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Assumed background and level of coverage
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• Not a machine learning class, on “need-to-know” basis

• High-level coverage, with some key basics

• Will not assume much past ML experience, if at all

• Focus more on representation learning of 3D shapes

• Focus more on generative models, what graphics is about



What sort of learning are we talking about?
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• Try to mimic or simulate how our brain functions

• Neurons as elementary computational units

• Use of artificial neural networks, which have a long history 

tracing back to at least early 1990’s

• Most machine learning or deep learning that people talk 

about today utilize neural networks

• Deep learning uses deep neural networks



Neural network basics
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• Let us start with a single neuron to model a perceptron, 

•                                                                                is called an

   activation function, which is often non-linear



Activation function
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• Desirable properties:

• Nonlinearity: ensures 

universal approximation

• Differentiability

• Monotonicity

• Etc.



Multi-Layer Perceptron (MLP)
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• A feed-forward network: no loops or cycles

Input layer

Output layer with 
one or more 
output valuesHidden layers



“Train” a Network
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Determine the weight and biases so that the network delivers the assigned job 



Loss function
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A function quantizing the discrepancies between the current network performance and 
the actual goals

Like throwing a darts, knowing how far it is from the center (the loss) helps you (the 
network) tune your force (weight and bias)



Computing the network weights
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• Using back-propagation and gradient decent

• Given training pairs {(x(i), y(i))}, i=1,…,m, optimize weights W, b to 

minimize

     See: http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

http://neuralnetworksanddeeplearning.com/chap2.html

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://neuralnetworksanddeeplearning.com/chap2.html


Beyond supervised learning
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• With the “training pairs”, we have supervised learning

• The input-output pairs serve as training or ground truth (GT) data

• Optimize neural network weights to minimize loss against target outputs

• Unsupervised learning

• Still optimize neural network weights to minimize some loss

• But loss definition does not need target or GT data: can “self-supervise” 

• Weakly supervised learning, e.g., one-shot learning

• Semi-supervised learning, e.g., active learning



Autoencoder for unsupervised learning
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• Network learns to reconstruct the input: learn identity 



Autoencoder for unsupervised learning
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• Network learns to reconstruct the input: learn identity 

Encoder Decoder

• By limiting the number of hidden 

units, it is forced to learn a 

compressed representation

• Representation learning

• Dimensionality reduction

See: 
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/



What is deep learning?
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• Use of large and deep (many layers) neural networks

• Many hidden layers and many weights: often deep and wide



Convolutional neural network (CNN)  
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• A CNN designed for object classification from images



Convolutional neural network (CNN)
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• A CNN designed for object classification from images

Softmax activation



Convolution: a “running” average
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Pooling: summarization to reduce spatial res
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Volumetric convolution: 3D CNN
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• Straightforward extension 

from image convolution

• Processes volumetric data, 

e.g., a 3D shape, or multi-

channel image data



Other variants of convolution
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• 1x1 convolution: reducing 

depth/channel resolution



Other variants of convolution
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• 1x1 convolution: reducing 

depth/channel resolution

• Deconvolution: upsampling



Other variants of convolution

21

• 1x1 convolution: reducing 

depth/channel resolution

• Deconvolution: upsampling

• Dilated convolution



Other variants of convolution
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• 1x1 convolution: reducing 

depth/channel resolution

• Deconvolution: upsampling

• Dilated convolution

• Graph convolution



Hand-crafted features vs. learned features
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• Hand-crafted: e.g., total curvature, normal distance, etc.

• CNNs start with raw images and perform seemingly 

“uneducated” operations …

• Learned features are 

reflected in network 

weights: sensitivity or 

activation w.r.t. certain 

patterns in the images 



Some key questions about CNNs/DNNs
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• How to design the network architecture?

• From feature hand-crafting to hand-crafting network architecture
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Some key questions about CNNs/DNNs
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• How to design the network architecture?

• From feature hand-crafting to hand-crafting network architecture

• How to design networks that generalize well to new data?

• Avoid overfitting?

• How to ensure there is enough data?

• Going to weak supervision or data augmentation

• How to improve training efficiency? 



Some key questions about CNNs/DNNs
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• How to design the network architecture?

• From feature hand-crafting to hand-crafting network architecture

• How to design networks that generalize well to new data?

• Avoid overfitting?

• How to ensure there is enough data?

• Going to weak supervision or data augmentation

• How to improve training efficiency? 

• Interpretability or explainability of the networks



Geometric deep learning
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• Learn to discriminate or generate geometric data

• Apply deep learning to 3D data

• Can we replicate success of generative DNNs for images?



Remarkable progress on image generation

• Progressive GAN (Generative Adversarial Network) [Nvidia, 2016/17]
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Remarkable progress on image generation

• Progressive GAN (Generative Adversarial Network) [Nvidia, 2016/17]

• Latest: BigGAN [Google Deepmind, 2018/19]

31
400 x 267 image resolution, using class conditionals



State of the art for 3D shape generation
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IM-NET: 5123 resolution, meshing by Marching Cubes
[Chen and Zhang, CVPR 2019]

DeepSDF: 3D shape completion from point scans 
[Park et al., CVPR 2019]

There are some unique challenges to training deep neural networks 
(DNNs) for 3D shape generation …



Unique challenge #1: representation
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• Unlike images or speech, there is no universally accepted 

representation or encoding for 3D shapes



Unique challenge #1: representation

34

• Unlike images or speech, there is no universally accepted 

representation or encoding for 3D shapes

• Alternatives: low-level representations

Mesh: a set of 
triangles

Volume: a grid of voxels Point cloud: a set of points



Unique challenge #1: representation
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• Many other representations

Structural: a set of partsProcedural: e.g., CSG rep Multi-view images
in MVCNN [Su et al. 2015]



DNN examples: multi-view CNN (MVCNN)
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• Reuse standard components of image-based CNNs

• Not geometric; designed for classification not generation

[Su et al. 2015]



3D ShapeNet: voxel representations
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[Wu et al. 2015]

• Straightforward generation of image CNNs, for classification



PointNet
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[Qi et al. 2017]

• First transform each 3D point into a high(1,024)-D feature.

• Then aggregate features into a signature for classification

• The max pooling ensures permutation invariance

Feature transform Feature aggregation



MeshCNN
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[Hanocka et al. 2019]

• Direct conv processing on irregular mesh connectivity 

• Mesh edges act as pixels in an image

• Mesh pooling reduces mesh resolution via edge collapse

Convolve edge features Mesh pooling via edge collapse



MeshCNN
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[Hanocka et al. 2019]

• Direct conv processing on irregular mesh connectivity 

• Mesh edges act as pixels in an image

• Mesh pooling reduces mesh resolution via edge collapse

Convolve edge features Mesh pooling via edge collapse

Most networks developed for these reps, in particular, those 
using convolutional neural networks (CNNs), are designed for 

discriminative analysis and recognition, not generation.



Unique challenge #2: 3D data challenge
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• Acquisition of and interaction with 3D contents are hard

62.5 million chair images

25K 3D chairs

Still lack of  “BIG 3D Data” to train (deep) machine 
learning algorithms for many analysis and synthesis 

tasks. 



Unique challenge #3: affordance/functionality
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• 3D objects or designs are meant to be used in real life

◦ Not enough to just have the right parts



43

• 3D objects or designs are meant to be used in real life

◦ Not enough to just have the right parts

◦ Not enough to just “look right” as an image or rendering

Unique challenge #3: affordance/functionality



Ultimate goal of 3D shape generation

• We live in 3D world to interact with our surroundings 

o We do not just see and observe, we use and we act …

44



• We live in 3D world to interact with our surroundings 

o We do not just see and observe, we use and we act …

• Our understanding does not stop at what things are

• Ultimately, the understanding is about

• how things are

• how to use them

45

That is functionality!

3D shapes need to function properly

Ultimate goal of 3D shape generation



Early work: theory of affordance (aside)

• Affordance is what the environment offers 

or affords the individual

• It presents opportunities for actions afforded 

by a specific object or environment

• Agents = humans/hands

J. J. Gibson, “The Ecological 
Approach to Visual Perception”, 

1979
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Affordance analysis in vision (aside)
CVPR 2011

• Fit canonical human poses into 3D 

scenes to detect sitting affordances
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Affordance analysis in vision (aside)

“An object is first identified as having important 

functional relations, […], perceptual analysis 

is derived of the functional concept […]

Nelson [1974]

CVPR 2011

• Fit canonical human poses into 3D 

scenes to detect sitting affordances



Affordance analysis in vision (aside)

“There’s little we can find in common to all 

chairs – except for their intended use.”

Minsky [1986]

CVPR 2011

• Fit canonical human poses into 3D 

scenes to detect sitting affordances



How to define affordance/functionality?

• Interactions between a 3D object with other objects (the 

agents) in a given scene context reflects its functionality

• Agents can be

◦ Humans or hands

◦ Other 3D objects

50



IBS: Intersection Bisector Surface (to describe the interaction)

IR: Interaction Region (to 

describe the object geometry）

[Zhao et al. TOG 2014]

How to represent object-object interactions
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[Hu et al. SIGGRAPH 2015]



Before functionality …

• Results of 3D generative NNs still visually unsatisfactory

◦ Low resolution and geometric/structural/topological noise
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3D-GAN 
[Wu et al. NIPS 2016]

PC-GAN for point clouds [Achlioptas 
et al. ICLR 2018]

It is important to find the right shape representations for training 
DNNs to generate quality 3D shapes



What is a shape?
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Shape vs. image
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vs.



Shape vs. image

• A shape is defined/characterized by its boundary/outline

• Image boundary is artificial: it is because we had to crop

55

vs.



Shape boundary is about what is inside/outside
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inside

outside



It is not really about feature inference
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vs. image 
convolution 

via CNNs

inside

outside
What features 
are in these 
boxes?



CNNs “see” textures, humans see shapes (aside)

“ImageNet-trained CNNs are biased towards texture; Increasing shape bias 
improves accuracy and robustness” [Geirhos et al. ICLR 2019]

58



To learn to generate shapes, we should ask …
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Is this point inside the shape?

Inside

Outside

Outside

Inside



To learn to generate shapes, we should ask …
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Inside

Is this point inside the shape?

Outside

Outside

Inside



A typical CNN-based shape generator
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Some code, e.g., 
noise or result of 
AE encoding



A typical CNN-based shape generator
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deconv

Some code, e.g., 
noise or result of 
AE encoding



A typical CNN-based shape generator
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deconv

Some code, e.g., 
noise or result of 
AE encoding

deconv



A mapping from features to voxel values
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Some code, e.g., 
noise or result of 
AE encoding

= f(         ) = mapping from some features, 
                    e.g., image features (= pixel
                    intensities) via an AE encoding 



3D generative adversarial network (3D-GAN)

• 3D shape as voxels: combine volumetric CNN and GAN

• Generative network maps 200d vector to 643 volume

3D-GAN [Wu et al. NIPS 2016]
65



Shape generation results by 3D-GAN

663D volumetric shapes generated from random latent vectors



Let us learn the right mapping …
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f(p, S) : is point p inside or outside shape S



Let us learn the right mapping …
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f(p, S) : is point p inside or outside shape S
e.g.,

f(p, S) = 1, if p is outside S 
  = 0, otherwise

• This is an implicit representation: a shape is composed of 

the set of all points satisfying an equation f(x) = 0

• Point p can be in R3, so it is a continuous representation



IM-NET: an implicit field generator
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• Learn mapping from a 3D point (x, y, z) to inside/outside 

status with respect to a 3D shape 

Shape encoding Inside/outside



IM-NET: an implicit field generator
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• Learn mapping from a 3D point (x, y, z) to inside/outside 

status with respect to a 3D shape 

IM-NET: trained on point-value pairs and learns shape boundaries

Traditional CNN-based decoders learn feature-to-voxel mappings. 
The features are voxel intensity distributions inside various boxes

Shape encoding Inside/outside



CNN vs. IM-NET for shape generations
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• CNN vs. implicit decoders on learning to generate A’s

• Networks were trained on same letter shape A, with white 

background, in different locations

Image intensity refinement

Shape boundary refinement



CNN vs. IM-NET for shape interpolation
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Interpolate by adjusting 
image intensities

Interpolate by moving 
the shapes: the right 
way

• Networks were trained in the same way

• In-between results were generated from linearly 

interpolated latent codes between source and target



Comparing 3D shape generation results 
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[Chen and Zhang, CVPR 2019]



Comparing 3D shape interpolation results
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[Chen and Zhang, CVPR 2019]



2019: the start of neural implicits

75
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