Introduction to 3D Printing

CMPT 464/764

Lecture 14

Source of slides

3D Printing Oriented Design: Geometry and Optimization

Siggraph Asia 2014 Course

Dec. 5, 2014, Shenzhen

Ligang Liu , Charlie Wang , Ariel Shamir, Emily Whiting

What is 3D printing?

(from Wikipedia) Printing is a process for reproducing text and images, typically with ink on paper using a print press.

SA2014.SIGGRAPH.ORG

Printing

3D + Printing = 3D Printing

- SIGGRAPH ASIA 2014 SHENZHEN
- SD printing is the process of making a real physical 3D object from digital file using some material, in a manner similar to printing images on paper. (material = ink = powder/polymer/plastic)

The basic idea

- Slicing objects into layers
- Making the object layer by layer

Never see a 3D printer?

3D printing is just around us...

Process of 3D printing: an example

Types of 3D printers (covered later)

Material of 3D printing

- Plastics
 - PLA
 - ABS
- Metals
 - Stainless steel
 - Sterling silver
- Glass
- Ceramics
- Resin
- Sandstone
- Rubber

Food!

However, 3D printing is not new...

- A type of manufacturing (fabrication) technologies
 - Has existed for over 20 years
- Also known as
 - Rapid prototyping
 - Additive manufacturing (AM)

Existing Manufacturing Technologies

Casting: equaled manufacturing

Pour a liquid material into a mold and then solidify (3D printing employed to produce molds)
 History: over thousands of years

Forging: equaled manufacturing

- Shaping metal using localized compressive forces by a smith using a hammer
- History: over thousands of years

Modern CNC: subtractive manufacturing

SPONSORED B

Cutting out material from a solid
 History: about 100 years (cannot produce hollows)

3D printing: additive manufacturing

- Can produce arbitrarily complex (either in geometry or in topology) objects
- History: less than 30 years (hollows: no problem)

Manufacturing technologies: comparison

Casting or forging

1000+ years

- Mold is expensive
- Cannot be complex

CNC

- Waste of material
- Cannot be complex

3D printing 20+ years

- No waste of material
- Can be arbitrarily complex

SA2014.SIGGRAPH.ORG

SPONSORED BY

Advantages and Disadvantages of 3D Printing Technology

Advantages

(relative)

- Quick production of prototypes
- Less waste
- New shapes and structures
- New combinations of materials

- Slow printing speed
 - Over hours
- Not available for batch manufacturing
 - Better for customized manufacturing like printing of molds
- Size limitations
 - Need larger printers in the future
- Raw material limitations
 - Mixed material will be developed

3D printing: a new manufacturing tech.

Do not replace other manufacturing technologies
 A complement to modern manufacturing

- Lasers:
 - Stereolithography Apparatus (SLA)
 - Selective Laser Sintering (SLS)
- Nozzles:
 - Fused Deposition Modeling (FDM)
- Printheads:
 - Multi-jet Modeling (MJM)
 - Binder-jet Printing (3DP)
- Cutters:
 - Laminated Object Modeling (LOM)

Stereo Lithography Apparatus (SLA)

- Introduced in 1984 by Charles Hull who founded 3D Systems Inc.
- The first commercial Solid Freeform Manufacturing process;
- Based upon the use of an ultraviolet laser which is used to solidify a photocurable liquid polymer.

Example Parts

Support Generation Example

Point cloud

Sliced model

Fabricated Object

By Yong Chen (University of Southern California)

Selective Laser Sintering/Melting

SPONSORED BY

Models Fabricated by SLS

Metal Part by SLS

Polymer Part by SLS

SPONSORED BY

Fused Deposition Modeling

SPONSORED B

- Introduced in 1988 by Scott Crump who founded Stratasys
- The best-selling Rapid Prototyping technology in terms of installation number

Jetting of photopolymer in desired space, which is then cured by a flash of UV light

Material Deposition

Laminated Object Manufacturing

Stacking layers of sheet stock, each an outline of the cross-sectional shape of a CAD model.

Starting material is sheet stock, such as paper, plastic, cellulose, metals, or fiber-reinforced materials.

Applications of 3D Printing

Why 3D Printers Become Popular?

- Many patents are expired
 - ▶ Protected \rightarrow Open sources
- Prices are decreasing
 - Thousands of dollars \rightarrow Hundreds of dollars
- Sizes are reducing
 - Industry oriented \rightarrow Home oriented (desktop)
- More and more applications

► ...

Application: Industrial design

Application: Fashion design

SA2014.SIGGRAPH.ORG

SPONSORED BY

Application: Education

Application: Toys

Applications: Decorations

Application: Food

Application: Art

Application: Medical treatment

Application: Heritage

Application: Aerospace

Application: Architecture

Researches in 3D Printing

Input models for 3D printing

- *.STL: Standard Tessellation Language
- Mesh file format created by 3D Systems
 - Either in ASCII or in binary
- Unstructured triangular surface

```
facet normal n_i n_j n_k
outer loop
vertex v1_x v1_y v1_z
vertex v2_x v2_y v2_z
vertex v3_x v3_y v3_z
endloop
endfacet
```


3D printing engine

Research Fields in 3D Printing: 3M

Mechanical

control

- SLA
- FDM
- 3DP

Material

- Plastics
- Resin
- Ceramics
- Metals

Material science

- Modeling
- Processing
- Computation
- Optimization

Computer graphics

Traditional modeling **VS** Modeling for fabrication

- For rendering or animation
- Smooth surfaces
- Virtual objects
- Non-physical

- For fabrication
- Complex volumes
- Real objects
- Physical properties

Fabrication-oriented Design (Design for Additive Manufacturing)

Given printing machine and material, how to optimizing geometries and its computing to gain highest performance?

What are the computational issues?

SPONSORED B

Printing engine

- Slicing
- Support structure
- Numerical robustness

- Texture and BRDF
- Subsurface scattering
- Caustics

SPONSORED B

Geometric design and opt.

- Simple tools for designing
- Motion modeling
- Fabrication by example

Structural optimization

- Physical loads
- Analyze structure
- Apply corrections

