectively reduces the
speed difference. Fig. 8 further confirms that the actuators with
multiroute improvement can achieve more balanced energy
consumption.

E. Effectiveness of Task Exchange Among Actuators

As mentioned earlier, the multiroute improvement may not
be applicable in some situations (see Fig. 4), where the task
exchange algorithm can instead be applied. We now evaluate
task exchange algorithm in terms of the moving speed and
energy consumption of actuators. We consider a network with
M = 5 and N = 100 under cluster-based distribution. Again,
clusters I, II, and III are formed, which involve sensors with
low, medium, and high weights, respectively. The simulation
parameters of the energy model are again mainly drawn from
[30] and [38].



5092 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

Fig. 7. Speed of actuators with multiroute improvement.

Fig. 8. Energy consumption of actuators with multiroute improvement.

Fig. 9 shows the minimum moving speed of the actuators.
Cluster III are assigned with three actuators (actuators 2, 3,
and 4) due to the high weights of its sensors, while clusters I
and II are both assigned with only one actuator. Since cluster II
has a longer expected route length than cluster I, its minimum
actuator moving speed keeps higher than the others. As a result,
actuator 5 walks at a high minimum speed, while actuator 1
walks at a relatively low speed. This is unfavorable as they
have far imbalanced energy consumption, as illustrated in
Fig. 10.

With the task exchange algorithm, actuators 1 and 5 inter-
changeably walk along the routes of clusters I and II to balance
their workloads. This can be observed by the two lines of
actuators 1 and 5 with task exchange crossing each other in
Fig. 9. Eventually, the actuators with task exchange achieve
comparable energy consumption, as shown in Fig. 10.

Fig. 9. Speed of actuators with task exchange.

Fig. 10. Energy consumption of actuators with task exchange.

VIII. CONCLUSION

In this paper, we have focused on WSNs with multiple
actuators and their route design. We have proposed an adap-
tive PROUD algorithm, which aims to minimize the overall
interarrival time of actuators with nonuniform sensor weights
in a dynamically changing environment. It constitutes a signif-
icant departure from traditional static and deterministic mobile
element scheduling. In PROUD, the sensors are probabilisti-
cally visited by actuators along an a priori route. The sen-
sors with higher weights are visited with higher probabilities,
enabling shorter actuator interarrival times. Most importantly,
the visiting frequencies to sensors can easily be updated by
adjusting their visiting probabilities, without frequent route
recalculations. We have discussed a distributed implementa-
tion of PROUD and extended it to accommodate actuators
with variable speeds. We have further proposed a multiroute



NGAI et al.: ADAPTIVE DELAY-MINIMIZED ROUTE DESIGN FOR WIRELESS SENSOR–ACTUATOR NETWORKS 5093

improvement and a task-exchange algorithm for evenly distrib-
uting the workload among the actuators. Simulation results sug-
gested that PROUD can greatly reduce the average interarrival
times in WSANs for highly weighted sensors. It also adapts
well to the dynamic change of the network and effectively
balances the energy consumption of the actuators.

REFERENCES

[1] I. F. Akyildiz, W. Su, and T. Sandarasubramaniam, “Wireless sensor
networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
Mar. 2002.

[2] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proc. ACM
MobiCom, Seattle, WA, 1999, pp. 263–270.

[3] A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring sensor net-
works topologies,” IEEE Trans. Mobile Comput., vol. 3, no. 3, pp. 272–
282, Jul./Aug. 2004.

[4] W. L. Yeow, C. K. Tham, and W. C. Wong, “Energy efficient multiple
target tracking in wireless sensor networks,” IEEE Trans. Veh. Technol.,
vol. 56, no. 2, pp. 918–928, Mar. 2007.

[5] Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting
sink mobility for maximizing sensor networks lifetime,” in Proc. 38th
HICSS, 2005, p. 287.1.

[6] J. Luo and J. Hubaux, “Joint mobility and routing for lifetime elongation
in wireless sensor networks,” in Proc. 24th IEEE INFOCOM, Mar. 2005,
pp. 1735–1746.

[7] I. F. Akyldiz and I. Kasimoglu, “Wireless sensor and actor networks:
Research challenges,” Ad Hoc Netw., vol. 2, no. 4, pp. 351–367, Oct. 2004.

[8] E. C.-H. Ngai, Y. Zhou, M. R. Lyu, and J. Liu, “Reliable reporting of
delay-sensitive events in wireless sensor-actuator networks,” in Proc. 3rd
IEEE MASS, Vancouver, BC, Canada, Oct. 2006, pp. 101–108.

[9] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C.-G. Lee, “Partitioning-
based mobile element scheduling in wireless sensor networks,” in Proc.
SECON, Santa Clara, CA, Sep. 2005, pp. 386–395.

[10] E. C.-H. Ngai, J. Liu, and M. R. Lyu, “An adaptive delay-minimized route
design for wireless sensor-actuator networks,” in Proc. 4th IEEE MASS,
Pisa, Italy, Oct. 2007, pp. 1–9.

[11] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava, “Mobile ele-
ment scheduling with dynamic deadlines,” IEEE Trans. Mobile Comput.,
vol. 6, no. 4, pp. 395–410, Apr. 2007.

[12] E. C.-H. Ngai, J. Liu, and M. R. Lyu, “Delay-minimized route design for
wireless sensor-actuator networks,” in Proc. IEEE WCNC, Hong Kong,
Mar. 2007, pp. 3675–3680.

[13] P. N. Pathirana, A. V. Savkin, and S. Jha, “Location estimation and tra-
jectory prediction for cellular networks with mobile base stations,” IEEE
Trans. Veh. Technol., vol. 53, no. 6, pp. 1903–1913, Nov. 2004.

[14] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” in Proc. ACM MobiHoc,
Mar. 2005, pp. 187–198.

[15] R. Shah, S. Roy, S. Jain, and W. Brunette, “DATA MULEs: Modeling a
three-tier architecture for sparse sensor networks,” in Proc. IEEE Work-
shop SNPA, 2003, pp. 30–41.

[16] A. Chakrabarti, A. Sabharwal, and B. Aazhang, “Using predictable ob-
server mobility for power efficient design of sensor networks,” in Proc.
2nd Int. Workshop IPSN, Apr. 2003, pp. 129–145.

[17] A. Kansal, A. Somasundara, D. Jea, M. Srivastava, and D. Estrin, “In-
telligent fluid infrastructure for embedded networks,” in Proc. 2nd ACM
MobiSys, 2004, pp. 111–124.

[18] N. Bisnik, A. Abouzeid, and V. Isler, “Stochastic event capture using
mobile sensors subject to a quality metric,” in Proc. ACM MobiCom,
Sep. 2006, pp. 98–109.

[19] Z. Zhang and Z. Fei, “Route design for multiple ferries in delay tolerant
networks,” in Proc. IEEE WCNC, Mar. 2007, pp. 3460–3465.

[20] N. Christofides, A. Mingozzi, and P. Toth, “Exact algorithms for the vehi-
cle routing problem, based on spanning tree and shortest path relaxations,”
Math. Program., vol. 20, no. 1, pp. 255–282, Dec. 1981.

[21] T. Ralphs, L. Kopman, W. Pulleyblank, and L. Trotter, “On the capacitated
vehicle routing problem,” Math. Program., vol. 94, no. 2/3, pp. 343–359,
Jan. 2003.

[22] L. Lee, K. Tan, K. Ou, and Y. Chew, “Vehicle capacity planning system:
A case study on vehicle routing problem with time windows,” IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 33, no. 2, pp. 169–178,
Mar. 2003.

[23] A. Dumitrescu and J. S. B. Mitchell, “Approximation algorithms for TSP
with neighborhoods in the plane,” in Proc. SODA, 2001, pp. 38–46.

[24] J. Bentley, “Fast algorithms for geometric traveling salesman problem,”
ORSA J. Comput., vol. 4, pp. 387–411, 1992.

[25] S. Arora, “Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems,” J. ACM, vol. 45, no. 5,
pp. 753–782, Sep. 1998.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA: MIT Press, 2002.

[27] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm
for minimum-weight spanning trees,” ACM Trans. Program. Lang. Syst.,
vol. 5, no. 1, pp. 66–77, Jan. 1983.

[28] B. Awerbuch, “Optimal distributed algorithms for minimum weight span-
ning tree, counting, leader election, and related problems,” in Proc. ACM
STOC, 1987, pp. 230–240.

[29] M. Elkin, “A faster distributed protocol for constructing a minimum span-
ning tree,” in Proc. ACM-SIAM SODA, 2004, pp. 359–368.

[30] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “A case study of mobile
robot’s energy consumption and conservation techniques,” in Proc. IEEE
Int. Conf. Adv. Robot., 2005, pp. 492–497.

[31] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A real-time
routing protocol for sensor networks,” in Proc. IEEE ICDCS, Providence,
RI, May 2003, pp. 46–55.

[32] E. Felemban, C.-G. Lee, and E. Ekici, “MMSPEED: Multipath multi-
SPEED protocol for QoS guarantee of reliability and timeliness in wire-
less sensor networks,” IEEE Trans. Mobile Comput., vol. 5, no. 6,
pp. 738–754, Jun. 2006.

[33] TI chipcon, CC1000 Datasheet. [Online]. Available: http://focus.ti.com/
[34] Crossbow, MICA2 Mote Datasheet. document part no. 6020-0042-08,

rev. A. [Online]. Available: http://www.xbow.com/
[35] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact of radio

irregularity on wireless sensor networks,” in Proc. 2nd Int. Conf. Mobile
Syst., Appl., Services MobiSys, 2004, pp. 125–138.

[36] F. Chen, N. Wang, R. German, AND F. Dressler, “Simulation
study of IEEE 802.15.4 LR-WPAN for industrial applications,” in
Proc. Wiley WCMC, 2009, to be published. [Online] Available: DOI:
10.1002/wcm.736

[37] MobileRobots, Pioneer 3DX Robot Specification. [Online]. Available:
http://www.activrobots.com/

[38] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. G. Lee, “Deployment of mobile robots
with energy and timing constraints,” IEEE Trans. Robot., vol. 22, no. 3,
pp. 507–522, Jun. 2006.

[39] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for the multiro-
bot coordination,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 758–768,
Oct. 2002.

[40] D. Erickson, “Non-learning artificial neural network approach to motion
planning for the pioneer robot,” in Proc. IEEE/RSJ Int. Conf. IROS,
Oct. 2003, vol. 1, pp. 112–117.

Edith C.-H. Ngai received the B.Eng., M.Phil.,
and Ph.D. degrees from the Chinese University of
Hong Kong (CUHK), Shatin, Hong Kong, in 2002,
2004, and 2007, respectively.

From 2007 to 2008, she was a Postdoctoral
Researcher with the Department of Electrical and
Electronic Engineering, Imperial College London,
London, U.K. She has conducted research with the
VIEW Laboratory, CUHK; the Network Modelling
Laboratory, Simon Fraser University, Vancouver,
BC, Canada; the Tsinghua National Laboratory for

Information Science and Technology, Tsinghua University, Beijing, China;
the Intelligent Systems and Networks Group, Imperial College London; and
the Networked and Embedded Systems Laboratory, University of California,
Los Angeles. She is currently an Assistant Professor with the Department of
Information Technology, Uppsala University, Uppsala, Sweden, where she also
works with the Uppsala VINN Excellence Center of Wireless Sensor Networks
(WISENET). Her research interests include wireless sensor networking, mobile
computing, network security, quality-of-service routing, and video information
processing.



5094 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

Jiangchuan Liu (S’01–M’03–SM’08) received the
B.Eng. degree (cum laude) from Tsinghua Univer-
sity, Beijing, China, in 1999 and the Ph.D. degree
from the Hong Kong University of Science and
Technology, Hong Kong, in 2003, both in computer
science.

From 2003 to 2004, he was an Assistant Professor
with the Department of Computer Science and Engi-
neering, Chinese University of Hong Kong, Shatin,
Hong Kong. He is currently an Associate Professor
with the School of Computing Science, Simon Fraser

University, Burnaby, BC, Canada. His research interests include multimedia
systems and networks, wireless ad hoc and sensor networks, and peer-to-peer
and overlay networks.

Dr. Liu was a recipient of Microsoft Research Fellowship in 2000 and
the Hong Kong Young Scientist Award in 2003. He is a co-inventor of one
European patent and two U.S. patents. He co-authored the Best Student Paper
at IWQoS’08 and the Best Paper from the 2009 IEEE Multimedia Communi-
cations Technical Committee. He is a recipient of the Canada NSERC 2009
Discovery Accelerator Supplements Award. He is a member of Sigma Xi. He
is an Associate Editor of the IEEE TRANSACTIONS ON MULTIMEDIA and an
Editor of the IEEE Communications Surveys and Tutorials.

Michael R. Lyu received the B.S. degree from the
National Taiwan University, Taipei, Taiwan, in 1981,
the M.S. degree from the University of California,
Santa Barbara, in 1985, and the Ph.D. degree from
University of California, Los Angeles, in 1988.

From 1988 to 1990, he was with the Jet Propul-
sion Laboratory, Pasadena, CA, as a Technical Staff
Member. From 1990 to 1992, he was with the
Electrical and Computer Engineering Department,
University of Iowa, Iowa City, as an Assistant Pro-
fessor. From 1992 to 1995, he was a Member of

the Technical Staff with the Applied Research Area, Bell Communications
Research, Bellcore. From 1995 to 1997, he was a Research Member of the
Technical Staff with Bell Laboratories, which was first part of AT&T and
later became part of Lucent Technologies. He is currently a Professor with
the Department of Computer Science and Engineering, Chinese University of
Hong Kong, Shatin, Hong Kong. His research interests include software relia-
bility engineering, distributed systems, fault-tolerant computing, Web technolo-
gies, mobile networks, digital video libraries, multimedia processing, and video
searching and delivery.

Prof. Lyu has been an Associate Editor for the IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, the IEEE TRANSACTIONS ON

RELIABILITY, the Journal of Information Science and Engineering, and the
Wiley Software Testing, Verification, and Reliability Journal. He is an AAAS
Fellow and a Croucher Senior Research Fellow.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


