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Single-view input

n A prototypical computer vision problem: 3D geometry/surface 

reconstruction from single or multiple view sensors (images)

n Classical “shape from shading” result
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Multi-view input

n A prototypical computer vision problem: 3D geometry/surface 

reconstruction from single or multiple view sensors (images)

n Visual hull: shape from multi-view silhouettes
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Learning-based: single-view

n A prototypical computer vision problem: 3D geometry/surface 

reconstruction from a single or multiple view sensors (images)

n One of the most intensely studied problems in geometric deep learning

[IM-Net: Chen and Zhang 2019]
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Learning-based: multi-view

n A prototypical computer vision problem: 3D geometry/surface 

reconstruction from a single or multiple view sensors (images)

n NeRF (2020): Neural Radiance Field, from multi-view images

n Novel view synthesis (NVS): need many images and long training

[Middenhall et al. 2020]
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Learning-based: multi-view

n A prototypical computer vision problem: 3D geometry/surface 

reconstruction from a single or multiple view sensors (images)

n NeRF (2020): Neural Radiance Field, from multi-view images

n Connections between IM-Net and NeRF

[Middenhall et al. 2020][IM-Net: Chen and Zhang 2019]



See: Account from “NeRF Explosion”
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https://dellaert.github.io/NeRF/
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This week: from a “graphics origin”

Given a set of unorganized 3D points X = {x1, …, xn} sampled from 
an unknown surface M, construct a surface M’ that approximates M. 

Surface reconstruction from unorganized point cloud data
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Background

n Input: point cloud obtained via laser scanning with no normal information

n Output: a triangle mesh

n Surface M’ can either interpolate or approximate X

n Solve a general problem: no structure or organization of points assumed …

n Here structural information refers to specific knowledge about the arrangement 
of the point samples, e.g., contours on parallel slices in MRI

n Some info about the device specs can be known, e.g., scanning accuracy

n Normal information may be available via photometric stereo [Woodham 80]
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Photometric stereo

n Estimate surface orientation from different images



11

Many related problems

n (Static) surface registration: bring several partial scans to alignment

n Key: point or region correspondence - a topic we cover later
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Many related problems

n Multi-view geometry reconstruction, e.g., Microsoft photosynth

n Sub-problems: shape-from-shading, e.g., photo to point clouds, 
and (multi-view) point cloud registration 
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Many related problems

n Time-varying surface tracking, e.g., for deformation or animation
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Problem scales

n From single objects (our focus) to scenes to buildings and cities!

Scaling up from objects to scenes [Shao et al. Siggraph Asia 2012]
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Our problem: challenges

n Reconstruction should cover a range of shapes

n Arbitrary topology, even if manifold, and arbitrary details

n Shapes with boundaries, holes, missing data, etc.
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Challenges

n Ensure consistent surface orientation 

n Deal with noise in the data

n Recover sharp features: not easy if points are not on edges

Feature-sensitive reconstruction [Kobbelt et al. 2001]
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Missing data and noise
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Theoretical challenge (aside)

n Ensure “correctness” of reconstruction, meaning

n Topology correctness

n Geometry precision: as sampling                                                         
density increases, reconstruction                                                                
approaches the original surface

n Correctness guarantees possible if sampling is sufficiently “good” 
– not easy to achieve or define “goodness” [Amenta et al. 98]

n Related to local feature size: distance to medial axis
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Medial axis (aside)

n Singularities or meeting fronts of a “grass-fire flow”

n Set of all points that have at least two closest points to the boundary

n Medial axes for 3D shapes have sheets                                               
rather than curves
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Classical main approaches

n Reconstruct zero-set of a 3D scalar field, e.g., via marching cubes

n Use of tangent plane estimators –  [Hoppe et al. 92]

n Use of radial basis functions – [Carr et al. 01] 

n Utilizing Voronoi diagrams or Delaunay Tetrahedralizations – 
[Amenta et al. 01, Boissonnat 84, Dey & Goswami 03, Kolluri et al. 04]

n Power crust algorithm – [Amenta et al. 01]

n Deform-to-fit with energy minimization

n e.g., inflating a balloon from inside the object – [Terzopoulos, Witkin, and 
Kass 88 & 91, Miller 91]
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Our coverage

n H. Hoppe et al., “Surface Reconstruction from Unorganized Points.” 
SIGGRAPH 92

n W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm,” SIGGRAPH 87

n A sub-algorithm of the surface reconstruction algorithm

n One of most fundamental surface reconstruction algorithms itself

n Input is volumeric data or scalar field of signed distances to surfacee

n Algorithm constructs approximation of the zero-set of the scalar field
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Our coverage

n H. Hoppe et al., “Surface Reconstruction from Unorganized Points.” 
SIGGRAPH 92

n W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm,” SIGGRAPH 87

n A sub-algorithm of the surface reconstruction algorithm

n One of most fundamental surface reconstruction algorithms itself

n Input is volumeric data or scalar field of signed distances to surfacee

n Algorithm constructs approximation of the zero-set of the scalar field

https://www.computer.org/csdl/magazine/cg/2020/02/09020249/1hS2S5b2V6E
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Assumptions

n … on data noise (measurement error)

n The samples X = {x1, x2, …, xn} are d-noisy, i.e., each sample is no farther than 
d  away from its true position

n Features of size less < d  cannot be recovered reliably

n … on sampling density

n r-dense: within each sphere centered at a point on surface M having radius r, at 
least one sample is drawn

n This assumption is necessary in order to distinguish between holes in surface 
(boundary) and holes in the sampling

n If there is an empty sphere with radius (d + r) embedded in the sampling, then it 
is a hole in the model
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Overview of Hoppe’s approach

n Input: set X of unorganized 3D points (d-noisy; r-dense) sampled 
near surface M

n Algorithm in two stages

1. Obtain an implicit function f : D ® R, where D Í R3, is a region near 
true surface M, and f(p) estimates the signed distance from p to M

2. The zero-set Z(f ) of f is an estimate of M. A contouring or marching-
cube algorithm approximates Z(f ) by a triangle mesh

n Output: a connected, consistently oriented 2-manifold triangle mesh

n A general paradigm: implicit function f can be obtained in various 
ways, Hoppe paper uses a set of approximate tangent planes
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Learning of implicit/signed distance functions

n Generates surfaces with best visual quality so far

Awesome implicit neural representations: 
https://github.com/vsitzmann/awesome-implicit-representations 
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Signed distance function (SDF)

n Distance from a point p to a surface M is the                               
distance from p to a closest point on M

n Sign depends on which side of M point p lies

n Since M is unknown, it is approximated by a set of oriented 
tangent planes – one per data point

n Tangent plane for xi is defined by a center oi and a unit normal ni

p
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Computing SDF, given tangent planes

n Determine region D close to surface M

n If p Î D, the signed distance from p to M is a projection

f (p) = (p – oi ) × ni

     where oi is the tangent plane center that is closest to p

n If the shortest distance from a point p to the point set X is > (d + r), then p 
cannot be on the surface M

n Otherwise, the sphere centered at p with radius d + r must contain a point from 
X, since the samples are d-noisy and r-dense

n p is possibly near a hole on the surface ® f(p) is undefined

n The remaining set of p define D

ni

p

oi
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Tangent plane estimation – key!

n How to define a tangent plane associated with a sample xi?

n Define: Nbr(xi, k) = the set of k nearest neighbors (kNN) of a data 
point xi, where k is a user input value

n Center oi is the centroid of Nbr(xi, k)

n Normal ni is determined by principal component analysis (PCA)

n The oriented plane passing through oi having normal +/– ni provides 
the least squares best fit to points in Nbr(xi, k)
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PCA: Linear dimensionality reduction

n Linearly map a set of m-dimensional vectors {a1, …, an}, to an k-
dimensional subspace, k < m, so as to minimize the 
approximation error in the least square sense 

=k
m

m

aiProjection matrix
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n Project data points ai onto the leading k eigenvectors (for the k largest 
eigenvalues) of the covariance matrix S for the original data set a

S = (a – ā1T)(a – ā1T)T = Sj=1..n(ai – ā) × (ai – ā)TÎ R m ´ m

     where ā is the (uniform) mean of data points in a.

n Eigenvectors: orthogonal and major modes of variations

n A k-dimensional embedding is obtained by

â(k) = E(k)
Ta, 

where E(k) Î R m ´ k has k columns of                                                       
leading eigenvectors of S. = E(k)

T

Principal component analysis (PCA)



PCA
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n Project data points ai onto the leading k eigenvectors (for the k largest 
eigenvalues) of the covariance matrix S for the original data set a

S = (a – ā1T)(a – ā1T)T = Sj=1..n(ai – ā) × (ai – ā)TÎ R m ´ m

     where ā is the (uniform) mean of data points in a.
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Normal of the tangent plane

n Covariance matrix S of 3D points in Nbr(xi, k) is a symmetric (positive 
semi-definite) 3 ´ 3 matrix

n The normal chosen for Nbr(xi, k) is +/– of the eigenvector of S 
corresponding to the smallest eigenvalue of S

n The 2-dimensional subspace, i.e., the plane, is spanned by the other 
two eigenvectors

n The exact sign of the normal is chosen so that nearby tangent planes 
are consistently oriented
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Derivation of PCA (aside)

n Given a set of 3D points x1, …, xk, find a best fitting plane (o, n) in 
the least squares sense, where o is a point on the plane and n is 
the unit plane normal

n The minimization problem: 

n Use Lagrange Multiplier:

n We assume that n = (nx, ny, nz)T ¹ 0. 

n Differentiate F with respect to o, we have

n Differentiate F with respect to nx, ny, nz and then combine into matrix 
form, we have

å
=

=×-
k

i

TT
i nnnox

1

2 1  subject to  ])[(min

å
=

--×-=
k

i

TT
i nnnoxnoF

1

2 )1(])[(),,(  min ll

nnoxox
k

i

T
ii l=×ú

û

ù
ê
ë

é --å
=1

))((

0)(
1

=×ú
û

ù
ê
ë

é -å
=

nox
k

i

T
i



35

n So the normal n is an eigenvector of the covariance matrix and 
there are three local minima corresponding to three eigenvectors

n Alternatively, the minimization problem is really

n By Courant-Fischer Theorem, this is just an eigenvalue problem
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Consistent normal orientation

n A harder part of the algorithm – it tells topological information

n One can model it as a global graph optimization problem

n One node Ni per tangent plane

n Two nodes connected if the corresponding centers are sufficiently 
close (where consistent orientation is enforced)

n Cost of edge (Ni, Nj) is ni × nj  (maximum if coplanar)

n Problem: Find orientation to maximize the total cost in graph

n But this optimization problem is NP-hard (i.e., its decision version 
is NP-complete)
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Approximate solution

n First, build a Riemannian graph on tangent plane centers

n Riemannian graph: encodes the geometric proximity of the tangent 
plane centers

n Riemannian graph is built upon the Euclidean minimum spanning 
tree (EMST) – connected, tends to connect near neighbors, but there 
are not enough edges

n Add an edge (Ni, Nj) to EMST if oi is one of the k closest neighbors of 
oj or vice versa
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Recall: EMST

n Given a set of points L, an EMST is a spanning tree of L with the 
minimum total cost (edge cost measured by Euclidean distance)

n Can be obtained via Kruskal’s minimum spanning tree algorithm

n Conceptually consider complete graph on L with Euclidean distances as 
edge weights

n Greedily add shortest edges that do not form a cycle

n Stop when no edges can be added any more
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EMST and Riemannian graph
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Orientation propagation

n To start propagation, choose orientation for an initial plane

n Propagate this orientation to its nearby planes by traversing the 
Riemannian graph

n Traversal order is important

n A heuristic: propagate along low curvature                               
directions –                                

n favor propagation from plane i to j if they are                                       
almost parallel

n less likely to be a mistake
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Algorithm

n Assign weight (1 – |ni × nj|) to edge (Ni, Nj)

n Propagate along edges of minimum spanning tree of the resulting 
graph (depth-first search)

n How to propagate from ni to next plane j ?

n If ni × nj < 0, nj = – nj

n How to choose an initial orientation?

n Normal of plane whose center has largest z value is forced to point to 
+z direction

ni

new nj

nj
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Result

MST of normal variation graph with 
edge costs colored

Oriented tangent planes as shaded 
triangles
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n f(p) is signed distance from p to “closest tangent plane”

n Since sampling is d-noisy and r-dense, if f(p) > d + r, then p 
cannot be on the surface M 

      ® f (p) is undefined in this case

n Otherwise, the signed distance from p to M is a projection

f (p) = (p – oi ) × ni

     where oi is the tangent plane center that is closest to p

Why is f(p) not the closest distance from p to any tangent plane?

Recall SDF
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Contour tracing

n Given the set of oriented tangent planes, SDF from points to 
these planes can be computed

n Next, need to extract the iso-surface corresponding to the zero-
set of the signed distance function

n This can be done using a Marching Cubes (contour tracing) 
algorithm or one of its variants
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Preparation for cubes marching

n Divide 3D space into cubical grids

n Sample signed distance values at cube vertices

n Only choose cubes that intersect the                                               
zero iso-surface for efficiency

n Size of cube d » d + r, why? 

n if d >> d + r, may fill holes or join boundaries

n if d too small, complexity too high

n No intersection between zero-surface                                             
and cube if a vertex has undefined f(p)
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Marching cubes algorithm

n Input: a scalar field sampled over the vertices of a cubical grid

n Output: a set of triangles approximating the zero iso-surface of the 
scalar field

n Basic idea:

n Process (march) cubes one at a time

n Look at scalar values at vertices to decide how the iso-surface 
intersects the cube

n Generate triangles reflecting these intersections
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2D case: iso-contouring

n Inside iso-curve º <   and   iso-value º  –
n Outside iso-curve º >   and   iso-value º  +
n How many topologically different cases are there?

+

+ +

+ +

–

+

–

+ –

+–

+

+–

+

+ –

+–
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2D case: iso-contouring

n Inside iso-curve º <   and   iso-value º  –
n Outside iso-curve º >   and   iso-value º  +
n How many topologically different cases are there?

+

+ +

+ +

–

+

–

+ –

+–

+

+–

+

+ –

+–

Topology 
difference
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Iso-contouring algorithm sketch

Divide-and-conquer

1. Look at (march) one cell at a time

2. Compare the values at 4 corners 
with iso-value

3. Linear interpolate along edges for 
intersection points

4. Connect interpolated points 
together
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Marching cubes

n Generalize iso-contour algorithm to 3D

n March cubes one at a time

n Linear interpolation again

n There are more cases:

n Total of 28 = 256 cases

n Reduce to 15 topological cases relying 
on value and rotational symmetry
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Improvements

n Exploit spatial coherence

n e.g., for an interior cube, only three new                                               
linear interpolations are needed, if cubes                                                
are visited in scan-line order

n Need to find efficient ways for cube traversal 

n Typically, roughly n2 cubes intersect an iso-surface in n3 cube grid

n e.g., can use an octree to skip empty regions – a great deal of research 
along this line
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The ambiguity problem

n Certain marching cube cases have more than one possible 
triangulations – may create a hole mistakenly

Outside

Inside
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Fixing the ambiguity problem

n One consistent way to do it 

n Need to come up with these consistent triangulations

There is another 
opposite case: 

keep case 3 and 
change case 6 to 
6A
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Ambiguous faces

n A face with two opposite vertices having the same sign

n How to resolve this ambiguity? — use the asymptotic decider 
[Nielson & Hamman 91] — somewhat complex and adds cases to 
original marching cubes

+-

+ -
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Asymptotic decider: rough idea

n Need to examine iso-values inside the face

n Inside values are unknown, approximate via bi-linear interpolation

+-

+ -

+ or -? 

+-

+ -

-

+

+-

+ -

+
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Summary of Hoppe’s approach

n Surface reconstruction from unorganized points through iso-surface 
extraction over a signed distance field computed with respect to a 
set of oriented tangent planes approximating the surface

n Space subdivision helps speed up algorithm (empty cube skipping)

n Constructed surface approximates point cloud

n No theoretical guarantee that the surface is correct

n No mechanism for feature preservation
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Unreliability of PCA

n Thick point cloud – need thinning

n Non-uniform point distribution

n Close-by surface sheets
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New propagation cost (aside)

n Again, the close-by surface sheets problem

n Possible solution: also look at the propagation direction

n Sharp feature detection: should prevent propagation there

Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or, "Consolidation 
of Unorganized Point Clouds for Surface Reconstruction," ACM Trans. on 
Graphics (Proceeding of SIGGRAPH Asia 2009), Article 176. 

http://www.cs.ubc.ca/~hhzhiyan/
http://www.cs.ubc.ca/~ascher/
http://www.cs.tau.ac.il/~dcor/
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Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or, "Consolidation 
of Unorganized Point Clouds for Surface Reconstruction," ACM Trans. on 
Graphics (Proceeding of SIGGRAPH Asia 2009), Article 176. 

New propagation cost (aside)

http://www.cs.ubc.ca/~hhzhiyan/
http://www.cs.ubc.ca/~ascher/
http://www.cs.tau.ac.il/~dcor/
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Other classical approaches

n Voronoi-based with theoretical guarantee – by N. Amenta et al., “A New 
Voronoi-based Surface Reconstruction Algorithm,” SIGGRAPH 98

n a-shape based approaches – [Bajaj, Bernardini 95]

n Deform-to-fit with energy minimization (e.g., inflating a balloon in the object) 
– [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]

n Use of radial basis functions – [Carr et al. 01, Iske 02] 

n Use of Poisson reconstruction – [Kazhdan et al. 06]

n Definition of point set surfaces, e.g.,  MLS = Moving Least Squares – [Levin 
et al. 01, Alexa et al. 02] 



From MC to NMC

n Use machine learning to improve iso-surfacing
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Neural Marching Cubes (NMC) – next week
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