

Shape Segmentation Model- vs. Data-Driven | Structures

Constant and a constant of the state of the st

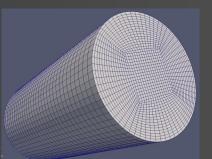
Richard (Hao) Zhang

CMPT 464/764: Geometric Modeling in Computer Graphics

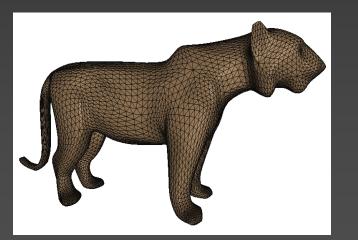
Lecture 10

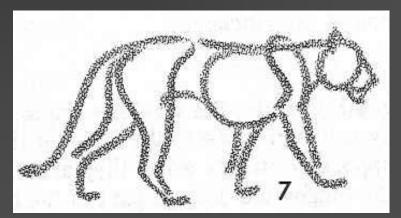
Shape perception through abstraction

- Mesh objects may contain much redundancy
 - Do I need >10K triangles to represent a cylinder?



- Humans can often perceive a shape by just an abstraction
 - E.g., a few sketches or a high-level structural understanding



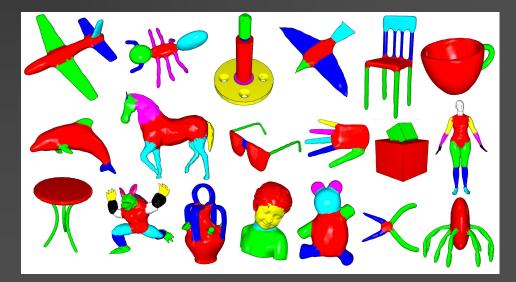


Feature analysis & segmentation

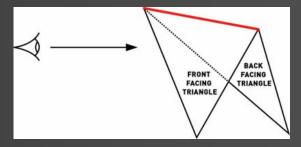
How to capture the essence (a high-level abstraction) of a shape?

The essence of a shape can be captured either by

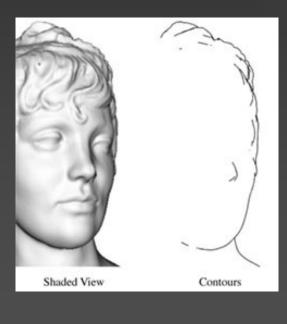
- Feature curves crease lines, silhouette, etc. feature extraction
- Or its constituent parts humans perceive shape by decomposing it into meaningful parts [Hoffman & Richards 84] – mesh segmentation



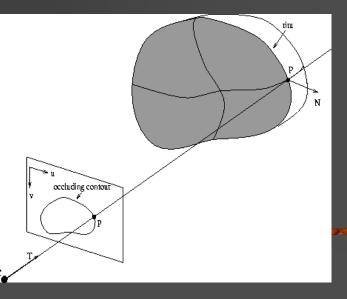
Various feature lines



- Silhouettes/outlines/contours: view-dependent
- Edges; crest lines; ridges and valleys: view-independent
- What are visually more "important" or "apparent"?

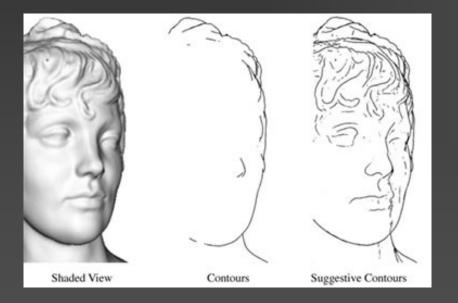


Visible points whose normals are perpendicular to the view vectors



Various feature lines (aside)

- Silhouettes/outlines/contours: view-dependent
- Edges; crest lines; ridges and valleys: view-independent
- What are visually more "important" or "apparent"?



https://gfx.cs.princeton.edu/pubs/DeCarlo_2003_SCF/DeCarlo2003.pdf

FRONT

FACING

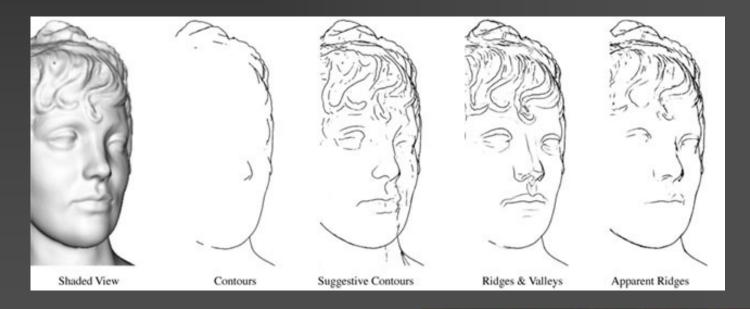
RIANGI

FACING

TRIANGLE

Various feature lines (aside)

- Silhouettes/outlines/contours: view-dependent
- Edges; crest lines; ridges and valleys: view-independent
- What are visually more "important" or "apparent"?



https://people.csail.mit.edu/tjudd/apparentridges.html

FRONT

FACING

RIANGI

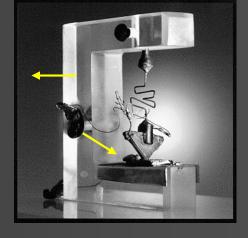
FACING

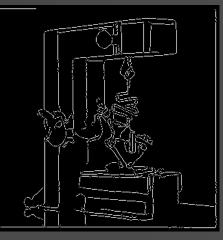
TRIANGLE

Technical definition of edges

- Geometric features are mostly of two types:
 - Point features, e.g., spikes, corner, extremities
 - Line-type features, e.g., edges, ridge, valley, or crest lines – most common
- How to define line-type features?
 - From image processing, edges are composed of pixels where the magnitude of the gradient of the image intensities has a local maximum in the direction of the gradient

 $\nabla i(x, y) = [\partial_x i(x, y), \partial_y i(x, y)]$

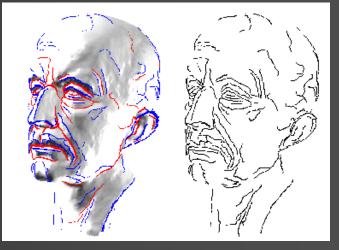


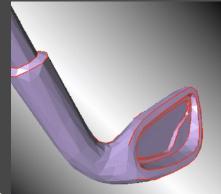


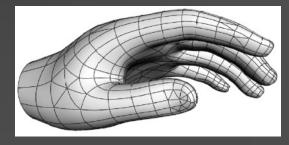
where gradient captures direction of fastest ascent.

Edges on 3D surface

- Intensity changes ⇔ variation of normals
- Variation of normals ⇔ curvatures
- Positive curvature \Rightarrow ridge (blue); negative \Rightarrow valley
- Feature edge: loci of points attaining local extrema principal curvatures along lines of curvature
 - Lines of curvature depict direction of principle curvatures
- Edges as part boundaries for segmentation

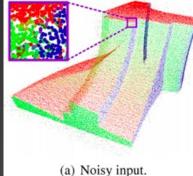


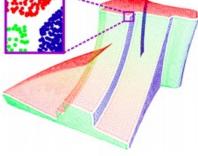




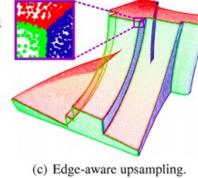
Edge detection in point clouds

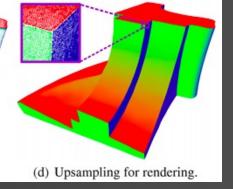
Not just "detection" since edge points may not have been sampled
 Edge-Aware Resampling (EAR), e.g., upsampling on/near edges



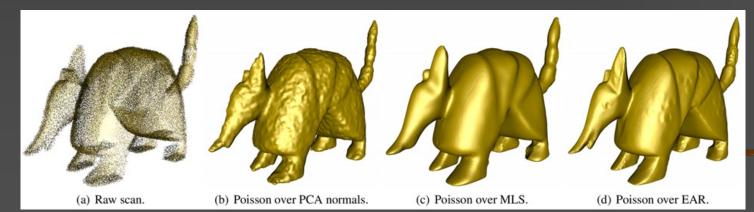


(b) Resampling away from edges.





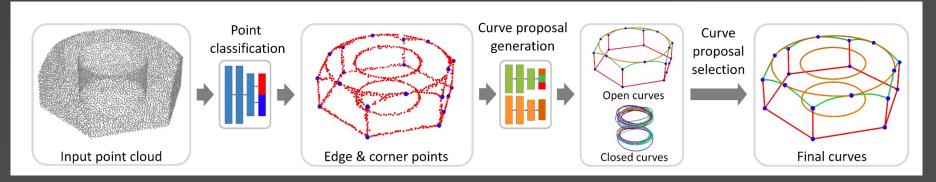
Would facilitate surface reconstruction with shape features



What is an edge: model-vs. data-driven

Model-based edge definition may not work robustly on real data

- "Soft" edges and non-uniform data, especially over point clouds
- Local extrema may lead to too many edge points, e.g., thick edges
- Noise, sparsity, and missing data
- It is possible to "learn" edge extraction for point clouds



[Wang et al. NeurIPS 2020]

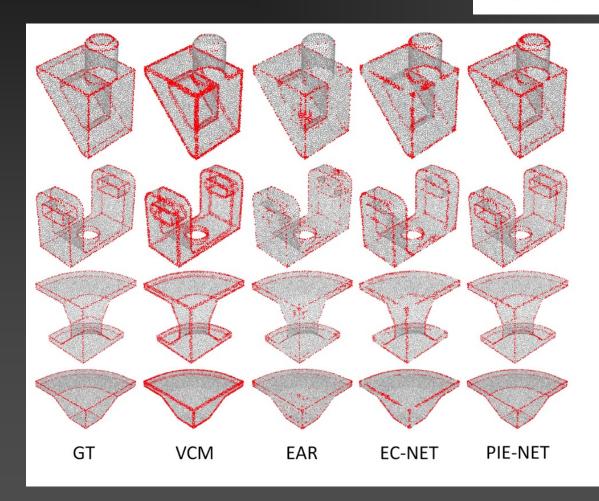
Dataset: A Big CAD dataset

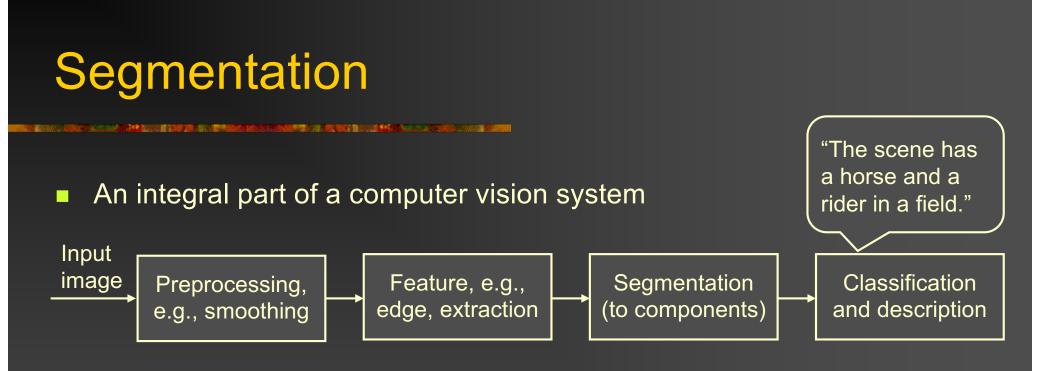
1 millions CAD models in various formats and parametric edges!

Comparisons

		VCM			EAR		EC-NET	PIE
	$\tau = 0.12$	$\tau \!=\! 0.17$	$\tau {=} 0.22$	$\tau = 0.03$	$\tau = 0.035$	$\tau {=} 0.04$		
ECD↓	0.0321	0.0430	0.0569	0.0679	0.0696	0.0864	0.0360	0.0088
IOU ↑	0.2841	0.2854	0.2855	0.3404	0.3250	0.2844	0.3561	0.6223
Precision ↑	0.3063	0.3244	0.3456	0.5560	0.4149	0.6523	0.4872	0.6918
Recall ↑	0.8385	0.7644	0.6937	0.4820	0.5910	0.3578	0.5736	0.8584

Fig. 9. **State-of-the-art comparisons** – Qualitative (top) and quantitative (bottom) comparisons of PIE compared to VCM [Merigot et al. 2011], EAR [Huang et al. 2013a], and EC [Yu et al. 2018a].





Plays a critical role in 3D object recognition

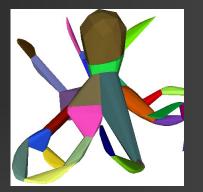
"... for the task of visual recognition, the visual system decomposes shapes into parts, ..."

--- [Hoffman & Richards] in Cognition, 1984

What is a part: geometry vs. semantics

Geometric criteria

- Convexity
- Cylindrical
- Pyramidal, etc.

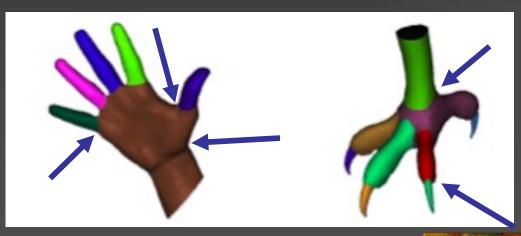


- Semantics (related to meaning): a meaningful part
 - Appeals to human intuition or knowledge
 - Often no general math formulation knowledge-driven
 - Semantics may lead to geometric criteria: e.g., minima rule

Segmentation by minima rule

Partition a shape into meaningful components
Minimal rule from study of visual perception

Minima rule: cut boundary at negative minima of curvature, i.e., over concavity (a local criterion)



Use of the minima rule

and a second second

5 parts

16 parts

More meaningful ...

"An understanding of semantics"

Symmetry

5 parts

5 parts

A non-local criterion: a segment is self-symmetric! Yet, symmetry is still a geometric criterion!

What is a part: model- vs. data-driven

Model-driven: model "hand-crafted" from knowledge/exp

- Convexity
- Minima rule
- Pyramidal: application-driven
- Symmetry

- Data-driven: learn from data, e.g., human segmentation
 - Supervised vs. un-supervised vs. semi-supervised learning
 - Recent developments in deep-learning-based methods

From parts (segmentation) to structure

"We propose that, for the task of object recognition, the visual system decomposes shapes into parts, that it does so using a rule defining part boundaries rather than part shapes (minimal rule), ..., and that parts with their descriptions and spatial relations provide a first index into a memory of shapes.

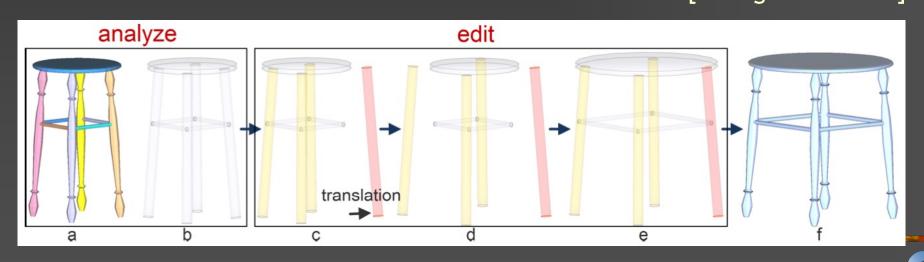
From "Parts of Recognition" by Hoffman and Richards, Cognition, 1984

From parts (segmentation) to structures

- Structure = part structure = part composition and relations between the constituent parts of a shape
- Part composition = how a shape is segmented
- Part relations:
 - Symmetry or repetitions
 - Proximity
 - Angle between parts
 - Relative positioning, e.g., co-planarity

Structure-aware editing

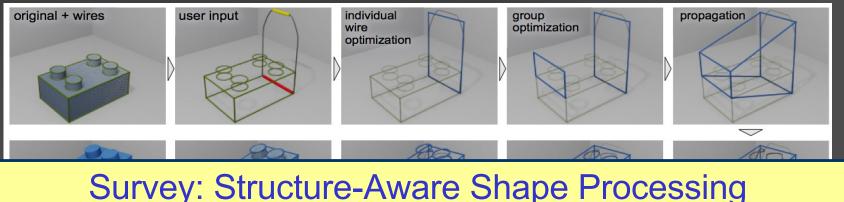
- Cuboids and generalized cylinders enclose parts
- Analyze shape to detect symmetry, proximity, angle, ...
- Edits preserve structural relations among controllers, mainly symmetry and proximity
 [Zheng et al. 2010]



Structure-aware editing: iWires

- Wires as control/editing handles [Singh & Fiume 1999]
- Analyze shape first, to detect symmetry, co-planarity
- Edits preserve structural relations among wires

https://www.youtube.com/watch?v=se1fz2RRdKY [Gal et al. 2009]



http://www.cs.sfu.ca/~haoz/pubs/mitra_star13.pdf

Many applications for segmentation

- Define a shape descriptor for recognition, classification, retrieval, ...
- Structure-aware shape processing; structure = part composition
- First step towards higher-level understanding, e.g., functionality
- Extraction of skeletal representation for animation [Katz & Tal 03]



Patch-type segmentation

 Partition a mesh into disk-like patches obeying certain geometric properties, e.g., planarity, size, or convexity

- Applications:
 - Texture mapping
 - Mesh decimation,
 - Mesh compression,
 - Remeshing,
 - Fast collision detection
 - etc.

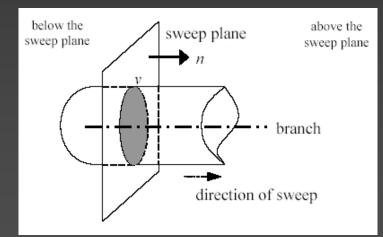
Our focus: part-type segmentation

- Partition shape into meaningful parts
- Applications
 - Object recognition
 - Morphing
 - Skeletal animation
 - Shape correspondence
- Main challenges
 - No universal or mathematical definition for a "part"
 - Autonomy of algorithms

Classification of approaches (aside)

a de la companya de l

- Skeleton-based [Li et al. 01]
 - Plane sweep with respect to a curve skeleton of input shape
 - Keep track of the planar 2D cut profiles along the skeleton
 - A part = swept volume between "critical points" of profile function



Classification of approaches

Surface-based: most common

Boundary-based : cut shape into parts

- feature (edge) extraction followed by cut formation

Region growing, e.g., watershed

Clustering: k-means, fuzzy clustering, spectral clustering

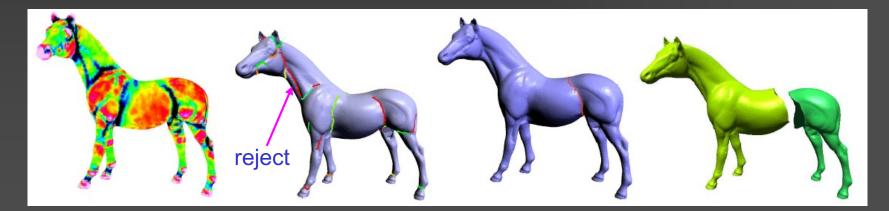
Volume-based: similar but work with voxels

Within each class, skeleton-, surface-, or volume-based, there can be model- or data-driven approaches

Boundary-based & model-driven

Mesh scissoring, basic steps:

- 1. Feature edge extraction from a dense mesh
- 2. Feature selection rely on user intervention for feature rejection
- 3. Contour completion to form closed cuts
- 4. Post processing of contours to better adapt to real features



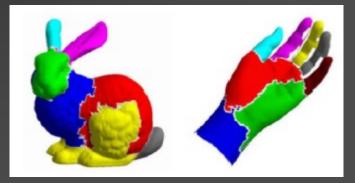
Region-growing: watershed (aside)

Think about water flowing down to bottom of basins

- 1. Assign a weight, e.g., curvature, to each vertex
- 2. Threshold weights to identify local minima or minima plateau
- 3. Flow each unlinked vertex v : link v to neighbor with smallest weight
- 4. Continue until reaching a local minima or minima plateau
- 5. All vertices that can flow to such a minima or minima plateau belong to the same segment
- 6. Flow is from cut boundary (dividing water basins) to region centers

Watershed: pros and cons (aside)

- Pro: no need to specify how many segments fairly automated
- Pro: pretty fast algorithms, e.g., using fast marching
- Con: prone to over-segmentation, so need to post merging
- Con: boundaries may not be smooth



Clustering-based approaches

k-means clustering in spatial domain [Shlafman et al. 02]

- Fuzzy k-means clustering [Katz & Tal 03]
- k-means clustering in the spectral domain [Liu & Zhang 04]

• Other clustering methods are possible; there are many alternatives!

Clustering problem

Given a set of data points, group them into clusters of similar points

An extremely important problem in machine learning and Big Data

- Pattern classification, e.g., grouping of geometric shapes, protein structures, faces, gestures, customers, etc.
- Vector quantization for compact representations
- Also a challenging problem: what is a cluster?

"... Classification, in its widest sense, is necessary for the development of language which consists of words which help us recognize and discuss the different types of events, objects, and people we encounter."

— Everitt, Landau, and Leese, *Cluster Analysis*, 4th edition, 2001

Important issues

Measurement of proximity/affinity/similarity between data is KEY!

- How to mix binary data, category data, with numerical data
- Continuous data with variables of different types and scales
- Missing data values
- How to determine number of clusters?
 - Try many of them and see what gets the best result
- How to evaluate quality of clustering results
 - Various measures: Fisher's criterion, silhouette coefficients, etc.

$$\gamma(A,B) = \frac{(\mu_A - \mu_B)^2}{\sigma_A^2 + \sigma_B^2}$$

K-means clustering

Perhaps the most well-known, also known as Lloyd or Lloyd-Max algorithm

 Given a set of data points, compute K clusters S_j that minimize the total squared distances from the points to their respective cluster centers μ_j

minimize
$$J = \sum_{j=1}^{K} \sum_{x \in S_j} \left\| x - \mu_j \right\|^2$$

An unsupervised learning technique and NP-hard

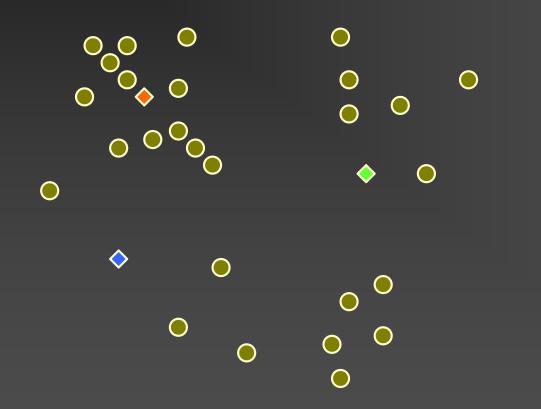
- <u>Algorithm</u>: iteratively assigns data to its closest cluster center and then recompute the cluster centers, starting with random centers (vs. *k*-medoids)
- Bad start can lead to (numerous) bad local minima

k-means illustrated: k = 3



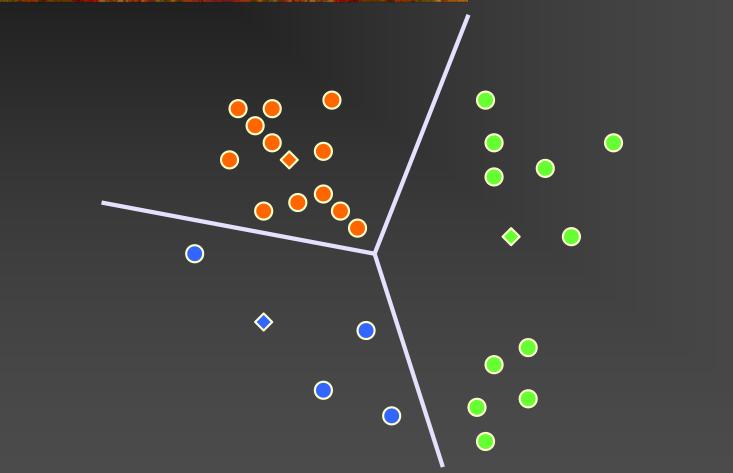
37

Random cluster centers/centroids

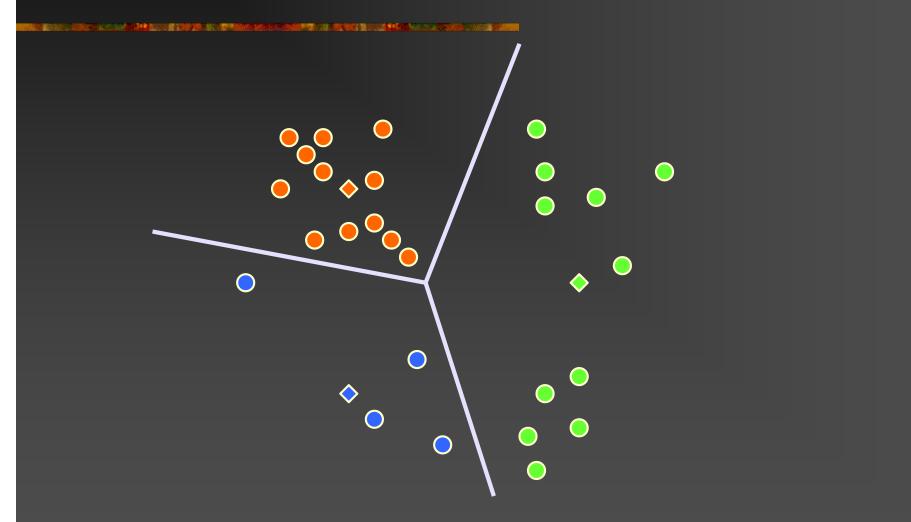


38

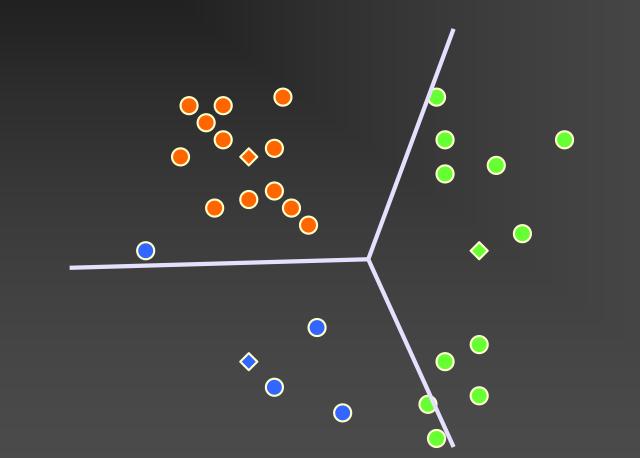
Assign points to cluster centers (Voronoi)



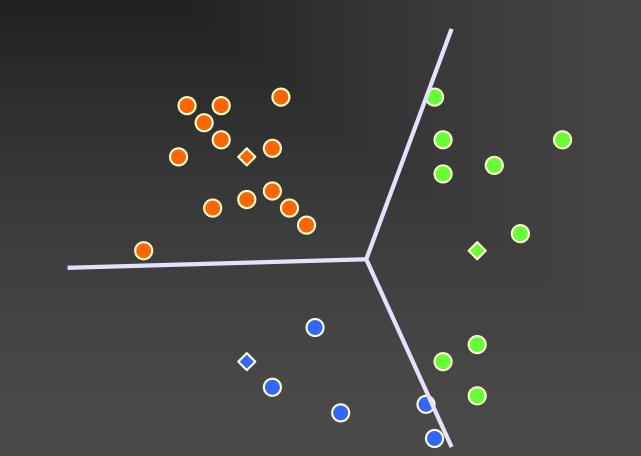
Re-compute cluster centroids



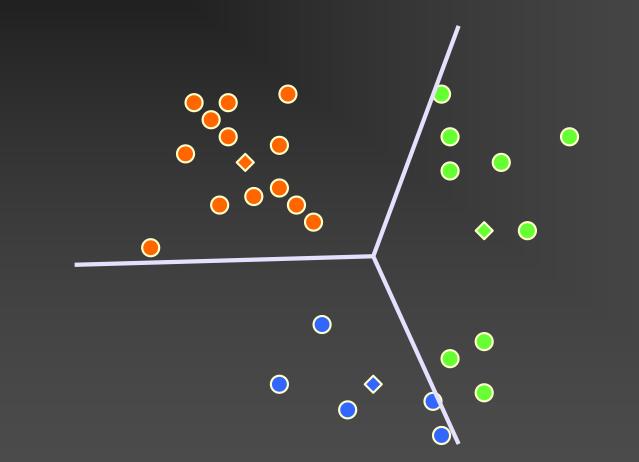
Re-computer Voronoi diagrams

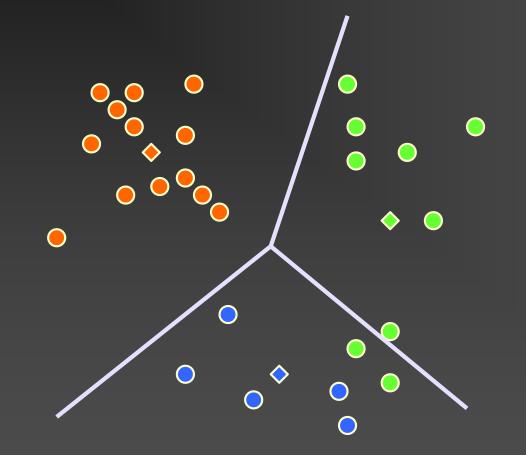


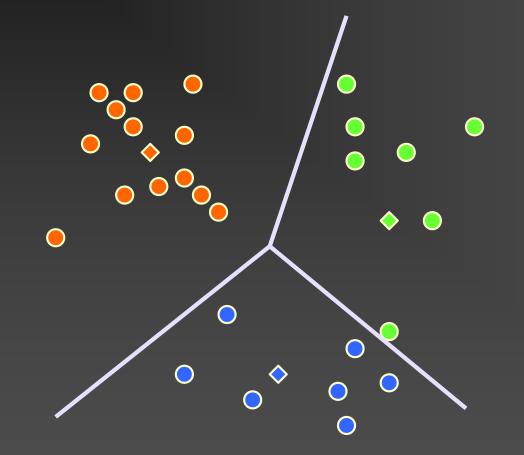
Re-assign points to cluster centers

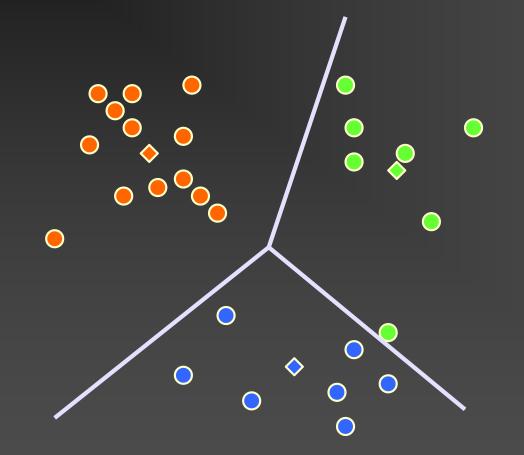


Reference - Aller - Aller - Aller - Barry Bar

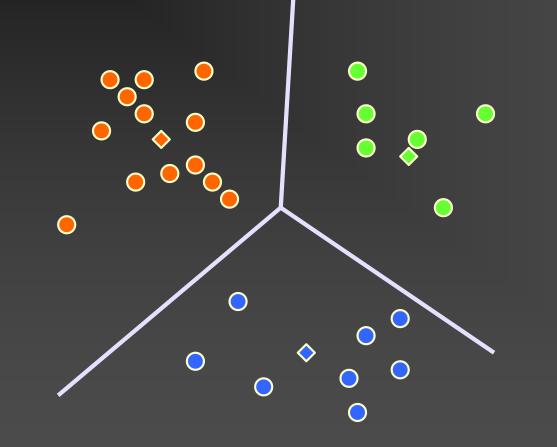








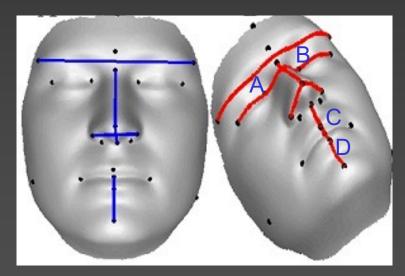
Converging



k-means for mesh segmentation

• Compute pair-wise distances between mesh faces — $\Theta(n^2 \log n)$

- Distances have both geodesic and angle components
 - Place more emphasis on concave angle distances due to minima rule
 - So faces separated by **concave regions** are less likely to be clustered

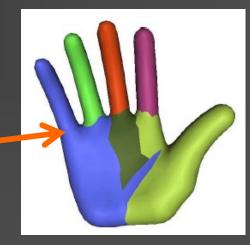


d(A, B) < d(C, D)

k-means for mesh segmentation

• Compute pair-wise distances between mesh faces — $\Theta(n^2 \log n)$

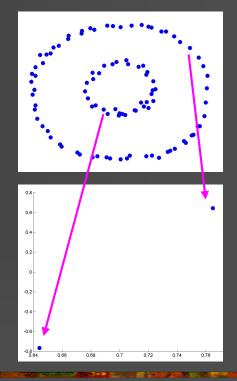
- Distances have both geodesic and angle components
 - Place more emphasis on concave angle distances due to minima rule
 - So faces separated by concave regions are less likely to be clustered
- All *k*-means approaches face:
 - Local minima
 - How to choose k not easy
 - Chaining over featureless regions
 - Jaggie boundaries no boundary optimization



Improvements over classical k-means

Fuzzy k-means [Katz & Tal 03]

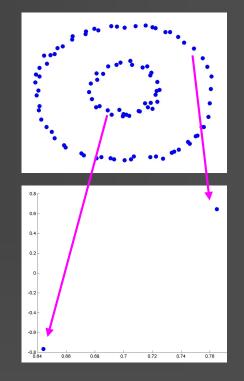
- Identify fuzzy region containing faces whose membership is uncertain
- Explicit graph min-cut over fuzzy region
- Iterative and expensive $\Theta(n^2 \log n)$
- Spectral k-means [Liu & Zhang 04]
 - Clustering is more pronounced in spectral domain
 - No need for graph min-cut
 - Improved boundary
 - Transform mesh elements vis spectral embedding



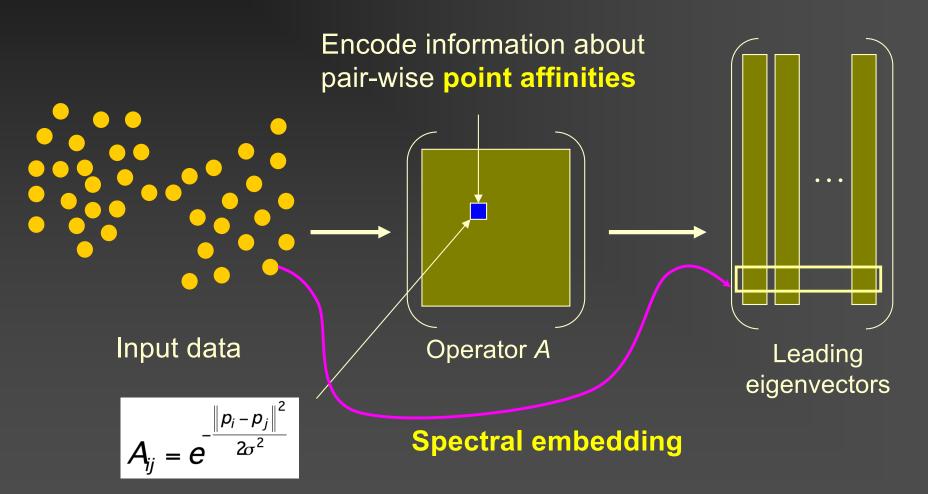
Spectral embedding (aside)

Use eigen-decomposition of graph adjacency (or Laplacian) matrix

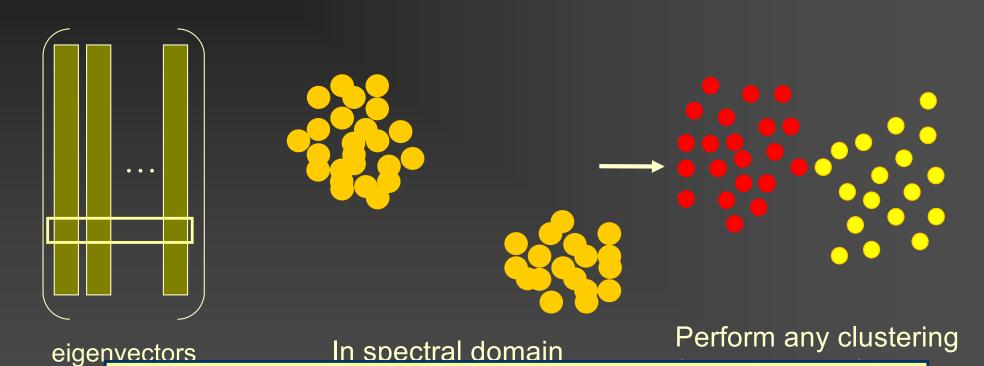
- Generalize adjacencies to encode pair-wise distances or affinities
 - Affinities encode pair relations between mesh elements
- Spectral k-d embedding from k leading eigenvectors
- Use of Laplacian matrix L = D A is also possible
- Example:
 - *k*-means clustering in the spectral domain
 - Distance is Euclidean and using a Gaussian



Spectral clustering (aside)



Spectral clustering (aside)



Key app in computer graphics: shape segmentation, also in surface reconstruction, etc.

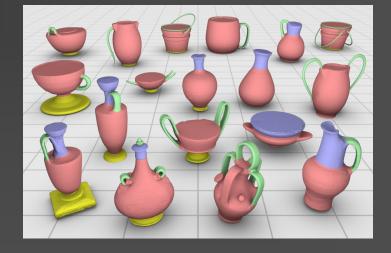
A lot of coverage from Machine Learning literature

Data-driven mesh segmentation

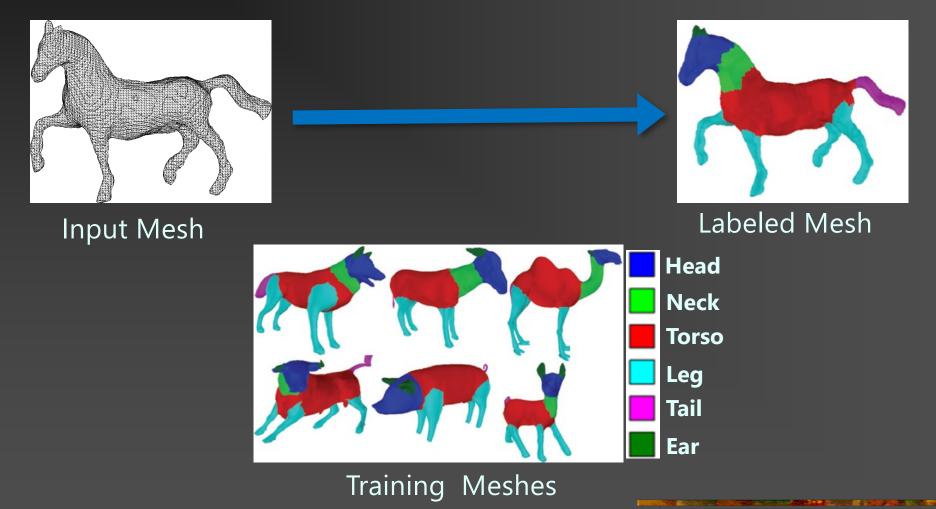
- Supervised learning [Kalogerakis et al. 09]
 - Turn segmentation into a labeling problem
 - Learn from human labeling of meshes
 - 380 human labeled meshes over 19 categories

Data-driven mesh segmentation

- Supervised learning [Kalogerakis et al. 09]
 - Turn segmentation into a labeling problem
 - Learn from human labeling of meshes
 - 380 human labeled meshes over 19 categories
- Unsupervised learning [Sidi et al. 11]
 - Co-analysis: analyzing a set together
 - Weak knowledge utilized
 - Resulting in a co-segmentation over set
- Semi-supervised learning [Wang et al. 12]



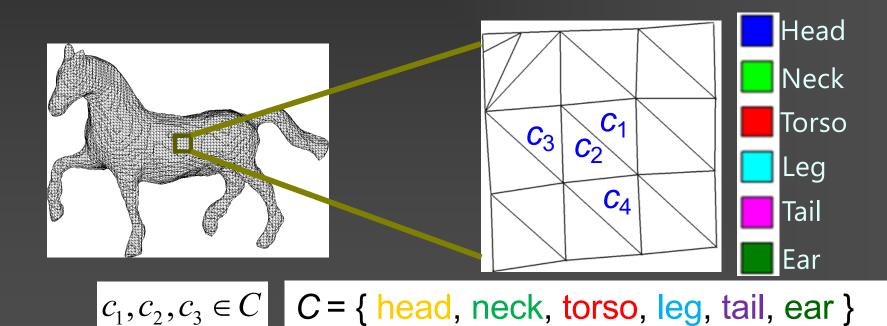
Learning mesh segmentation (2009)



Labeling problem

Each face is encoded with a (unary) feature vector (curvature, etc.)
 Edge feature encodes label compatibility, geodesic/angle distance

Face labeling solved by a classifier based on training data

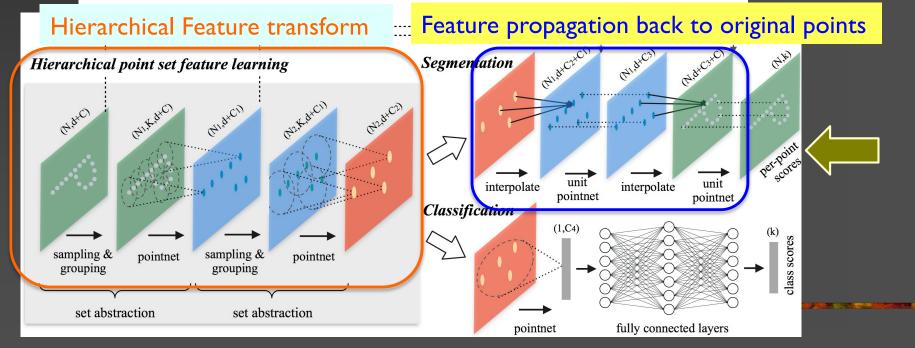


Modern-day segmentation using NNs

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

Charles R. Qi Li Yi Hao Su Leonidas J. Guibas Stanford University

Conference on Neural Information Processing Systems (NIPS) 2017



Unsupervised co-segmentation (aside)

From one, two, to a set (aside)

Na 🗤 🗤 🗤 👘 👘 👘 👘 👘 👘 👘 👘 🖉 👘 🖉

- Classical segmentation: one shape
- Correspondence: a pair of shapes

From one, two, to a set (aside)

- Classical segmentation: one shape
- Correspondence: a pair of shapes
- Can we gain by having a set?
 - A set should contain more information
 - Training set is useful, but expensive to obtain
 - Final result is a segmentation over the entire set: co-segmentation

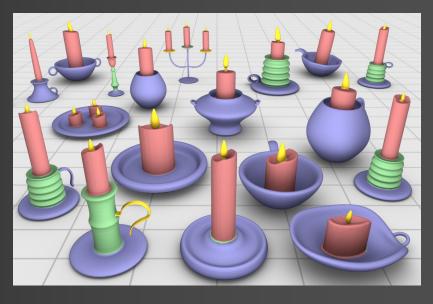
Unsupervised (weakly) learning (aside)

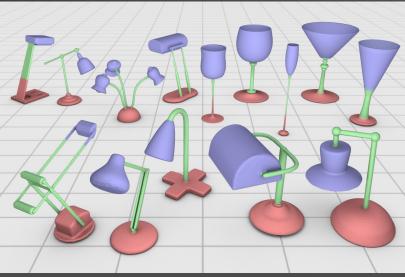
References and references and references of the two two devices and references and references and the two references and references

- No training data to define prior knowledge
- Everything is learned from the input set
- Weak knowledge: input set belongs to the same family, e.g., all cars, chairs, or vases, ...
- Key criterion is the consistency of the segmentation over whole set

Power of a set (aside)

- Two dissimilar parts maybe clustered via "third parties" in the set
- The set provides necessary linkage

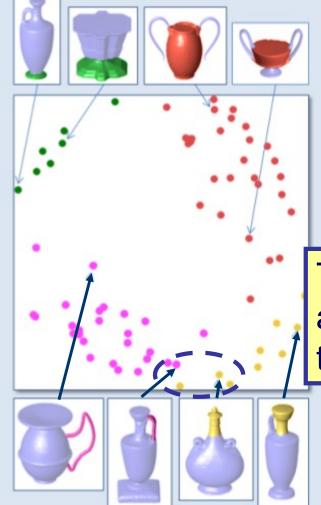




How it works ... (aside)

- Start by identifying candidate shape segments in each shape
- Candidates segments obtained by any reasonable existing algorithm
 - Key is to obtain a consistent segmentation across the set!
- Map each candidate segment into a feature space
- Perform clustering analysis ...

How it works ... (aside)

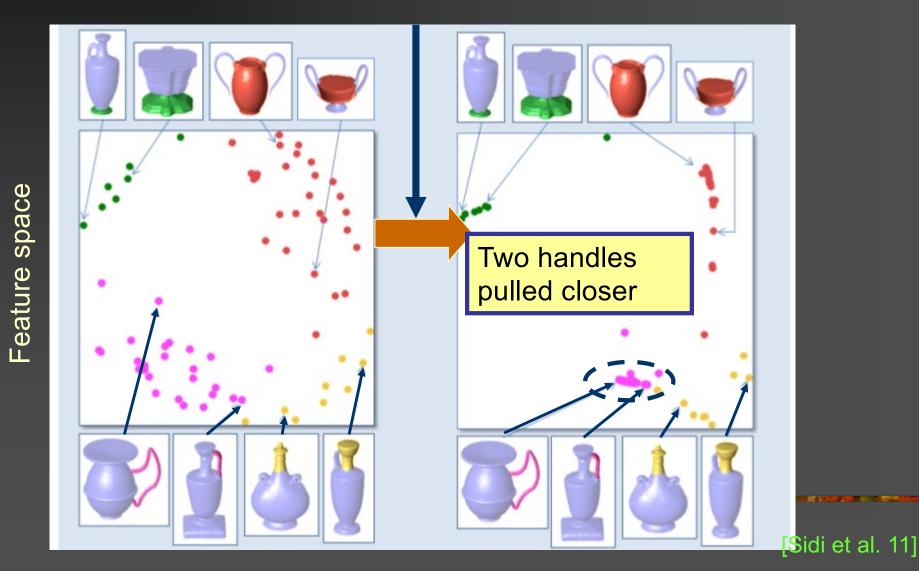


Candidate shape segments mapped to some feature space

Two different kinds of segments are closer to each other than to their respective matches

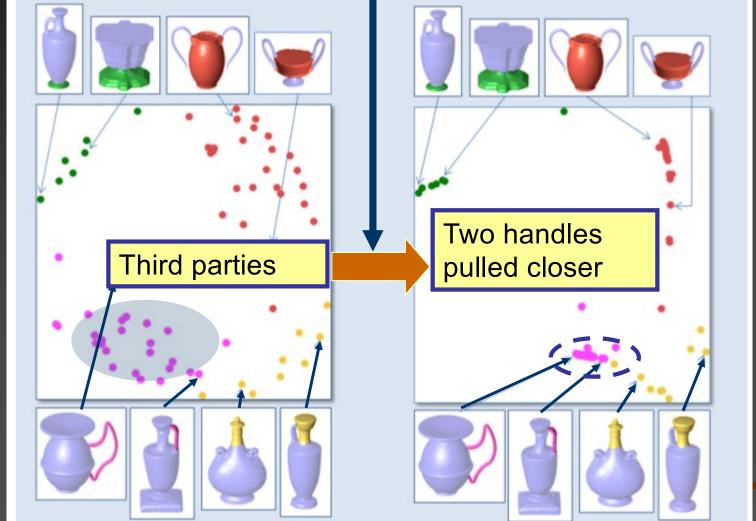
Feature space

After a "spectral transform" (aside)



66

Connection made by "3rd parties" (aside)



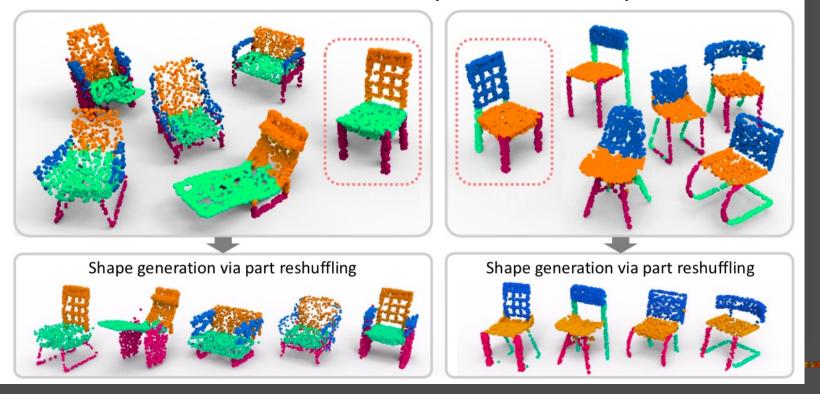
[Sidi et al. 11]

Feature space

Deep learning co-segmentation (aside)

AdaCoSeg: Adaptive Shape Co-Segmentation with Group Consistency Loss

Chenyang Zhu^{1,2} Kai Xu^{2*} Siddhartha Chaudhuri³ Li Yi⁴ Leonidas Guibas⁴ Hao Zhang¹ ¹Simon Fraser University ²National University of Defense Technology ³Adobe Research and IIT Bombay ⁴Stanford University



[Zhu et al. 22]

- Human-in-the-loop machine learning
- Key is to minimize human-labeling efforts: a trade-off

Active Co-Analysis of a Set of Shapes

Yunhai Wang^{*} Shmulik Asafi[†] Oliver van Kaick[‡] Hao Zhang[‡] Daniel Cohen-Or[†] Baoquan Chen^{*} *Shenzhen VisuCA Key Lab/SIAT [†]Tel-Aviv University [‡]Simon Fraser University

Human-in-the-loop machine learning

Key is to minimize human-labeling efforts: a trade-off

Active Co-Analysis of a Set of Shapes

Yunhai Wang^{*} Shmulik Asafi[†] Oliver van Kaick[‡] Hao Zhang[‡] Daniel Cohen-Or[†] Baoquan Chen^{*} *Shenzhen VisuCA Key Lab/SIAT [†]Tel-Aviv University [‡]Simon Fraser University

Initial segmentation: supervised or unsupervised

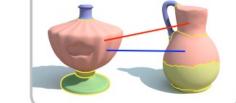
[Wang et al. 12]

Human-in-the-loop machine learning

Key is to minimize human-labeling efforts: a trade-off

Active Co-Analysis of a Set of Shapes

Yunhai Wang^{*} Shmulik Asafi[†] Oliver van Kaick[‡] Hao Zhang[‡] Daniel Cohen-Or[†] Baoquan Chen^{*} *Shenzhen VisuCA Key Lab/SIAT [†]Tel-Aviv University [‡]Simon Fraser University



[Wang et al. 12]

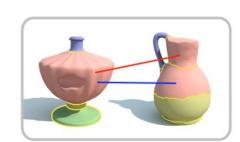
Human-in-the-loop machine learning

Key is to minimize human-labeling efforts: a trade-off

Active Co-Analysis of a Set of Shapes

Yunhai Wang^{*} Shmulik Asafi[†] Oliver van Kaick[‡] Hao Zhang[‡] Daniel Cohen-Or[†] Baoquan Chen^{*} *Shenzhen VisuCA Key Lab/SIAT [†]Tel-Aviv University [‡]Simon Fraser University

Segment again based on new constrains and repeat

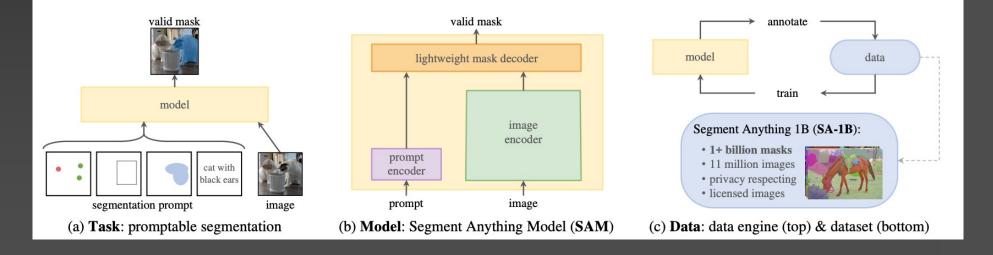


[Wang et al. 12]

Zero-shot with LFMs (aside)

Segment Anything

Alexander Kirillov^{1,2,4} Eric Mintun² Nikhila Ravi^{1,2} Hanzi Mao² Chloe Rolland³ Laura Gustafson³ Tete Xiao³ Spencer Whitehead Alexander C. Berg Wan-Yen Lo Piotr Dollár⁴ Ross Girshick⁴ ¹project lead ²joint first author ³equal contribution ⁴directional lead Meta AI Research, FAIR



[Kirillov et al. 23]