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Outline of 3D shape representations

Implicit representations
Smooth curves and surfaces
Parametric representations

Meshes (subdivision)

Point clouds ~ Discrete representations

Voxels )

Projective representations } 3D — 2D ’\

Structured representations } Parts + relations = structures
Cover all lower-level part reps




Today

m  Meshes (subdivision) \‘




Exercise: identify this curve

0 <t<1:express Py, P!, P," as linear combinations of Py, ..., P3
Then express Py? and P42 as linear combinations of Py, P, and P’
Finally, express Py® as a linear combination of Py and P42

What is this curve?
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Standard derivation of Cubic Bézier

m Defined by four control points P,, P4, Py, and Ps
x(0) = Py
X(1) = Ps
3(P1 — Po)

[Angel 02]
x'(1) = 3(Pz - P»)

Exercise: derive the cubic Bézier change of basis matrix,
following our derivation for the cubic Hermite last week




Cubic Bezier change-of-basis matrix

Symmetric matrix!




Cubic Bezier: convex hull property

m Convex hull property: Bézier curve lies within the convex hull of
the four control points — exhibits good design control

m Convex hull of a set of points on the plane: tightest convex polygon
enclosing the set — why would it be generally useful in graphics?




Convex hull property

m A cubic (degree-n) curve satisfies the convex hull property if it lies
within the convex hull of its four (n + 1) control points

Convex hull property is satisfied if and only if the basis polynomials
b4(t), bo(t), bs(t), bs(f) form a partition of unity, that is:

1.0 < by(t), by(t), bs(t), bu(t) < 1 for t € [0, 1], and
2. by(t) + ba(f) + ba(f) + by(t) = 1

Each curve point is a convex combination of the control points




Bézier bases: Berstein polynomials

Bo(t) = (1 = t)°, By(t) = 3t(1 — 1)?,
B,(t) = 322(1 — 1), B(t) = £

Well-known as the Bernstein Polynomials of degree 3

Bernstein polynomials of degree n n

Bz’n (2) = (

]ti (1 . t)n—i
l
We have (a recursion)

B!(t)=(1-1)B" (1) + 1B (1)

Partition of unity easy to see: X; B(t) = [t + (1 — )]”




Piecewise cubic Bezier curves

m How to ensure C' or G’ for piecewise Bézier curves?

m Each segment is parameterized over [0, 1] as usual

OP2

P,°

Po

A constraint: not perfectly flexible




Some practical use of Bezier curves

m [o define motion paths and tracks

m [he Photoshop pen tool




How would you have rendered Bezier?

Treat as a generic polynomial curve and apply standard polynomial
evaluation for each sample point along the curve

But Bézier curves are special and there is a nice alternative, using
the de Casteljau’s procedure below (also see Youtube link)

P=(1-0Py+1P

de Casteljau's Algorithm

https://www.youtube.com/watch?v=YATikPP2q70




Bézier curve via de Casteljau

Original four control points Py, P4, P,, P; become seven new control
points Iy, Iy, I, I3 =1y, 14, 1y, I3

Each set of new control points control half of the Bezier curve

In the limit, the control points obtained form the Bézier curve
determined by P,, P4, P,, P;




de Casteljau = subdivision

.. .. In general, pkt!) = Spk), S
m This is a subdivision scheme: is a subdivision matrix

Subdivide to obtain new points (refinement procedure)
New points (/'s and r's) are weighted averages of the old (P’s)

Note: de Casteljau’s is not interpolatory except at the boundary




Cubic Bézier via subdivision

Keep subdividing until sufficiently fine, then connect adjacent
control points obtained to form polygonal curve

A recursive algorithm
Involve only additions and divisions by 2 — shifts
Very fast

Multi-resolution




Second example: cubic B-splines

Each cubic B-spline segment is specified by four control points
Satisfies the convex hull property

No interpolation in general

Big advantage: C2 continuous

The cubic B-spline change of basis matrix _ _
Basis functions

1
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Piece-wise cubic B-splines

Two consecutive segments share three control points
m control points - m — 3 segments
Exercise: Prove C2 continuity for cubic B-splines

Exercise: What if control points repeat?




B-Splines through subvidision

m B-splines can also be generated via subdivision, in the same form
clk+1) = Se(k)

m Consider any curve represented in /-th degree B-spline basis (the B’s)

p(t) = Zpl.Bli(t)

where [/ is the B-spline degree, i/ the index, _
and p/'s are control points. p(t) =

B(t)

In matrix form, we have p(t) = B(t) p, where
p: column vector of control points
B(f): row vector of B-spline bases




B-Splines via subdivision

m Continue from matrix representation: p(t) = B(t) p =

m Eventually, we shall rewrite

p(f) =B(f) p=B(2f) Sp
B(2t)

where

S is the subdivision matrix

p’ = S p is the new, refined set of control points

B(2f) represent refined B-spline basis functions

m Let us focus on uniform B-splines




What are splines?

An m-th degree spline is a piecewise polynomial of degree m that is C” -

A spline curve is defined by a knot sequence; the knots are at
parametric t values where the polynomial pieces join

Most common are uniform knot spacing, i.e., t=0, 1, 2, ...
Nonuniform knot spacing or repeated knots are also possible

A spline basis often serves as a blending function with local control

Resulting spline curve is given by a set of control points blended by
shifted or translated versions of the spline basis




Example: uniform B-splines

m B-splines: one particular class of spline curves

Degree 0-3 uniform B-splines

A piecewise linear curve (C°) obtained
by blending five uniform degree-1 B-
splines with control points

Note local control and
increased continuity




Key property of uniform B-splines

A uniform B-spline can be written as a linear combination of translated (k)
and dilated or compressed (2t) copies of itself

This is the key to connect B-splines to subdivision




“Self refinement”

B-spline of degree /, B(t), is C' -1 continuous, | = 1

The i-th B-spline, B/, is simply a translate of the B-spline B/(t) or
BO(t): B/, (t) = B/(t — i) — right shift of j units

B-splines satisfy the refinement equation

— binomial coefficients

compress then
lat k/2
B(t) translate by k/

> B(2t — k)

A uniform B-spline can be written as a linear combination of translated
(k) and dilated / compressed (2f) copies of itself

Again, this is the key to connect B-splines to subdivision




B-spline via subdivision

m Using the refinement equation from last slide, we have
B(f) = B(2f) S

where the entries of S are given by

m Thus, p(t) = B(t) p = B(2f) Sp

We have changed B-spline bases B(t) to B(2f), where each
element of B(2f) is half as wide as one in B(f) and the
sequence in B(2t) are spaced twice as dense




Refinement of B-splines

A : : : :\ B(t)'s

CROGROA0O0G.

Linear B-spline case; this extends to B-splines of any degree.




What have we done?

Refined the B-spline basis functions, and at the same time,
Refined the set of control points p

Twice as many new control points p’ = Sp:

One new point (an odd point) is inserted between two consecutive
control points in p

Each control point in p (an even point) is either retained
(interpolatory) or moved (approximating) in p’

S is the subdivision matrix




Subdivision matrix S

1 0 0

/2 12 0

0 1 0

0 12 1/2
even points I-I
odd points I-I

for linear uniform B-spline  for uniform cubic B-splines




Cubic B-splines via subdivision
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Convergence of subdivision (aside)

p/: Sfpo

m The recursively refined set of control points converge to the actual
spline curve p(t) = > p; B/(t)

m Have geometric rate of convergence, i.e., difference decrease
by constant factor (see notes) — ||&/|| < ¢y/

m Can thus obtain spline curves via subdivision, just like de Casteljau
for Bezier curves!




ldea of subdivision

m A subdivision curve (or surface) is the limit of a sequence of
successively refined control polygon (or control mesh)




What are (polygonal) meshes?

Polygonal mesh: composed of a set of
polygons pasted along their edges —
triangles most common

Still most popular in graphics and CAD

A triangle bunny mesh




What are (polygonal) meshes?

m Polygonal mesh: composed of a set of
polygons pasted along their edges —
triangles most common

Still most popular in graphics and CAD
Basic mesh components and properties:

vertices, edges, faces, valences, normal,
curvature, boundaries, manifold or not

A triangle bunny mesh




Polygon soup

For each triangle, just store 3 coordinates, no connectivity information
Not much different from point clouds

MobileNeRF is a polygon soup

3DGS is a dense “soup” of Gaussians




v 0.0 0.0 0.0
vy 0.0 0.0 1.0
v'0.0 1.0 0.0
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Efficient storage: triangle strips

A triangle strip gives a compact way of representing a set of triangles

For n triangles in a strip, instead of passing through and transform 3n
vertices, only need n+2 vertices

In a sequence, e.qg., vq, Vo, ..., first three vertices form the first triangle;
subsequent vertex forms new triangle with its preceding two vertices

Algorithms have been developed to “stripify” Vs V-
a triangle mesh into long triangle strips Vs

Triangle strips: a way to “serialize” a mesh /ﬁ/



2025: neural mesh generation (aside)

m Key: to utilize the powerful transformer architecture
m Need to “tokenize” a mesh by traversing triangle/polygon sequences

m Quite a few examples, e.g., EdgeRunner [Tang et al., ICLR 2025]

PRRL
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3 - -
#Face =600 #Token = 2490 #Face =944 #Token = 3968
Q Vertex D Next twin D Previous twin D End #Tokens #Tokens

8 Ratio = ———— = 46.11% Ratio = ———— = 46.70%
Begin of Sub-Sequence === Traversal Direction H3s @- 9 X #Faces 2 9 X #Faces

Tokenize by Face Traversal Compression Ratio on Complex Meshes




Back to subdivision

An effective and efficient way to model and render smooth curves
and surfaces, e.g., Bezier and B-splines, via local refinement

Two aspects:

Topological rule: where to insert new vertices? Are old vertices kept?

Geometrical rule: spatial location of the new vertices — typically given
as an average of nearby new or old vertices

First introduced to graphics by Ed Catmull and Chaikin in the 1970’s

One of the most intensely studied subjects of geometric modeling
(1990’s) and ubiquitous in modeling and animation software today




Ed Catmull

Former President, Pixar and Walt Disney Animation Studios

Dr. Ed Catmull is a co-founder of Pixar Animation Studios, and served as President of Pixar for 33 years, while
also serving as President of Walt Disney Animation Studios for 13 of those 33 years. Previously, Dr. Catmull was
vice President of the Computer Division of Lucasfilm Ltd., where he managed development in the areas of
computer graphics, video editing, video games and digital audio.

Catmull's book, the New York Times bestseller, “CREATIVITY, INC.: Overcoming the Unseen Forces That Stand
in the Way of True Inspiration,” and which Fast Company described as "what just might be the most thoughtful
management book ever," was published by Random House in 2014.

Dr. Catmull is an ACM Turing Award Laureate; he has also been honored with five Academy Awards, including
two Oscars for his work and a Lifetime Achievement Award.

Dr. Catmull founded three of the leading centers of computer graphics research - including the Computer
Division of Lucasfilm Ltd. and Pixar Animation Studios. These organizations have been home to many of the
most academically respected researchers in the field and have produced some of the most fundamental
advances in computer graphics, including image compositing, motion blur, subdivision surfaces, cloth
simulation and rendering techniques, texture mapping and the z-buffer. Dr. Catmull is one of the architects of
the RenderMan rendering software, which has been used in over 90% of Academy Award® winners for Visual
Effects over the past 20 years.

Dr. Catmull is active in several professional organizations. He has been a dedicated participant in ACM
SIGGRAPH for nearly 40 years. Dr. Catmull is a member of The Academy of Motion Picture Arts and Sciences,
the National Academy of Engineering, and the Visual Effects Society. He has received numerous awards from
these organizations.

Dr. Catmull earned B.S. degrees in each of physics and computer science and a Ph.D. in computer science from
the University of Utah. In addition, he has received honorary Doctorates from the University of Utah and Johns
Hopkins University.

He retired as President of Pixar and Disney Animation in 2019.




Subdivision surfaces in animation

m Geri’'s game: Academy award for animated short (1998)

m Use of subdivision surfaces Geri’s skins, clothing, etc.



https://www.youtube.com/watch?v=uMVtpCPx8ow

Surface example: Catmull-Clark

m Works on quadrilateral meshes

m Topological rules:
One new point per face and edge; retain the old vertices (not positions)
Connect face point with all adjacent edge points

Connect old vertex with all adjacent edge points




Catmull-Clark subdivision

m Geometric rules (subdivision masks shown below)

Li6d  3/32 Libd L/ L6 L/ L6

3/8

L/6d 3432 L/ 64 L/ L6 L/ L6

Vertex rule Edge rule Face rule

m This is all nice if the quadrilateral mesh connectivity is regular, i.e.,
a rectangular grid, but not always the case




Extraordinary vertices

In a quadrilateral mesh, a vertex whose valence is not 4 is called
an extraordinary vertex

In a triangle mesh, an
extraordinary vertex has
valence = 6

Geometric rules for
extraordinary vertices are
different

Exercise: For a closed triangle mesh, can all
vertices have degree 67
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Catmull-Clark and B-splines

Even if original mesh has faces other than quadrilaterals, after one
subdivision, all faces become quadrilaterals

Number of extraordinary vertices never increase

Over rectangular (regular) region, the limit is bicubic B-spline
surface, i.e., C?

Continuity at extraordinary vertices: C’

There are many other types of subdivision surfaces with different
schemes giving different levels of continuity




Advantages

Efficient to compute/render with simple algorithms: weighted
averages within a local neighborhood

Flexible local control of surface features
Provable smoothness if well designed

One-piece and seamless; can model surfaces with arbitrary
topology (same topology as control mesh) with relative ease

Compact representation: base mesh + (fixed) rules

Natural level-of-detail (hierarchical) representation




Subdivision surface vs. mesh

Subdivision surfaces are smooth limit surfaces

But in practice, e.g., rendering, only a few subdivisions are needed
to produced a mesh that is dense enough

Polygonal meshes: a much more general geometric representation

Does not have to result from subdivision — irregular connectivity vs.
subdivision connectivity

Typically obtained from discretization of math representation or
reconstruction out of a point cloud




Derivation of B-spline basis

... Via convolution
Recall: B-spline bases defined by a knot sequence

In uniform case (uniform B-splines), i.e., uniform spacing of the
knots, B-spline basis can be defined via repeated convolution

B/(t)= (B, ®B)(t)= B (s)B,(t—s)ds

By(t), degree-0 B-spline, is the box function att=0




Convolution

An integral that computes a “running weighted average”

(f ®2)1) = | f(5)g(t—s)ds

>4

g(t-s) ‘

/

/\Q(S)

/
(F® g)(f)

Kernel/weighting function g is often symmetric about O
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A few words on convolution (aside)

m Function g first reversed: differ from cross correlation
To ensure commutativity. f® g=g&® f
Convolution is also associative: f® (g® h) = (f® g) ® h
And distributive over addition: f® (g+ h)=f® g+ f® h

m Discrete convolution in 1D: serial products
{fo, f1, s T 13®{90, 91, -+, Gn-1}= {90, T091%f190, -+, F -1 Gn 1}
Length of resulting sequence: n + m — 1
Matrix formulation: multiplication by a Toeplitz matrix

Circular convolution defined by a circulant matrices, i.e., C; = Cy, if
andonly if i—j=k—1(mod n)




Important properties of subdivision

m Convergence:

Sequence of control polygons/meshes approach some continuous limit
curve/surface

m Interpolation — only for some subdivision schemes

Possible with interpolating subdivision schemes, e.g., Butterfly (next)

m Local control:
Allows local change to a shape, e.g., through lifting of a single vertex
Local change does not influence the shape globally

This is a result of having local subdivision rules, i.e., geometric
results only depend on information in a small local neighborhood




Important properties (continued)

m Affine invariance:

To transform a shape, it is sufficient to explicitly transform its (compact)
set of control points

New shape is reconstructed (via subdivision) in transformed domain
This is related to the row sum of the subdivision matrix
m Smoothness:

The limit curve/surface should be smooth: a local property

Related to eigenvalues of the subdivision matrix




Subdivision matrix is key

Subdivision matrix S characterizes the scheme

Most relevant properties are derived from the subdivision matrix, e.g.,
local control (sparseness), convergence, smoothness, etc.

First example, consider affine invariance

Requires S1=1,i.e.,[11 ... 1]"is an eigenvector of S with eigenvalue 1

Equivalently, S needs to have unit row sum

Proof?




Affine invariance (aside)

Original vector of m points in dimension k: u € R™*k

Vector of n points after subdivision: v=Su € R"*kK n >m

Subdivision matrix S € R"*xm

Affine transformation of a point p € R“*1in dimension k: p > Ap + b

Affine transform of subdivided points v:
v— (AvT + b1, 1)T = [A(Su)" + b1,T]T
= SuAT +1,b7

Subdivide affine transformed points u:
u— S(Au™ + b1,,1)T

= SUAT + S1,bT

Results are equivalent if S1,, =1,,, implying unit row sum for S




Smoothness of limit curve/surface

Analyze the behavior of a subdivision scheme on or near a
particular control point

To study smoothness, we care not only about point locations, but
also existence of tangent line/plane at the point in question, etc.

So far, we have assumed subdivision matrix is bi-infinite

To obtain a finite subdivision matrix, need to decide which control
points influence the neighborhood of the point of interest

Typically, the neighborhood structure does not change through
subdivision — invariant neighborhood




Invariant neighborhood

Consider spline curves represented by spline basis functions

To decide which control points influence the behavior of the spline
curve near a particular point P ...

Look at how many spline bases influence P’s neighborhood

As an example, consider cubic B-splines

5 relevant bases




Invariant neighborhood in subdivision (aside)

m Let us look at subdivision ...

m Generally, and without a picture to help, note that

Linear B-spline basis at
refinement level j (i.e., the

hat function) control points obtained
after j-th level subdivision

Final curve, i.e., polygonal
curve joining control points
after j-th level subdivision

p’(t)=B,(2’1)p’ = B,(2'1)S'p’
- 5,008/ [Sple]= 3 B 0s"e |= 3 plo) ()

Canonical basis vectors (or
impulse vectors)




Invariant neighborhood in subdivision (aside)

p/()=2 0o/ ()= p ()= p'o(D), p(1)= },igg(ﬂ,-j(f)

Each ¢(t) is the result of subdividing an impulse

For stationary subdivision (i.e., fixed subdivision rules), ¢(f) = @yt — i),
l.e., they are all the same, just translates of each other

o(t): the fundamental solution of the subdivision

To determine size of invariant neighborhood, look at the influence of the
fundamental solution

A

E.g., for cubic B-spline subdivision,
influence is 4 unit intervals, so 5

nearby control points influence tt x
the center point

H
~7 7




Local subdivision matrix

m  Subdivision matrix is n x n if invariant neighborhood size is n

Cubic B-spline
subdivision:

m E.g., local subdivision matrix for cubic B-spline is 5 x 5

m Let us use eigenanalysis of subdivision matrix S to determine limit
behavior about the point py*®




Eigenvalues and eigenvectors

m For cubic B-spines

Eigenvalues

/2 2/11
1




Eigen-analysis

For eigenanalysis to apply, eigenvectors of S need to form a basis,
l.e., linear independence

Not all subdivision schemes satisfy this (e.g., four-point scheme)

Assume set of eigenvectors x;'s are linearly independent, write the
vector of (2D or 3D) control points as




Eigenanalysis: convergence

Assume that , just an order ...

Affine invariance requires 1 to be an eigenvalue due to unit row sum
If 1o > 1, then divergence. So 4, must be 1

It can be shown that only one eigenvalue = 1

If one and only one eigenvalue is 1, the limit point is a,

How to compute: a = X~'p, X = [Xq, ..., Xp1])

X

p a

How about tangent at limit point? — think 2D: a;’s are 2D vectors




Eigenanalysis: tangent

m Choose coordinate system so that a; is the origin

m |f 44, the subdominant eigenvalue, is unique, then there exists a
tangent line, aligned with vector a4, at p®

m How to compute the tangent? — Again, need to use the inverse of
the eigenvector matrix X




successive levels of
subdivision
displaced relative
to each other

enlarged versions of
left hand side curves
"zooming in" on the
center vertex

zoom factor 1

zoom factor 2

zoom factor 4

zoom factor 8

Progressively aligned with tangent vector




Example: cubic B-splines

1 -1 1
1 —1/2 2/11

1/6 2/3 1/6
1 0 1

-3 3 -1
—1 3 -3

0
0
0 -1/11 X '=[0 1.8333 -3.6667 1.8333
1
0

Limit behavior
B pg” = P26 + 2pe°/3 + p.1°/6

m Tangent at py® is p.°— p_4°




Summary of desirables

Eigenvectors form a basis, i.e., complete set with linear independence
Largest eigenvalue is 1 — affine invariance and convergence
The subdominant eigenvalue is less than 1 — convergence

All the other eigenvalues are less than the subdominant eigenvalue —
existence of tangent, but does not say about C'...

Note: most of these are sufficient conditions, i.e., not necessary (4-pt)




Eigen-analysis of subdivision surfaces

Local control — same as for curves
Affine invariance — same — need row sum of subdivision matrix to be 1
Sufficient conditions for tangent existence a bit different

There may be extraordinary vertices

Subdivision rules are often different there so as to ensure nice properties
at and near these vertices

One fundamental solution per extraordinary case




Example: (Charles) Loop Scheme




Analysis

m Similar to the case for curves, however ...

m [ here will be at least one subdivision matrix for each valence
(can also change between levels — non-stationary)

m Notion of invariant neighborhoods still applies
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Eigenanalysis

m Express control vector as linear sum of the eigenvectors of the
subdivision matrix S, assuming linear independence

m Note that a;’s are now 3D points




Eigenanalysis

Again, assume that

For affine invariance and convergence, require A= 1 and be unique

For existence of tangent plane, note that

if origin is at aj = 0, and

A=A =1, > A

The tangent plane will be spanned by vectors a; and a,




Smoothness of subdivision surfaces (aside)

m Two notions: Cl-continuous vs. tangent plane continuous
Technical definition of C' continuity of surface
Tangent-plane continuity (weaker) requires the limit of normals exist

Tangent-plane continuity + one-to-one projection between surface and
tangent plane = C' continuity

m Essential/pioneering work for subdivision surfaces
near extraordinary vertices:

Reif ’s sufficient conditions for subdivision surfaces
to be C' — as further reading




