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AbstrAct
The ubiquity of 802.11 WiFi and the miniaturiza-

tion as a result of Moore’s law has recently enabled 
the success of IoT. From smart lightbulbs to smart 
toasters, many home appliances are now becoming 
both Internet-enabled and interconnected through 
WiFi. Soon, these futuristic smart homes will be able 
to run themselves, allowing the human operators 
to be fully in control of their homes — or will they? 
Despite the physical advancements made since the 
‘90s, the same cannot be said of the vulnerabilities 
of these smart devices. We analyze a set of common 
smart home appliances — a lightbulb, power switch, 
motion sensor, security camera, and home assistant 
— putting their vulnerabilities to the test to see what a 
21st century home intruder could discover.

IntroductIon
Moore’s law states that the number of transistors 
on a microchip doubles approximately every two 
years. Reinterpreted, it can also be stated that as the 
number of transistors on a chip are held constant, 
the area of the chip halves approximately every two 
years. Over the past two decades, this increase in 
circuit density has directly resulted in today’s level 
of embedded computing devices and the result-
ing Internet of Things (IoT). From smart lightbulbs 
to smart toasters, many home appliances are now 
compute-enabled, becoming both interconnected 
and Internet-aware through the usage of WiFi. The 
long sought-after dream of complete home automa-
tion is no longer just a work of science fiction, but is 
slowly becoming a reality as 30 billion IoT devices 
are expected to be online by 2020 [1]. The idea is 
that these sensor laden “things” are able to detect 
and send information about their physical surround-
ings to other nearby devices, allowing them to opti-
mally adjust for a given situation. The motivating 
scenario is that one day, as you come home from 
work, your smart home will turn on the lights, pre-
pare the kitchen, and open the garage door as you 
enter — taking home amenities and luxury to the 
next level. Similarly, while you are away, the smart 
house provides protection in the form of wireless 
security cameras and motion sensors that alert you 
as potential intruders are detected, or as a reminder 
that the mailman has left a package on the porch — 
all neatly accessible only by you and only from your 
smartphone.

However, despite the idyllic scene presented, 
we often overlook the heavy implications of having 
a multitude of devices constantly broadcasting data 

over the air (OTA) and the illusion of security that 
is presented by these IoT devices. Mirai, a high-
ly successfully IoT botnet trojan first detected in 
2016, preys on weakly configured IoT devices to 
use as zombies for carrying out distributed denial 
of service (DDoS) attacks that at its peak reached 
1.1 Tb/s [2, 3]. There has been plenty of recent 
discussion around the security of these devices 
and how IoT manufacturers should be hardening 
them [4]. One method recently proposed in [5] 
recommends utilizing a hypervisor-level memory 
inspector to detect foreign processes. Another pro-
poses using contextual text extraction and analysis 
to detect phishing attacks [6]. However, there has 
been little attention on the physical OTA aspect of 
their vulnerabilities despite concerns about prac-
tical security issues in Internet-enabled appliances 
being raised as early as 2001 [7]. As a result, these 
modern day smart homes are not much different 
than a castle of glass: an intimidating, towering 
paragon of defense, but indefensible with its inner 
workings exposed and fragile walls easily cracked.

In this article, we conduct a network- and data-
link-level traffic analysis on IoT devices that one could 
reasonably consider common in a modern smart 
home: a lightbulb, a power socket, a motion sensor, a 
security camera, and a central hub. We then present 
a method that allows for localization of these devices 
and develop various strategies that an attacker could 
employ depending on the desired outcome. Finally, 
we discuss the security implications of IoT devices 
and issues that have yet to be addressed.

Methodology
We assume an active network threat model where 
an adversary is capable of both network sniffing and 
injection, but not capable of physical access to any 
device. Conversely, we model the target to try to 
best match what could be considered as a typical 
home setup: an 802.11 network using pre-shared 
keys with a number of IoT devices connected. We 
also assume that they are able to obtain and analyze 
similar devices beforehand, either through their own 
IoT device laboratory or through medium access 
control (MAC) address identification.

Since our attacker is not assumed to have the 
capabilities to decrypt the 802.11 frames, any 
form of network data injection is limited to con-
trol frames or random-content data frames. Fur-
thermore, we are more focused on a side-channel 
attack using the data leaked out in WiFi frames 
rather than a network attack based on the typical 
data path of these devices (Fig. 1). As a result, the 
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adversary’s network injection attacks will be limited 
to a deauthentication attack, either to disable Inter-
net connectivity of the IoT device or to coerce it 
into connecting to an attacker-controlled spoofed 
WiFi access point (AP).

A deauthentication attack can be carried out, in 
general, without knowledge of the encryption keys. 
This is due to the disassociation and deauthenti-
cation management frames being sent primarily 
in cleartext until a recent amendment to 802.11 
included protected management frames [8]. How-
ever, for reasons of backward compatibility, these 
control frames can still be sent over plaintext if the 
client does not support the updated specifications. 
Additionally, we have observed that many devices 
on 802.11n which have been manufactured after 
the ratification of [8] still do not support these pro-
tected management frames.

Unfortunately, for the purposes of analysis, hav-
ing only encrypted WiFi frames is not particularly 
helpful as only metadata can be extracted and only 
loose correlations observed. Since we have assumed 
that our adversary is able to conduct device and 
traffic analysis in their own device lab, we have col-
lected both the encrypted and unencrypted traffic 
to better correlate the observed data against the 
device’s operation and conjecture causality. Addi-
tionally, we want to stress that none of the outlined 
attacker methods uses the unencrypted data.

network trAffIc AnAlysIs
Using a Raspberry Pi and two antennas (Alfa 
AWUS036NH, Asus USB-N13), we deployed a 
WiFi AP on the Asus, dumping the traffic using tcp-
dump, and sniffed the raw WiFi traffic using the 
Alfa. The aforementioned smart devices were con-
nected to this AP, and unless specified otherwise, 
were turned on throughout the experiments below. 
Each device was then set up to connect to a Sam-
sung Galaxy S5 smartphone, and the central hub if 
the device supported it. We also ran an nmap scan 
against all the devices to identify open ports and 
services (Table 1). With this data, we demonstrate 
a technique of fingerprinting each device based on 
its unique properties and operational domain that 
can be used for other similar devices and is not 
strictly limited to this representative testbed. Figure 
2 depicts our IoT device lab setup, with each of 
the analyzed devices. In the future, we would like 
to explore the possibilities of leveraging machine 
learning to automate this process.

centrAl hub
This device specifically pings the manufacturer’s 
DNS server at 8.8.8.8 twice every 63 s prior to send-
ing the server a DNS query for the A and AAAA 
records of www.google.com. This results in a deter-
ministic and predictable sequence  of 2 WiFi frames 
with a data payload of 100 B (98-byte ping request) 
followed immediately by 2 frames with a data pay-
load of 76 B (74-byte DNS query). Additionally, the 
device sporadically uses multicast DNS to query for 
other manufacturer devices on the network, sending 
to a destination MAC of 01:00:5e:00:00:fb (mDNS). 
These properties can all be determined by analyzing 
the encrypted 802.11 frames and strongly indicate 
the presence of this device.

Since this device only has two states, idle or 
active (being asked or answering a question), it is 
also possible to determine the state of the device 
by observing the size of the transmitted frames. 
In an idle state, the device mostly transmits small 
TCP maintenance frames of less than 600 B/frame. 
When a question is asked, the device begins to 
stream the audio data over TCP, and there is a sus-
tained burst of TCP frames of 1514 B. Once the 
question is finished, the reverse happens as the 
audio is streamed back to the device. This can be 
easily picked up as a burst of WiFi frames of size 
1580 transmitted by the device followed by a simi-
lar burst going the other way.

When disconnected from the home WiFi net-
work, the device is rendered non-functional as 
it is a service-based device rather than an appli-

FIGURE 1. Typical IoT device data path.
TABLE 1. Nmap scan results.

Device OS Ports Service

Central hub Linux 2.6.32 – 3.10

8008 
8009  
9000  
10001

HTTP?

Lightbulb Linux 2.4.X|2.6.X 9999 HTTP 

Motion sensor Linux 2.6 80 HTTP 

Power switch Unknown Linux 6668 MQTT? 

Security cam Linux 2.6.32 – 3.10

80  
554  
1935  
8080

HTTP  
RTSP  
 
gSOAP 2.8

FIGURE 2. Left to right: smart plug, motion sensor, camera, central hub, smart 
lightbulb.
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ance-based device. The disabling of the central hub 
has a minimal impact on the usability of the smart 
home, because the IoT devices could alternatively 
be accessed via a smartphone.

lIghtbulb
The lightbulb was the easiest to fingerprint and 
identify as it had an application layer heartbeat to 
a hub server. Every 54 s, the lightbulb sends a 117-
byte frame and receives an 111-byte response (+/- 
1 byte). This can be observed over WiFi as two 
data frames of size 183 and 177 respectively. This 
hub server is responsible for relaying the control 
server location to the device, which then establish-
es a connection and listens for commands.

As a lightbulb, the device fundamentally only has 
two states, on or off. However, this particular device 
is capable of dimming the LED as a percentage, thus 
giving it 101 states: off and 100 variations of on. 
We observed varying payload sizes of 1082–1090 
B with no discernible mapping aside from a rough 
idea of the level of luminescence, that is, in general, 
the larger the payload, the brighter the light.

Interestingly, the lightbulb did not have a physical 
switch to control whether light was being emitted. 
After performing a deauthentication attack on the 
device, it was observed that the lightbulb maintained 
whatever state it had prior to disconnecting without 
any physical control mechanisms. This has a severe 
implication as it would be fairly easy for any attacker 
to externally control the function of the lightbulb.

MotIon sensor
One of the most surprising results was that the 
motion sensor could not be fingerprinted at all. It 
had no idle network traffic aside from ARP requests 
and TCP keep-alives, and only sent data once the 
motion sensor was triggered. Ironically, in a data-lad-
en world, it is this lack of data that may give it away. 
While it is not possible to form a generative finger-
print, it is still possible to form a discriminative identi-
ty based on other devices on the WiFi network. For 
example, one can isolate, based on MAC address, 
the manufacturer’s products and from there prune 
MAC addresses that send WiFi frames other than 
a 60-second TCP keep-alive and ARP requests 
(data payloads of 68 and 44 bytes, respectively). 
However, this method is not guaranteed as we also 
observed, over a 24-hour period, one NTP synchro-
nization to the manufacturer’s servers.

Due to motion sensors having only a triggered 
state, it is fairly easy to determine whether the device 
has been activated. The specific motion sensor we 
tested was trivially easy to determine as it did not 
send any sizable network traffic until the detection 
occurred. When testing deauthentications, some 
detections were buffered until the device managed 
to reconnect to the WiFi network; however, the 
parameters of how many and the order of which 
detections were dropped were not discernible.

Power swItch
This smart plug had a peculiar, extremely unique 
identifying aspect. By default, this device will broad-
cast data containing a JSON string over UDP every 
3 s. The JSON data appears to contain a device 
state dump listing its IP, a flag regarding encryption, 
state, and other miscellaneous data. However, a 
smartphone running the corresponding application 
will pick this up and respond to the device; from 

there, the UDP broadcasts cease, and communi-
cation is switched to a TCP connection between 
the device and receiver. The TCP packets contain 
the same UDP data, except the JSON portion has 
been encrypted with non-standard base64 encod-
ing. Despite this strange setup, the device also con-
nects to a Message Queuing Telemetry Transport 
(MQTT) server to allow it to be controlled external-
ly from outside the same WiFi network, and when 
idle, pings the server once every 30 s.

It also results in a rather interesting fingerprinting 
decision tree: if the paired smartphone is not active 
(e.g., screen off), one would expect to see multiple 
broadcast frames sent from the device with a pay-
load size of 217 B; otherwise, one would expect 
to see WiFi frames with a payload size of 84 B sent 
with a period between 25 and 30 s. Additionally, in 
both cases, one would expect to see a separate set 
of frames with a payload size of 58 B/30 s. If the 
smartphone is on the same network as the smart 
socket, the command goes from smartphone to 
device, which sends the result to the remote MQTT 
servers and back to the smartphone. Otherwise, the 
command goes from the smartphone to the MQTT 
servers, relaying the command back to the device.

Regardless, this device does have a physical 
switch that can control the state of the device, and 
as a result, deauthentication attacks cannot override 
the device controls. However, the attacks are effec-
tive at disrupting the timezone localized scheduling 
as it is based on the smartphone application.

securIty cAMerA
Our security camera was also an easy device to 
identify as it had fairly unique idle network activity 
with two parts: one loop multicasts three different 
Simple Service Discovery Protocol (SSDP) messages 
every 75 s with consistent payloads, while the other 
is a slightly more complex UDP data stream heart-
beat. This UDP stream is established every ∼60 s 
to a remote server, incrementing the device port by 
1 every time. The stream is initiated by the device 
sending a 4-byte payload, beginning a nested loop 
that sends a 48-byte payload every 44 s until the 
stream is terminated after 16 iterations. The data 
being sent was itself unchanging and consequently 
could be identified easily using its 802.11 frame size.

Furthermore, its activity could be trivially iden-
tified by observing any variation in frame sizes 
in addition to large frames being sent due to the 
video data. The camera also appears to be using a 
constant bit rate for transmission as there was no 
variation in data size unless a rotation order was 
received by the device.

There are also no physical controls on the device, 
meaning that like some of the other devices, its cor-
rect operation is completely dependent on its abili-
ty to connect to a WiFi network. Deauthentication 
attacks interrupt the video stream, which operates 
in fire-and-forget mode unless an SD card is insert-
ed into the camera. Consequently, it is possible to 
render an entire WiFi surveillance network defunct 
by spamming the airwaves with dissociation frames.

devIce locAlIzAtIon
As wireless cameras become more popular for secu-
rity and surveillance systems, the leaking of their 
locations poses huge risks for homes and business-
es relying on their innocuous operation. Intruders 
are highly motivated in localizing these devices as 

One of the most 
surprising results 
was that the motion 
sensor could not be 
fingerprinted at all. It 
had no idle network 
traffic aside from ARP 
requests and TCP 
keep-alives, and only 
sent data once the 
motion sensor was 
triggered. Ironically, in 
a data-laden world, it 
is this lack of data that 
may give it away.
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it enables them to make a plan to avoid detection. 
This is usually called malicious localization. While WiFi 
localization has been extensively studied in the past, 
for example, using received signal strength (RSS) or 
channel state information, we demonstrate that mali-
cious attacks are easy to perform using a passive RSS-
based localization scheme. Its novelty lies in clustering 
analysis and trimmed-mean-based denoising.

In our attack model (Fig. 3), the attacker only 
needs to carry a mobile device (e.g., smartphone/
tablet/laptop) to passively sniff RSS data off of all 
WiFi packets in the environment by walking around 
the area. Such an attack is simple to execute and 
hard to detect due to its stealthiness: the attacker 
does not need to communicate with the camera, 
and data collection is easy to carry out by only trav-
eling around the target area. Furthermore, since 
it only uses RSS, it does not require more com-
plicated channel state information/time of arriv-
al/angle of arrival based methods (e.g., [9–12]), 
which always involves multiple antennas or spe-
cialized hardware that cannot always be discreetly 
hidden in view. Therefore, due to the simplicity of 
the above model, we want to examine how much 
an attacker can do to localize the target.

For the attacker, the first step is to distinguish 
the wireless camera from other WiFi devices, which 
can be done via the proposed traffic pattern anal-
ysis. Then the attacker can filter packets based on 
the MAC address and extract RSS data of the tar-
get camera. The second step is to collect RSS trac-
es along different walking trajectories and obtain 
a series of tuples, for example, (attacker_position, 
camera_RSS, time). The third step is  to locate the 
camera using our unsupervised clustering-based 
log-distance model. Our scheme is based on the 
log-distance model because of its simple, widely 
adopted, and proven robustness. Following the 
traditional log-distance model, we can estimate the 
range between the receiver and sender as follows:

Ed = Ed’ – 10alog10(d/d’),

where Ed is the RSS at distance d, Ed’ is the RSS 
at reference distance d’, and a is a loss factor that 
indicates how fast the signal decays. Usually, a 
depends on the environment. In ideal free space, 
a = 2, while for typical outdoor or indoor environ-
ments, a may vary between 2.7 and 4.3.

The above traditional log-distance model suffers 
from many practical issues with WiFi measurements. 
One of the most important problems is noise, which 
comes from dynamic environments and hardware 
imperfection. Therefore, we adapt the unsupervised 
feature clustering method in [13]. Specifically, we 
primarily use six features extracted from the raw 
data. We have collected over 80 points, of which 
50 points are for training and 30 points are for 
testing. Frame features denoting traffic statistics of 
aggregated frames, which is different from [13] that 
focuses on all kinds of frames. The reason is that 
we observe the behavior of aggregated frames can 
more accurately depict the real traffic pattern for 
wireless cameras. Spatial features denoting location 
features by trajectory analysis. RSS features denoting 
signal strength. MSE (mean-squared error) features 
denoting the fitting error of the localization model 
that involves RSS and spatial features. Environmental 
features denoting the smoothing factor a, which is 
not included in [13]. For the details of clustering pro-

cess and feature selection, please refer to [13]. Our 
clustering result is four categories where the cluster 
center is the coordinate-wise mean of the vectors. 
The first category takes 59 percent of instances, 
which have moderate RSS errors and mean square 
error (MSE). The second category takes 26 percent 
of instances, which have low RSS errors and high 
MSE. The third category takes 12 percent of instanc-
es, which have the lowest RSS errors and moderate 
MSE. The fourth category takes 3 percent of instanc-
es, which have the largest RSS errors and the lowest 
MSE. Therefore, we only use data in the first cate-
gory for further localization computation as the rest 
of the data is either noise or the outlier for accurate 
localization. The intuition behind this choice is that 
the first category can cover most of the instances 
with reasonable errors.

After clustering, we further apply a trimmed 
mean over a time window to increase the concen-
tration of localization results, which are shown in Fig. 
4. We quantify the localization accuracy by absolute 
localization error, which is the Euclidean distance 
between the estimated position and the true posi-
tion. From experimental results, we observe that the 
localization accuracy is consistent across different 
random walks; for brevity, we only compare two 
representative samples. For our walking trajectory A, 
our method improves on localization accuracy from 
12 m to 6 m, and a similar trend can be observed 
for B. In a multi-level building, one can use triangula-
tion to reasonably approximate the floor where the 
device is. In the future, we would like to extend our 
localization attack model to other popular IoT devic-
es (e.g., NFC, Bluetooth) and to different application 
scenarios, such as moving objects.

AttAck strAtegIes
One of the most basic attacks is to use the local-
ization technique covered in the previous section 
to map out where each IoT device is in the smart 
home with triangulation. This, combined with a 
MAC address lookup, grants an adversary working 
knowledge of roughly where each device is along 
with potentially what the device is, all by simply tak-
ing a lap around the neighborhood. This does not 
require access to the underlying cleartext and can 
be done quite easily using a simple promiscuous 
network controller. Unfortunately, this also means 
that it is extremely difficult to defend against as 
long as devices transmit traffic wirelessly. At best, 
this can be mitigated using a proprietary data-link 
protocol on a non-standard frequency to strongly 
discourage any opportunistic adversaries looking 
for an easy target.

FIGURE 3. Localization model.

Deauthentication 
attacks interrupt the 
video stream, which 

operates in fire-and-for-
get mode unless an SD 
card is inserted into the 
camera. Consequently, 
it is possible to render 
an entire WiFi surveil-
lance network defunct 
by spamming the air-

waves with dissociation 
frames.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 23:47:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • December 201836

Once an attacker has obtained this map, the next 
side-channel vulnerability that can be exploited is the 
potential localization of the home’s occupants (Fig. 
5). By simply sniffing and observing the traffic emit-
ted, it is possible for our adversary to discern whether 
or not a device is active and, based on the traffi  c pat-
tern, get an idea of what is being sent. As an example, 
both the central hub and the security camera, when 
active, pump out an order of magnitude more data 
than when in an idle or inactive state. Likewise, the 
motion sensor does not output any data unless the 
sensor itself is triggered. Furthermore, the amount of 
data being transmitted along with the rate at which 
it is being sent/received allows for an easy means to 
identify the type of device. By identifying these devic-
es and monitoring the traffi  c, the attacker can deter-
mine with reasonable accuracy how many occupants 
are in the home along with where they are, relative to 
where each device is.

Additionally, given a sufficiently long period of 
observation, the attacker could also eventually deter-
mine the pose of some devices — specifi cally those 
that have some cone of interest. As all security cam-
eras transmit video data and, as a general principle, 
would like to reduce their data footprint, some manu-
facturers may see fi t to use variable bit rate encoding 
rather than a constant bit rate. It would be reason-
able to assume that for the majority of the time, these 
cameras will be observing a stationary scene. Thus, 
it stands to reason to lower the bit rate during these 
inactive periods and swap to a higher bit rate once a 
change in the scene is observed. Unfortunately, this 
creates entropy in the data that gives away two criti-
cal pieces of information: whether or not the camera 
is watching a fi xed area (i.e., not sweeping) and the 
relative pose of the camera should its cone of view 
overlap with another IoT device’s cone of interest. 
To be more concrete, suppose there was a motion 
sensor somewhere in the camera’s field of view. A 
person walking through the motion sensor’s cone of 
interest would consequently be walking through the 
camera’s field of view. In terms of data, this would 
result in an increase in the camera’s data rate along 
with a spike in traffic sent from the motion sensor. 
Since the attacker is able to triangulate the location 
of both the camera and the motion sensor, our adver-
sary can slowly piece together the pose of those 
devices by observing and noting when each device 
was active. Should the sensor go off  without a bit rate 
increase from the camera, we know that their cones 
do not completely overlap and can adjust according-
ly. This triangulation of cones is greatly increased with 
each additional overlapping device.

Finally, as an adversary has effectively co-opted 
the smart home’s device network, she can then selec-
tively disable each device as needed remotely (Fig. 6). 

While it is not necessary to know where the devices 
are prior to remotely disabling them, it does make it 
easier to remain undetected. As all of these devices 
are connected OTA using WiFi, most of them are 
susceptible to a deauthentication attack — an injec-
tion of a deauthentication frame to the device from a 
rogue AP masquerading as the router. In our analysis, 
we noted that some devices lack a physical control 
switch which overrides the network-based switch. 
These devices are particularly susceptible to this 
attack as there is nothing the defender can do in this 
case to regain control of the IoT device.

dIscussIon And conclusIon
As we have shown, wireless IoT devices are extreme-
ly vulnerable to side-channel attacks. These devices 
unintentionally leak plenty of data that can then be 
used to reconstruct a layout of the house, as well as 
allowing an adversary to potentially co-opt the IoT 
sensor network for their own purposes. With smart 
devices becoming the norm, the digital and physical 
world begin to bleed into each other as their inter-
actions become further intertwined, not to mention 
the involvement of cloud and edge computing [14]. 
For better or worse, we are beginning to enter an 
age where the consequences of failing cybersecurity 
now leads to potential physical harm to the human 
end user instead of being isolated to hardware. The 
importance of this cannot be stressed enough as our 
observations indicate that some IoT devices lack even 
a physical control switch to override the embedded 
network-based controls. This implies that once an 
attacker gains control of the device, short of physi-
cally disconnecting the device from its power source, 
there is nothing that can be done to regain control. In 
these cases, the device manufacturers must carefully 
consider what the default failure state should be. This 
is a key part that is often glossed over as a second 
thought as many people will assume an assurance 
of Internet connectivity given how ubiquitous it has 
become over the past decade.

In conclusion, we have demonstrated that it is 
possible to mount a side-channel attack on a smart 
home by exploiting the devices’ liberal usage of data 
and that these devices are being targeted by mali-
cious actors due to their prevalence and vulnerabil-
ities. In what can only be considered an ironic twist 
of fate, these devices provide no more security than 
what they take away — much like a castle of glass, 
with its towering walls and buttresses intimidating 
and veiling, but offering no obstruction of its inner 
workings to any passerby. It is time for both device 
manufacturers and end users to seriously rethink IoT 
device security before this new technology becomes 
an ingrained aspect of a modern society. As our soci-
ety’s reliance on technology increases, both the risk 
and fallout of security breaches increase proportion-
ally to the point where digital attacks may soon have 
an impact far greater than what conventional attacks 
can deliver. Consequently, IoT device manufacturers 
must be held to a higher standard with respect to the 
out- of-the-box vulnerabilities of their devices.

AcknowledgMents
Ryan Shea’s research is supported by a Natural 
Sciences and Engineering Research Council of 
Canada (NSERC) Discovery Grant. Jiangchuan 
Liu’s research is supported by an Industrial Can-
ada Technology Demonstration Program (TDP) 
grant and an NSERC Discovery Grant.

FIGURE 4. Localization performance of the tradi-
tional log-distance model and ours.
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FIGURE 5. Figures demonstrating localization of a person inside a smart home: a) idle traffi  c; b) motion sensor emits detection; 
c) security camera emits video.
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FIGURE 6. Figures demonstrating the eff ects of a deauthentication attack: a) IoT devices are disconnected; b) sensor detects, but can-
not send alert; c) security camera is nullifi ed.
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