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Accurate Localization of Tagged Objects Using
Mobile RFID-augmented Robots

Xiulong Liu, Jiuwu Zhang, Shan Jiang, Yanni Yang, Keqiu Li, Jiannong Cao, and Jiangchuan Liu

Abstract—This paper studies the problem of tag localization using RFID-augmented robots, which is practically important for promising
warehousing applications, e.g., automatic item fetching and misplacement detection. Existing RFID localization systems suffer from one
or more of following limitations: requiring specialized devices; only 2D localization is enabled; having blind zone for mobile localization;
low scalability. In this paper, we use Commercial Off-The-Shelf (COTS) robot and RFID devices to implement a Mobile RF-robot
Localization (MRL) system. Specifically, when the RFID-augmented robot moves along the straight aisle in a warehouse, the reader
keeps reading the target tag via two vertically deployed antennas (R1 and R2) and returns the tag phase data with timestamps to the
server. We take three points in the phase profile of antenna R1 and leverage the spatial and temporal changes inherent in this phase
triad to construct an equation set. By solving it, we achieve the location of target tag relative to the trajectory of antenna R1. Based on
different phase triads, we can have candidate locations of the target tag with different accuracy. Then, we propose theoretical analysis
to quantify the deviation of each localization result. A fine-grained localization result can be achieved by assigning larger weights to the
localization results with smaller deviations. Similarly, we can also calculate the relative location of target tag with respect to the trajectory
of antenna R2. Leveraging the geometric relationships among target tag and antenna trajectories, we eventually calculate the location
of target tag in 3D space. We perform various experiments to evaluate the performance of the MRL system and results show that the
proposed MRL system can achieve high accuracy in both 2D and 3D localization.

Index Terms—RFID, Mobile robot, Localization, Phase profile.
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1 INTRODUCTION

1.1 Background and Problem Statement

In the future smart warehousing scenarios, robots may completely
replace human beings in terms of automatic object fetching and
delivery. Indoor localization is one of the most important tech-
niques for realizing this vision. In fact, a batch of techniques,
such as GPS [1], wireless sensor [2]–[7], bluetooth [8], Wi-Fi
[9], [10] and computer vision [11], have been proposed. However,
none of these techniques is suitable for large-scale warehousing
scenarios due to the following reasons: (1) The GPS technique
works well for the outdoor localization and navigation, but fails in
the indoor scenarios; (2) The techniques based on wireless sensors
and bluetooth beacons cannot provide a long-term localization
service due to the limited volume of batteries; (3) The WiFi-based
tracking techniques exploit signal reflection to locate objects but
fail to distinguish similar objects; (4) The computer vision-based
approaches require line-of-sight between the target objects and
camera. Compared with the above techniques, Radio Frequency
Identification (RFID) naturally has various advantages including
low cost, easy deployment, battery-free, individual identification
and no requirement on line-of-sight [12]–[16]. Hence, RFID
technique has promising prospects for object localization in large-
scale warehousing scenarios [17]–[28].

The studied problem is localization of tagged objects using a
mobile RFID-augmented robot, which is formulated as follows.
As illustrated in Fig. 1, an RFID-augmented robot moves along a
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Fig. 1. Illustrating the studied problem: 3D localization of tagged objects
using a mobile RF-robot.

straight aisle in a warehouse. The RFID reader on the robot keeps
reading the nearby tags via two vertically deployed antennas and
the collected RFID data (i.e., tag IDs, phase values, antenna port,
and timestamps) will be forwarded to the server embedded in robot
or remote server via WiFi connection. The point where the below
antenna R1 starts to move is regarded as point O(0, 0, 0); The
X-axis is parallel to the moving direction of the mobile robot;
The Y-axis is perpendicular to the X-axis and parallel to the
ground plane; The Z-axis is upward perpendicular to the ground
plane. The server leverages the collected RFID data to calculate
the locations of the target objects in the 3D coordinate system.

1.2 Limitations of Prior Art

Although considerable efforts were made by research communities
to solve the problem of RFID localization, existing localization
systems [23], [24], [29]–[33] still suffer from one or more of the
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following limitations. Requiring specialized devices: The AoA
[31] system and PinIt system [32] require specialized devices, e.g.,
USRP and self-designed antennas. Such kind of systems are hard
to be widely applied as it is not easy to buy the these hardware
components form general manufactures. Only 2D localization:
The Spatial-Temporal Phase Profiling (STPP) system [34] and
the RF-Scanner [24] system mainly focus on 2D localization
problems, but fail in the general application scenarios where 3D
localization is desired. Localization blind zone: The STPP system
needs the robot to pass by the target tag, hence, localization is not
achievable if the target object is in a corner. Low scalability: The
RFID localization systems proposed in [23], [29]–[33] need to
precisely calibrate the reader antennas at fixed positions. To cover
a large region, we have to deploy multiple sets of readers and the
involved cost is in proportion to the monitoring area.

1.3 Proposed Localization Approach

To overcome the limitations of existing RFID localization systems,
we design and implement a Mobile RF-robot Localization (MRL)
system, which is consisted of a backend server, a smart robot (EAI
Dashgo D1 [35]), a commodity RFID reader (Impinj R420), and
reader antennas (Laird S9028PCL). For easy understanding, we
will first discuss 2D localization, i.e., assuming the target tag is
on the X-Y plane. Note that, for 2D localization, we only use the
below reader antenna, which is also on the X-Y plane. Later, we
will explain how to extend it to deal with 3D localization, which
requires two reader antennas simultaneously.

The basic principle of the MRL system is as follows. When the
robot moves along a straight aisle in a warehouse with a constant
speed v, the reader keeps reading the target tag and forwards the
received low-level RFID data (e.g., tag ID, phase, antenna port,
and timestamp) to the server. Using the tag ID information, we
can filter out the irrelevant tag readings. Moreover, we use the
antenna port information to know from which antenna a certain
tag reading comes. Hence, it is easy to extract the phase profile
with timestamps of the target tag corresponding to a certain reader
antenna. For 2D localization, we leverage the tag phase profile
corresponding to the antenna on X-Y plane. We equally partition
the phase profile into three segments and take one phase point from
each phase segment. Then, we leverage the spatial and temporal
changes hidden in the phase triad to construct an equation set, in
which the coordinates of target tag (i.e., x and y) are involved.
Solving the equation set, we can achieve the location (x, y) of the
target tag. Since there are multiple phase triads in the phase profile,
MRL can calculate multiple candidate locations of the target tag.
Simply, their average can be reported as the 2D localization result.

1.4 Challenges and Solutions

The first technical challenge is to remove the periodic jump in
phase profile, which makes the raw phase profile seemingly messy
and hard to understand. Since the distance between target tag
and reader antenna changes smoothly, the phase profile reflecting
tag-antenna distance is expected to be continuous. However, we
always observe periodic jumps in phase profile, i.e., phase value
suddenly jumps from around 0 to around 2π or from around 2π
to around 0. In this paper, we use the method similar with the
unwrap command in Matlab [36] to remove the phase jumps in
the phase profile by pulsing or minusing multiples of 2π when
the absolute phase jumps between consecutive phase values are
greater than or equal to the default jump tolerance. The unwrapped

phase profile will have no ambiguity in reflecting the changing
trend of tag-antenna distance.

The second technical challenge is to theoretically quantify
the deviation of each candidate location of target tag. There are
multiple phase triads in the phase profile and each of them can be
used to calculate a candidate location of the target tag. Although
simple, it is far from optimal to use their average as the final
tag location because each candidate tag location has a different
deviation from the ground truth. Therefore, we propose theoretical
analysis to calculate the variance of each candidate tag location.
Then, we assign a larger weight to the candidate tag location that
has a smaller variance, and vice versa. The weighted average of
these candidate tag locations is returned as the final localization
result. We find that the weighted average tag location can converge
to the ground truth more quickly than the simply averaged result.

The third technical challenge is to extend the MRL system to
address the 3D localization problem. At the very beginning, we
assume that the target tag is on the X-Y plane and the proposed
MRL system can only address the localization problem in 2D
plane. To achieve 3D localization, we use two associated reader
antennas to read the target tag instead of only using the below
antenna. Then, we consider the two intersecting planes in the
3D space. Specifically, the first (second) plane is posed by the
tag position and the trajectory of the below (above) antenna. We
use the 2D localization approach in Section 1.3 to extract the
relative tag locations on each plane. Finally, we use the geometric
relationships among target tag and the trajectories of two antennas
to extract the tag location in the 3D space.

1.5 Contributions and Advantages over Prior Work
The key contributions made in this paper are in proposing the
MRL system for 3D localization and addressing the three technical
challenges. The advantages of the proposed MRL system over the
existing RFID localization systems are four-fold. (1) All hardware
components of MRL are available in commodity shelfs, hence,
it can be easily re-implemented by anyone who requires indoor
object localization; (2) MRL is able to enable 3D localization
and suitable for more general scenarios; (3) MRL can locate a
target tag before passing by it, thus workable for tagged objects
in corner; (4) Since MRL can locate the target tag in a mobile
manner, we only need to deploy a single mobile localization
system for a large region. The cost for large-scale scenarios is
significantly reduced.

The remainder of this paper is organized as follows. In Sec-
tion 2, we first present some background knowledge of RFID
phase, and then elaborate on removing the periodic jumps in phase
profile. In Section 3, we describe the details of our MRL system.
In Section 4, we conduct experiments to evaluate the performance
of the MRL system in various conditions. We discuss the related
work in Section 5. Finally, Section 6 concludes this paper.

2 UNDERSTANDING AND PREPROCESSING PHASE

2.1 Understanding the RFID Phase Profile
We suppose that the RFID reader has received n readings from
the target tag with id. Thus, we have n phase points in the
raw phase profile: P(id, t1),P(id, t2), · · ·,P(id, tn) while the
timestamps t1, t2 · · · tn are in an ascending order, i.e., for any
1 ≤ i < j ≤ n, we have ti < tj . We use dis(id, ti) to denote
the distance between the reader antenna and the tag id at time
ti. The signal traverses a total distance of 2 × dis(id, ti) back
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Fig. 2. Processing phase profile. (a) Illustrating the experiment deployment. (b) Raw phase profiles. (c) Unwrapped phase profiles.

and forth in backscatter communication. Besides phase rotation
over distance, the reader’s transmitter circuits, the tag’s reflection
characteristic, and the reader’s receiver circuits will also introduce
some additional phase rotations, denoted as θT , θTAG and θR
respectively [23]. The phase value P(id, ti) returned by the RFID
reader can be expressed as follows:

P(id, ti) =

[
2× dis(id, ti)

λ
× 2π +Θ

]
mod 2π (1)

Here, λ is the wavelength of the RFID signal, and the constant Θ,
called hardware diversity, equals θT +θTAG+θR.

Next, we conduct a set of experiments to better understand the
phase profile. As illustrated in Fig. 2 (a), we deploy three slim
RFID tags vertically in the system. The moving speed v of the
robot is set to 0.19m/s. The RFID reader keeps interrogating tags
during the moving process, and the collected raw phase profiles of
these three tags are plotted in Fig. 2 (b), respectively. The raw
phase profile of each tag involves the following two types of
phase noises. (i) Random error: The authors of [23] conducted
an empirical study over 100 tags with environment temperature
from 0oC to 40oC, and pointed out that phase measurement results
inevitably contain random errors, following a typical Gaussian
distribution with a standard deviation of 0.1 radians. (ii) Periodic
jump: according to Eq. (1), the tag phase is a periodic function that
repeats if the distance between the reader antenna and tag changes
by λ/2. We first investigate how to remove periodic jumps from
the phase profile, and will take random errors into consideration
when quantifying the deviation of localization results.

2.2 Eliminating the Periodic Jump
As shown in Fig. 2 (b), the raw tag phase profile involves periodic
phase jumps due to the mod operation in Eq. (1). These phase
jumps are either from a phase value around 0 to a follow-up phase
value around 2π or from a phase value around 2π to a follow-
up phase value around 0. We can use a method similar with the
unwrap command in Matlab [36] to remove the phase jumps in
the phase profile P(id, t1),P(id, t2), · · ·,P(id, tn) by pulsing or
minusing multiples of 2π when the absolute phase jumps between
consecutive phase values are greater than or equal to the default
jump tolerance. Using such a method, we can remove the impact
of mod operation and obtain a new sequence of unwrapped phase
values: P ′(id, t1),P ′(id, t2), · · ·,P ′(id, tn), which looks like a
shape of V. Specifically, an arbitrary phase point P ′(id, ti) in the
unwrapped phase profile can be expressed as follows:

P ′(id, ti) =
2× dis(id, ti)

λ
× 2π +Θ + 2kπ, (2)

where k is a constant integer within {0,±1,±2, ···}. Next section
will use the unwrapped phase profile to calculate tag location.

Tag
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Fig. 3. Exemplifying the principle of the MRL system for 2D localization.

3 THE PROPOSED MRL SYSTEM

In this section, we will first describe the Mobile RF-robot Lo-
calization (MRL) system for the simple case of 2D localization.
After that, we will explain how to extend MRL to enable the 3D
localization for general application scenarios.

3.1 Detailed Design of MRL for 2D Localization

For a target tag on the X-Y plane, we still suppose the reader has
received its n replies. Thus, we have n unwrapped phase points af-
ter unwrapping operations: P ′(id, t1),P ′(id, t2), · · ·,P ′(id, tn).
The proposed MRL system equally partitions the n unwrapped
phase points into three segments: [P ′(id, t1), · · ·,P ′(id, tw)],
[P ′(id, tw+1), ···,P ′(id, t2w)], [P ′(id, t2w+1), ···,P ′(id, t3w)],
where w = bn3 c. Then, we take the i-th phase value P ′(id, ti)
from the first segment, the i-th phase value P ′(id, tw+i) from
the second segment, and the i-th phase value P ′(id, t2w+i) from
the third segment, where i ∈ [1, w]. Next, we will describe how
to use these three picked phase values to calculate the location
of target tag. Since there are w such phase triads, the MRL
system can calculate w candidate tag locations. To distinguish
these candidate tag locations from each other, we use (xi, yi) to
denote the candidate tag location calculated from the phase triad:
P ′(id, ti), P ′(id, tw+i), and P ′(id, t2w+i). As exemplified in
Fig. 3, we assume that the reader antenna arrives at the locations I ,
J ,K at the time points of ti, tw+i, t2w+i, respectively. According
to Eq. (2), we can calculate the difference between adjacent phase
points P ′(id, ti) and P ′(id, tw+i), and the difference between
adjacent phase points P ′(id, tw+i) and P ′(id, t2w+i) as follows:

P ′(id, ti)− P ′(id, tw+i) =
4π ×

(
|
−→
IT | − |

−→
JT |

)
λ

P ′(id, tw+i)− P ′(id, t2w+i) =
4π ×

(
|
−→
JT | − |

−−→
KT |

)
λ

(3)

According to the geometric relationships shown in Fig. 3, we also
have the following equations.
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|
−→
IT | =

√
|
−−→
IM |2 + |

−−→
MT |2

−−→
IM =

−→
IK +

−−→
KM

|
−→
JT | =

√
|
−−→
JM |2 + |

−−→
MT |2

−−→
JM =

−−→
JK +

−−→
KM

|
−−→
KT | =

√
|
−−→
KM |2 + |

−−→
MT |2

−−→
KM =

−−→
OM −

−−→
OK

−→
IK=[v(t2w+i−ti), 0]
−−→
JK=[v(t2w+i − tw+i), 0]
−−→
OK = (vt2w+i, 0)
−−→
MT =(0, y)
−−→
OM=(x, 0)

By substituting the above equations into Eq. (3), we obtain an
equation set that contains two unknown variables x and y. Then,
we solve the equation set to get the candidate tag location (xi, yi).

xi ← x=vt2w+i+
(λ∆θ2

4π )2−v2∆T 2
2 + λ∆θ2S

2π

2v∆T2

yi ← y=
√
S2−(xi − vt2w+i)2,

(4)

where the values of ∆θ2, ∆T2, and S are as follows.

S=

{
v2(∆T1+∆T2)2+

(
∆T1

∆T2
+1

)[(
λ∆θ2

4π

)2

−v2∆T 2
2

]

−
[
λ(∆θ1+∆θ2)

4π

]2}/(
λ∆θ1

2π
− λ∆θ2∆T1

2π∆T2

)
∆θ1 =P ′(id, ti)−P ′(id, tw+i)

∆θ2 = P ′(id, tw+i)−P ′(id, t2w+i)

∆T1 = tw+i − ti
∆T2 = t2w+i − tw+i

Due to the noise of random errors, the unwrapped phase value has
a variance of V ar[P ′(id, ti)]=0.01. Then, the variances of ∆θ1

and ∆θ2 can be calculated as follows:

V ar(∆θ1)=V ar[P ′(id, ti)] + V ar[P ′(id, tw+i)] = 0.02

V ar(∆θ2)=V ar[P ′(id, tw+i)]+V ar[P ′(id, t2w+i)]=0.02

The probabilistic deviation inherent in ∆θ1 and ∆θ2 also results in
that the candidate tag location (xi, yi) derived from Eq. (4) is also
inaccurate. To quantify the localization deviation, we calculate the
variance of xi and yi in the following. We observe from Eq. (4)
that both xi and yi are functions of ∆θ1 and ∆θ2. Hence, we de-
note xi as ϕx(∆θ1,∆θ2) and yi as ϕy(∆θ1,∆θ2), respectively.
We present the Taylor’s series expansion of xi and yi around
(h1, h2), respectively. Here, h1 = E(∆θ1) and h2 = E(∆θ2).

xi = ϕx(h1, h2) +
∂ϕx
∂∆θ1

(∆θ1 − h1) +
∂ϕx
∂∆θ2

(∆θ2 − h2)

yi = ϕy(h1, h2) +
∂ϕy
∂∆θ1

(∆θ1 − h1) +
∂ϕy
∂∆θ2

(∆θ2 − h2)

We have the following equation by taking expectation of both
sides of the above two equations, respectively.

E(xi) = ϕx(h1, h2)

E(yi) = ϕy(h1, h2)
(5)

With Eq. (5), we can calculate the variance of xi and yi.

V ar(xi) = E[xi − E(xi)]
2

= (
∂ϕx

∂∆θ1
)2V ar(∆θ1) + (

∂ϕx

∂∆θ2
)2V ar(∆θ2)

V ar(yi) = E[yi − E(yi)]
2

= (
∂ϕy

∂∆θ1
)2V ar(∆θ1) + (

∂ϕy

∂∆θ2
)2V ar(∆θ2)

(6)

As required in Eq. (6), we need to calculate the expressions
of ∂ϕx

∂∆θ1
, ∂ϕx

∂∆θ2
, ∂ϕy

∂∆θ1
, and ∂ϕy

∂∆θ2
, respectively. Due to the

complexity of the expressions, we use some symbols to de-
note the terms that repetitively appear in equation. Specifically,
A = v2(∆T1 + ∆T2)2, B = ∆T1

∆T2
+ 1, C = v∆T2, D = λ∆θ1

4π ,

E = λ∆θ2
4π , F = λ(∆θ1+∆θ2)

4π . Then, the expressions of ∂ϕx

∂∆θ1
and

∂ϕx

∂∆θ2
are given as follows.

∂ϕx

∂∆θ1
=
−2EF(∆θ1−(B−1)∆θ2)−∆θ2[A+B(E2−C2)−F ]

2C[∆θ1−(B−1)∆θ2]2

∂ϕx

∂∆θ2
=
λ2∆θ2
C(4π)2

+
G −H

2C[∆θ1 − (B − 1)∆θ2]2
,

(7)

where the expressions of G and H are given below.G=[A+B(E2−C2)−F2+∆θ2(
2BE2

∆θ2
−Fλ

2π
)][∆θ1−(B−1)∆θ2]

H=∆θ2[A+ B(E2 − C2)−F2](1− B)

And the expressions of ∂ϕy

∂∆θ1
and ∂ϕy

∂∆θ2
are given as follows.

∂ϕy
∂∆θ1

=
2S ∂S

∂∆θ1
− 2(xi − vt2w+i)

∂ϕx

∂∆θ1

2
√
S2−(xi − vt2w+i)2

∂ϕy
∂∆θ2

=
2S ∂S

∂∆θ2
− 2(xi − vt2w+i)

∂ϕx

∂∆θ2

2
√
S2−(xi − vt2w+i)2

,

(8)

in which ∂S
∂∆θ1

and ∂S
∂∆θ2

are calculated as follows.
∂S
∂∆θ1

=
−2Fλ[D − (B − 1)E]− λ{[A+ B(E2 − C2)]−F2}

8π[D − (B − 1)E]2

∂S
∂∆θ2

=
2λ(BE−F)[D−(B−1)E]− λ[A+B(E2−C2)−F2](1−B)

8π[D−(B−1)E]2

So far, we have calculated the candidate location of the target
tag, i.e., (xi, yi) in Eq. (4), as well as their variances in Eq. (6).
Recall that the proposed MRL system can calculate w candidate
tag locations: (x1, y1), (x2, y2), · · ·, (xw, yw). A straightforward
way is to directly use their average as the final localization result.
It is simple but far from optimal, because candidate tag locations
have different variances. Intuitively, if all three picked phase points
lie in the very left part of the unwrapped phase profile (nearly
in a straight line), the calculated candidate tag location may be
not very accurate. Hence, instead of directly using the average
of candidate tag locations, we use their weighted average as the
final localization result. A candidate tag location with a smaller
variance should be assigned with a larger weight, and vice versa.
Hence, we use 1

V ar(xi)
as the weight of xi, and use 1

V ar(yi)
as

the weight of yi. Then, we calculate the final tag location by
x̂ =

∑w
i=1

xi

V ar(xi)ℵx and ŷ =
∑w
i=1

yi
V ar(yi)ℵy , where ℵx =∑w

i=1
1

V ar(xi)
and ℵy =

∑w
i=1

1
V ar(yi)

. In Fig. 4 (a)(b), we plot
the values x̂ and ŷ that are calculated by the direct average results
and the weighted average results, respectively. We make two main
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observations from the experimental results. First, the weighted
average method is faster to converge to the ground truth than the
simple average method. Second, the values of x̂ and ŷ have been
already very close to the ground truth at the 7-th second, which is
6 seconds earlier than the time when the reader antenna passes by
the target tag. Since the robot speed is set to 20cm/s, it means
that MRL can achieve relatively accurate localization result about
1.2 meters before reader antenna passes by the target tag. In other
words, the MRL system is able to locate the tagged objects in
corner where robot cannot pass by.

3.2 Extending MRL to 3D localization
The proposed MRL system can be easily extended to enable 3D
localization by simultaneously using two reader antennas R1 and
R2. As illustrated in Fig. 5, we suppose the distance between
two reader antennas is h meters. Since the below antenna starts
at the point O(0, 0, 0), the above antenna will start at the point
O′(0, 0, h). The trajectories of R1 and R2 are parallel to each
other, and also with a distance of h. As aforementioned, we
can leverage the antenna port information in each tag reading
to distinguish which antenna the current tag reading is received
from. Thus, we can have two phase profiles of the target tag
corresponding to these two reader antennas, respectively.

As illustrated in Fig. 5, we have two planes in the 3D space:
TOM1 and TO′M2. On the plane TOM1, the 2D localization
approach described in the above is applied on the phase pro-
file corresponding to antenna R1 and we can calculate a tag
location (x̂1, ŷ1). We draw a line from tag location T (x, y, z)
perpendicularly to the trajectory of R1, with foot M1. On the
plane of TOM1, it is easy to know that |

−−−→
OM1| = x̂1 and

|
−−−→
TM1| = ŷ1. Similarly, applying the 2D localization approach on

the phase profile from R2, MRL can also calculate a tag location
(x̂2, ŷ2), which satisfy that |

−−−→
O′M2| = x̂2 and |

−−−→
TM2| = ŷ2. It

is easy to know that the coordinates of M1 and M2 are (x̂1, 0, 0)
and (x̂2, 0, h), respectively. In the ideal case, we should have
x = x̂1 = x̂2. Due to the deviation in localization results, x̂1

may not exactly equal x̂2. Then, we calculate the coordinate value
x = x̂1+x̂2

2 . Next, we investigate how to calculate the coordinate
values y and z of the target tag. Three types of geometric
relationships in the triangle ∆TM1M2 are illustrated in Fig. 6,
which correspond to z ∈ (0, h], z ≤ 0, z > h, respectively. No
matter which geometric relationship actually applies, we always
have the following equation set.{

|
−−−→
TM1| =

√
y2 + z2 = ŷ1

|
−−−→
TM2| =

√
y2 + (z − h)2 = ŷ2

By solving the above equation set, we can calculate the coordi-
nates of the target tag in 3D space as follows:

x̂ = x̂1+x̂2

2

ŷ =
√

(ŷ1)2 − [ (ŷ1)2−(ŷ2)2+h2

2h ]2

ẑ = (ŷ1)2−(ŷ2)2+h2

2h

So far, the MRL system has been extended to successfully enable
the 3D localization functionality.

3.3 Phase Unwrapping Error and Solution
Due to physical thrill of the mobile robot itself or environmental
interference, the phase data collected by RFID reader are not
always perfect and we may not correctly perform the unwrap-
ping operations. As exemplified in Fig. 7, there are two notable
time gaps (marked by the circles) in the raw phase profile. In
the corresponding experiments, the ground truth of x and y is
2.14m and 0.77m, respectively. The robot moving speed is set
to 9.4cm/s. Using the unwrapping method in [24], we will get
an incorrect unwrapping phase profile. Applying the hyperbola
fitting algorithm [24] on such an unwrapping phase profile, the
localization result is (2.09m, 1.24m), where the value x̂ is very
close to the ground truth while ŷ is clearly over calculated. The
following method is proposed to alleviate the side effect of such
phase unwrapping error. In MRL, we find the large gaps in the
phase profile that are larger than a given threshold and then divide
the whole phase profile into multiple phase segments. Note that,
the threshold is set to 10 × Time duration

# of tag reading throughout this
paper. We should guarantee that, in each segment, the gap between
any two adjacent phase points is less than the given threshold.
Then, we apply the aforementioned MRL algorithm on each phase
segment and get a corresponding localization result. We eventually
output the average of these localization results. Applying this
method on the phase data of Fig. 7, the localization result of our
MRL system is (2.1448m, 0.7720m), which is very close to the
ground truth.

4 PERFORMANCE EVALUATION

In this section, we first specify the details about system implemen-
tation from the perspectives of hardware components and software
configuration. After that, we describe the experimental conditions
that we employ by default. Finally, we conduct extensive experi-
ments to evaluate the performance of the MRL system.

4.1 Implementation Details
4.1.1 Hardware Components
The proposed MRL system consists of the following hardware
components: a Thinkpad Carbon X1 desktop, an EAI Dashgo D1
smart robot, an Impinj R420 reader, two Laird S9028PCL reader
antennas, and several impinj e41c tags. RFID reader works at the
UHF band 902MHz∼928MHz. To eliminate the channel hopping
issue, we fix the working frequency at 920.625MHz. We configure
the reader transmission power to 32.5dBm. Generally, the RFID
systems use either linear antennas or circular polarization antennas
[37]. Compared with the circular polarized antennas of the same
gain, the linear polarized antennas normally have a bit longer read
range. However, the linear antennas require that tags under inter-
rogation has to be in a polarization matching condition with the
reader antenna. However, this cannot be predictable in the ware-
house scenario. Hence, we use the circular polarization antennas
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Fig. 8. The hardware components of the proposed MRL system.

in this paper. The circularly polarized Laird S9028PCL antenna is
of the gain 8.5dBic and also operates within 902∼928MHz. The
RFID reader reports the low level RFID data to the desktop via a
WiFi embedded in the robot.

4.1.2 Software Configuration
The robot is controlled by an arduino board with a bluetooth
communication module. Utilizing the Bluetooth channel, we have

O(0,0)

Tag4

Tag1

Robot

Antenna

Moving 
direction

X-Y Coordinate

Tag2
Tag3

Tag5
Tag6

Y-axis

X-axis

Fig. 9. Deployment of the MRL system in the 2D plane.

an application on the smart phone to control the robot movement
with given direction and speed. On the server side, we first
adopt the LLRP protocol [38], which is implemented in Java, to
configure the reader to read the low level RFID data (e.g., tag ID,
phase, timestamp) from tags. The collected RFID data are timely
stored in a local file on the server. At the same time, MRL reads
the data from this local file to calculate the tag location.

4.2 Experiment Conditions
The material of the tagged objects is an important factor that may
significantly affect the performance of the localization algorithms
[39]. For example, if we directly attach a tag on a metal plate
or a water bottle, RFID reader even cannot read the tag at all.
Hence, without otherwise specified, we will attach RFID tags
on the cartons (made of paperboard) by default. On the other
hand, the indoor environment may also significantly affect the
localization result, because multi-path caused by walls, apparatus
and moving human beings makes the signal propagation unstable
[40]. Following the experiment settings of the state-of-the-art RF-
Scanner localization system [24], we also assume that there is a
line-of-sight between reader antenna and tag. In this paper, we use
the ALIEN 9640 tags, which are in the shape of strip. Moreover,
the tags are placed vertically as default, i.e., the tag orientation is
along the Z-axis.

4.3 Performance of MRL in 2D Localization
4.3.1 Localization of Multiple Tags
In this set of experiments, we investigate the localization accuracy
of the MRL system in the 2D plane. As illustrated in Fig. 9, we
attach 6 tags to 6 cartons. The tagged cartons are placed more
than 0.8m away from the trajectory of the moving robot. The
actual tag locations are marked by “+” in Fig. 10. The reader
antenna and these 6 tags are on the same plane. The MRL system
passes by these tagged cartons with a speed v = 0.1m/s and then
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reports their locations. The same experiment is repeated for several
times, and the localization results are also plotted in Fig. 10. We
observe that the calculated locations for each tag are very close to
the ground truth. For a tag with location (x, y), if the calculated
location is (x̂, ŷ), we refer to |x − x̂| as the localization error
in x̂, and similarly refer to |y − ŷ| as the localization error in
ŷ. For clearly evaluating the localization accuracy of MRL, we
also plot the CDF curves of localization errors in x̂ and ŷ in
Fig. 11. We observe from Fig. 11 that, the localization errors along
X-axis are generally less than that along Y-axis. The results in
Fig. 11 (a)−(d) reveal that localization errors of the MRL system
are less than 5cm with a probability larger than 90%. However,
localization errors of Tag 5 and Tag 6 are a bit larger than that of
the other tags, because signals of these two tags are affected by
the cartons in the line-of-sight path to the reader antenna.

4.3.2 Impact of Tag Coupling

In this set of experiments, we investigate whether the interference
from nearby tags could affect the phase profile of the target
tag. First, we conduct an experiment to show and explain the
interference of nearby tags. Specifically, we fix a tag in front of the
reader antenna, and then move another tag gradually closer to the
fixed tag. Since the distance between the fixed tag and the reader
antenna does not change over time, the phase value of the fixed tag
is expected to remain stable in theory. However, the experimental
results in Fig. 12 (a) reveal that the phase value of the fixed tag
is seriously affected when the distance between these two tags is
smaller than 50cm. Such a phenomenon is caused by the coupling
effect [41]. A natural question is: does the MRL system still work
well in the practical RFID systems that are full of coupling effect
caused by adjacent tags? To investigate the impact of tag coupling
effects on the MRL system, we did the following experiments.
We first put the target tag at a fixed location, and use the moving
antenna to collect its phase profile. After that, we place another tag
d centimeters away from the target tag in different directions (the
angle α illustrated in Fig. 12 (b) varies from 0◦ to 315◦), thereby
deliberately causing coupling effect. For a specific α, we use the
moving antenna to collect the phase profile of the target tag again.
The unwrapped phase profiles with and without coupling effect
are plotted in Fig. 12(b). Generally, the trend of a phase profile
determines the coordinates (x, y) of a tag location, because the
MRL system uses the phase difference instead of the absolute

phase value. We find that, after aligning these unwrapped phase
curves at the bottom (just involving vertical shift), they match well:
changing trends of phase profiles are quite similar, and timestamps
of bottom points are also almost the same. Hence, we believe the
proposed MRL system is immune to the coupling effect. To verify
this point, we conduct a new set of experiments to evaluate the
localization performance of our MRL system with tag coupling
effects. In the experiments, we deployed the target tag at position
(1, 1). Then, we put an interference tag along the angle α = 0◦

and vary the distance between target/interference tags from 2cm to
5cm and 10cm. With each tag distance, we use the MRL system
to pinpoint the location of target tag. The experimental results
in Fig. 12(c) reveal that tag coupling effects do not affect the
performance of the MRL system very much. Note that, the same
as the other RFID localization systems, the localization accuracy
of MRL is highly affected by the environmental factors. Although
we repeat each set of experiments for multiple times and report the
average results, the localization results are still not always stable.

4.3.3 Impact of Tag Orientation
Here, we desire to investigate the impact of tag orientation on
the localization accuracy of the proposed MRL system. Hence,
we place a tag at the same location but along three representative
directions sequentially. The tag orientations along X-axis, Y-axis,
and Z-axis are illustrated in Fig. 13 (a), respectively. For each
type of tag placement, we run the MRL system to calculate the
location of this tag. After performing these three experiments, we
plot the corresponding unwrapped phase curves in Fig. 13(b).
Moreover, the localization results corresponding to these tree
experiments are plotted in Fig. 13(c). It is easy to observe that,
the localization results are much more close the ground truth
when the tag orientation is along Z-axis, i.e., vertically placing
the tag. Hence, we can assert that tag orientation indeed affects
the localization accuracy. To explore the underlying reasons, we
place a tag at a fixed location as illustrated in Fig. 14(a), and
construct another coordinate system for it, i.e., X’-axis is the
parallel to the long side of this tag; Y’-axis is perpendicular to
the tag plane; and Z’-axis is the parallel to the short side of this
tag. Then, we rotate the tag around different axes, respectively,
meanwhile, the reader keeps interrogating the tag and records
the phase values. Note that, Wei et al. conducted experiments to
investigate the impact of tag orientation on phase [41]. To be self-
contained, we conduct similar experiments and plot the results in
Fig. 14(b), i.e., showing tag phase values with respect to different
rotation angles. We observe that, the phase values are not stable
when the tag rotates around X’-axis and around Y’-axis. This
phenomenon is caused by the polarity of RFID antennas [41].
On the contrary, the phase values are stable when the tag rotates
around Z’-axis. Getting back to the experiments corresponding
to Fig. 13, if the target tag is placed along X-axis, the movement
of the reader antenna causes the relative tag rotation around the
X’-axis of this tag, which results in instable phase values and
further poor localization accuracy as well. The poor localization
accuracy when tag is placed along Y-axis can be explained by
similar reasons. Due to the great localization accuracy when tag
is placed along Z-axis, we suggest placing the tag vertically in
practice, e.g., tags are vertically placed in book spine.

4.3.4 Impact of Moving Speed
In this set of experiments, we investigate the impact of moving
speed on the localization accuracy of our MRL system. The target
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tag is placed at the location (2m, 2m) in the 2D plane. We vary
the speed of the MRL system from 0.1m/s to 0.3m/s. The CDF
curves of localization errors in x̂ and ŷ with different speeds are
plotted in Fig. 15 (a)(b), respectively. We observe that, as the speed
increases, the localization errors will also increase accordingly.
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X-axis Z-axis

Antenna2
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Fig. 16. Deployment of the MRL system in the 3D space.

The possible reasons behind this observation are as follows. First,
the higher the moving speed is, the more sparse the phase profile
will be, which will further deteriorate the localization accuracy.
Second, the higher moving speed of the robot will cause more
mechanical jitter. Therefore, the tag phase value, which highly
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Fig. 17. Investigating localization accuracy of MRL vs. different tag positions. (a) tag is placed at (1m, y, 0.35m). (b) tag is placed at (1.5m, y, 0.35m).
(c) tag is placed at (1m, y, 0.7m). (d) tag is placed at (1.5m, y, 0.7m). y varies from 0.6m to 0.8m and 1m.

depends on the distance between the reader antenna and target
tag, is also unstable.

4.4 Performance in 3D Localization

4.4.1 Localization Accuracy vs. Different Tag Positions
As illustrated in Fig. 16, we fix two antennas with a distance
h = 0.7m meters on the robot. The moving trajectory of antenna
R1 is treated as the positive direction of the X-axis. In such a
coordinate system, we place a target tag at different positions.
The ground truth of x varies from 1m to 1.5m; the ground truth
of y varies from 0.6m to 0.8m and 1m; the ground truth of
z varies from 0.35m to 0.7m. The MRL system moves with a
speed of 10cm/s and pinpoints the tag location. The experimental
results shown in Fig. 17 reveal the 3D localization accuracy of
the proposed MRL system: most localization errors along the X−
and Y−axes are less than 7cm and most localization errors along
the Z−axis are less than 12cm. Such a localization accuracy can
satisfy the requirements of most application scenarios.

4.4.2 Localization Accuracy vs. Antenna Distance
In this set of experiments, we place a target tag at the fixed location
(1m, 1m, 0.35m) in the 3D space and vary the distance between
two reader antennas from 30cm to 50cm and 70cm in each local-
ization process. The experimental results shown in Fig. 18 reveal
that, the reader antenna distance does not affect the localization
errors in X−axis very much. On the contrary, a large antenna
distance will generally reduce the localization errors in Y− and
Z−axes. We will elaborate on the impact of h on the localization
errors. According to the analysis in Section 3.2, the value z is
calculated by ẑ = (ŷ1)2−(ŷ2)2+h2

2h . And it is easy to have that the

actual value z satisfies z = (y1)2−(y2)2+h2

2h . Next, we calculate the

localization error in z as |z−ẑ| = [(y1)2−(ŷ1)2]−[(y2)2−(ŷ2)2]
2h . For

the same pair of calculated values ŷ1 and ŷ2, the localization error
in z is significantly affected by the distance h between two reader
antennas. A larger antenna distance h will generally result in a
smaller localization error in Z-axis. Similar reasons can explain
the impact of h on the localization error in Y−axis.

5 RELATED WORK

We summarize and divide the existing RFID localization ap-
proaches into the following two categories.
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Fig. 18. Investigating the localization accuracy of the MRL system with
different distances between reader antennas.

RSS-based approaches: The pioneer localization system, e.g.,
LANDMARC [29], is based on RSS. It requires to deploy dense
reference tags in the surveillance region in advance. An insight is
that, the nearby tags have similar distance from the RFID reader
antenna. Hence, their RSS values should also be similar. Then,
LANDMARC finds out k reference tags whose RSS values are the
most similar with the target tag, and uses the weighted average of
these k reference tags’ locations as the localization result. BFVP
[42] approach consists of two stages, i.e., an observation collecting
stage and a tag location estimating stage. In the first stage, the
robot carrying RFID reader antennas stops at several locations in
the given region. At each stop, the RFID reader uses different RF
transmission power to scan tags, and a vector is created to present
whether the target tag is read or not at every RF power. In the
second stage, a Bayesian filter approach using a varying power
RFID model is deployed to estimate the location of the target
tag based on its all collected vectors. BFVP highly relies on the
RFID power model, which is developed through experiments. The
developed model cannot be freely adopted by a new application
scenario due to different environmental factors, e.g., obstacles,
materials, and multi-path.

Phase-based approaches: In recent years, we have witnessed
a growing interest in using RF phase information to address
the problem of RFID localization. The Angle of Arrival (AoA)
based methods employ multiple reader antenna arrays. In each
array, they use the phase difference to measure the angle between
the target tag and this antenna array plane. With two antenna
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arrays, they draw two lines according to the measured angles,
and the intersection point is expected to be the tag location. PinIt
[32] uses a moving antenna to measure the multipath profiles of
the reference tags at known positions and locates the target tag
according to the insight that nearby tags have similar multipath
effects. This approach is not easy to use for the anonymous
RFID system, where we may know nothing about the reference
tags. DHA [23] partitions the monitoring region into grids, and
use the collected phase profile to calculate the probability that
the target tag locates in each grid. The grid with the highest
probability is treated as the location of the target tag. DHA
requires sophisticated calibration of the reader antennas before
putting into use. Moreover, for the large surveillance region, DHA
needs to deploy many sets of reader antennas, which costs a
lot. STPP [34] uses the minimum point of the unwrapped phase
profile, which theoretically corresponds to the time point when
the tag is exactly perpendicular to the reader antenna’s trajectory,
to recognize the order of tags along X-axis. Intuitively, we can
also use a similar method to calculate the value x of the target
tag location. However, the STPP scheme cannot tell us the value
y of the target tag location. The RF-Scanner system [24] was
proposed to pinpoint the misplaced books on the shelf. In fact, the
localization algorithm used in RF-Scanner only deals with the 2D
localization. The calculated coordinate x can be used to pinpoint
the order of books in a layer. And the calculated coordinate y
can be used to determine which layer a tagged book lies in. For
example, if the coordinate y of a book is much larger than a
normal value, this book must lie in the upper/lower layer rather
than the layer that reader antenna is scanning. However, the RF-
Scanner system cannot solve the general 3D localization problem
studied in this paper. In [43], Emidio DiGiampaolo et al. used a
robot equipped RFID to locate objects on shelves. The localization
system involves two steps. First, a Kalman-based algorithm is
applied on the phase data collected from reference tags on shelf
to locate the robot itself. Second, they proposed an algorithm to
match the phase data collected from the tagged objects on shelf
to a parametric model, thereby determining the position of the
objects on the shelf.

6 CONCLUSION

In this paper, we used COTS robot and RFID devices to implement
the Mobile RF-robot Localization (MRL) system, which makes
use of spatial and temporal information in the RFID phase profile
to accurately locate tags. MRL has four major advantages over the
existing RFID localization systems. First, MRL only consists of
the COTS devices rather than any specialized devices. Hence, it
is easy to be re-implemented for widespread application. Second,
MRL is able to address 3D localization and suitable for more ap-
plication scenarios. Third, MRL can locate tagged objects before
passing them, thus does not suffer the limitation of blind zone.
Fourth, a single set of MRL system can provide the localization
service for a large surveillance region in a mobile manner. Hence,
it is cost-efficient for large-scale scenarios. Owing to the above
attractive properties, the proposed MRL system has promising
prospect in future warehousing and logistics scenarios.
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