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Outline of 3D shape representations 

n Implicit representations

n Parametric representations

n Meshes (subdivision)

n Point clouds

n Voxels

n Projective representations

n Structured representations

Smooth curves and surfaces

Discrete representations

Parts + relations = structures 
Cover all lower-level part reps

3D → 2D
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Exercise: identify this curve

n 0 ≤ t ≤ 1: express P0
1, P1

1, P2
1 as linear combinations of P0, …, P3 

n Then express P0
2 and P1

2 as linear combinations of P0
1, P1

1, and P2
1 

n Finally, express P0
3 as a linear combination of P0

2 and P1
2 

n What is this curve?

t

1 - t



Identify this curve
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Answer: Cubic Bézier Curve 
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Standard derivation of Cubic Bézier

n Defined by four control points P0, P1, P2, and P3

x(0) = P0

x(1) = P3

x’(0) = 3(P1 – P0)

x’(1) = 3(P3 – P2)
[Angel 02]

Exercise: derive the cubic Bézier change of basis matrix, 
following our derivation for the cubic Hermite last week
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Cubic Bézier: convex hull property

n Convex hull property: Bézier curve lies within the convex hull of 
the four control points – exhibits good design control

n Convex hull of a set of points on the plane: tightest convex polygon 
enclosing the set – why would it be generally useful in graphics?
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Convex hull property

n A cubic (degree-n) curve satisfies the convex hull property if it lies 
within the convex hull of its four (n + 1) control points

n Convex hull property is satisfied if and only if the basis polynomials 
b1(t), b2(t), b3(t), b4(t) form a partition of unity, that is:

1. 0 £ b1(t), b2(t), b3(t), b4(t) £ 1 for t Î [0, 1], and

2. b1(t) + b2(t) + b3(t) + b4(t) = 1

n Each curve point is a convex combination of the control points
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Bézier bases: Berstein polynomials

B0(t) = (1 – t)3, B1(t) = 3t(1 – t)2, 

B2(t) = 3t2(1 – t), B3(t) = t3

n Well-known as the Bernstein Polynomials of degree 3

n Bernstein polynomials of degree n

n We have (a recursion)

n Partition of unity easy to see: Si Bi(t) = [t + (1 – t)]n
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Piecewise cubic Bézier curves

n How to ensure C1 or G1 for piecewise Bézier curves?

n Each segment is parameterized over [0, 1] as usual

P2

P0

P1

P3

P4

P5

P6

A constraint: not perfectly flexible
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Some practical use of Bézier curves

n To define motion paths and tracks

n The Photoshop pen tool
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How would you have rendered Bézier?

n Treat as a generic polynomial curve and apply standard polynomial 
evaluation for each sample point along the curve

n But Bézier curves are special and there is a nice alternative, using 
the de Casteljau’s procedure below (also see Youtube link)

https://www.youtube.com/watch?v=YATikPP2q70
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Bézier curve via de Casteljau

n Original four control points P0, P1, P2, P3 become seven new control 
points l0, l1, l2, l3 = r0, r1, r2, r3

n Each set of new control points control half of the Bezier curve

n In the limit, the control points obtained form the Bézier curve 
determined by P0, P1, P2, P3
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de Casteljau = subdivision

n This is a subdivision scheme:
n Subdivide to obtain new points (refinement procedure)

n New points (l’s and r’s) are weighted averages of the old (P’s) 

n Note: de Casteljau’s is not interpolatory except at the boundary
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In general, p(k+1) = Sp(k), S 
is a subdivision matrix
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Cubic Bézier via subdivision

n Keep subdividing until sufficiently fine, then connect adjacent 
control points obtained to form polygonal curve

n A recursive algorithm

n Involve only additions and divisions by 2 — shifts

n Very fast

n Multi-resolution
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Second example: cubic B-splines

n Each cubic B-spline segment is specified by four control points

n Satisfies the convex hull property

n No interpolation in general

n Big advantage: C2 continuous

n The cubic B-spline change of basis matrix
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n Two consecutive segments share three control points

n m control points ® m – 3 segments

n Exercise: Prove C2 continuity for cubic B-splines

n Exercise: What if control points repeat?

C1

C2

C3

C4

C5

P1

P3

P4

P5

P6

P8

P7

P2

Piece-wise cubic B-splines
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B-Splines through subvidision

n B-splines can also be generated via subdivision, in the same form 
c(k+1) = Sc(k)

n Consider any curve represented in l-th degree B-spline basis (the B’s)

     where l is the B-spline degree, i the index,                                         
and pi’s are control points.

n In matrix form, we have p(t) = B(t) p, where                                                 
p: column vector of control points                                                           
B(t): row vector of B-spline bases
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p(t) =
B(t) p
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B-Splines via subdivision

n Continue from matrix representation: p(t) = B(t) p

n Eventually, we shall rewrite

p(t) = B(t) p = B(2t) S p

     where 

n S is the subdivision matrix

n p’ = S p is the new, refined set of control points

n B(2t) represent refined B-spline basis functions

n Let us focus on uniform B-splines

=
B(t) p

=
B(2t) pS
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n An m-th degree spline is a piecewise polynomial of degree m that is Cm – 1

n A spline curve is defined by a knot sequence; the knots are at 
parametric t values where the polynomial pieces join

n Most common are uniform knot spacing, i.e., t = 0, 1, 2, … 
Nonuniform knot spacing or repeated knots are also possible

n A spline basis often serves as a blending function with local control

n Resulting spline curve is given by a set of control points blended by 
shifted or translated versions of the spline basis

What are splines?
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n B-splines: one particular class of spline curves

Knots

Degree 0-3 uniform B-splines

A piecewise linear curve (C0) obtained 
by blending five uniform degree-1 B-
splines with control points

Note local control and 
increased continuity

Example: uniform B-splines



n A uniform B-spline can be written as a linear combination of translated (k) 
and dilated or compressed (2t) copies of itself

n This is the key to connect B-splines to subdivision

24

Degree one, l = 1: 

1/2 1 1/2

Key property of uniform B-splines
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“Self refinement”

n B-spline of degree l, Bl(t), is Cl – 1 continuous, l  ≥ 1

n The i-th B-spline, Bi
l , is simply a translate of the B-spline Bl(t) or 

Bl
0(t): Bi

l (t) = Bl(t – i) ― right shift of i units

n B-splines satisfy the refinement equation

n A uniform B-spline can be written as a linear combination of translated 
(k) and dilated / compressed (2t) copies of itself

n Again, this is the key to connect B-splines to subdivision
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B-spline via subdivision

n Using the refinement equation from last slide, we have

B(t) = B(2t) S

    where the entries of S are given by

n Thus, p(t) = B(t) p = B(2t) Sp

    We have changed B-spline bases B(t) to B(2t), where each 
element of B(2t) is half as wide as one in B(t) and the    
sequence in B(2t) are spaced twice as dense
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Refinement of B-splines

B(t)’s

B(2t)’s

Linear B-spline case; this extends to B-splines of any degree.
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n Refined the B-spline basis functions, and at the same time,

n Refined the set of control points p

n Twice as many new control points p’ = Sp:

n One new point (an odd point) is inserted between two consecutive 
control points in p

n Each control point in p (an even point) is either retained 
(interpolatory) or moved (approximating) in p’

n S is the subdivision matrix

What have we done?
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Subdivision matrix S











































































!"####
!$!%###
!"!"###
!%!$!%##
#!"!"##
#!%!$!%#
##!"!"#
##!%!$!%
###!"!"
###!%!$
####!"

&&&&&&&&&&&

%####
'%'%###
#%###
#'%'%##
##%##
##'%'%#
###%#
###'%'%
####%

for linear uniform B-spline for uniform cubic B-splines

odd points
even points



Cubic B-splines via subdivision
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P2

P0

P1

P3

½P1+½P2
⅛P1+¾P2+⅛P3⅛P0+¾P1+⅛P2

½P2+½P3
½P0+½P1
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Convergence of subdivision (aside)

p j = S j p0

n The recursively refined set of control points converge to the actual 
spline curve p(t) = ∑ pi Bl

i(t)

n Have geometric rate of convergence, i.e., difference decrease 
by constant factor (see notes) — ||e j|| < cg j

n Can thus obtain spline curves via subdivision, just like de Casteljau 
for Bezier curves!
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n A subdivision curve (or surface) is the limit of a sequence of 
successively refined control polygon (or control mesh)

9/16

-1/16 -1/16

9/16

Idea of subdivision
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What are (polygonal) meshes?

n Polygonal mesh: composed of a set of 
polygons pasted along their edges – 
triangles most common

n Still most popular in graphics and CAD

A triangle bunny mesh
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What are (polygonal) meshes?

n Polygonal mesh: composed of a set of 
polygons pasted along their edges – 
triangles most common

n Still most popular in graphics and CAD
n Basic mesh components and properties: 

vertices, edges, faces, valences, normal, 
curvature, boundaries, manifold or not

A triangle bunny mesh
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Polygon soup

n For each triangle, just store 3 coordinates, no connectivity information
n Not much different from point clouds
n MobileNeRF is a polygon soup
n 3DGS is a dense “soup” of Gaussians



Mesh storage format: OBJ

36



Efficient storage: triangle strips

n A triangle strip gives a compact way of representing a set of triangles

n For n triangles in a strip, instead of passing through and transform 3n 
vertices, only need n+2 vertices

n In a sequence, e.g., v1, v2, …, first three vertices form the first triangle; 
subsequent vertex forms new triangle with its preceding two vertices

n Algorithms have been developed to “stripify”                                            
a triangle mesh into long triangle strips

n Triangle strips: a way to “serialize” a mesh

v1 v2

v3

v4

v5

v6

v7



2025: neural mesh generation (aside)

n Key: to utilize the powerful transformer architecture

n Need to “tokenize” a mesh by traversing triangle/polygon sequences

n Quite a few examples, e.g., EdgeRunner [Tang et al., ICLR 2025]
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Back to subdivision

n An effective and efficient way to model and render smooth curves 
and surfaces, e.g., Bezier and B-splines, via local refinement

n Two aspects:

n Topological rule: where to insert new vertices? Are old vertices kept?

n Geometrical rule: spatial location of the new vertices – typically given 
as an average of nearby new or old vertices

n First introduced to graphics by Ed Catmull and Chaikin in the 1970’s

n One of the most intensely studied subjects of geometric modeling 
(1990’s) and ubiquitous in modeling and animation software today
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Back to subdivision

n An effective and efficient way to model and render smooth curves 
and surfaces, e.g., Bezier and B-splines, via local refinement
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(1990’s) and ubiquitous in modeling and animation software today
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Subdivision surfaces in animation

n Geri’s game: Academy award for animated short (1998)

n Use of subdivision surfaces Geri’s skins, clothing, etc.

https://www.youtube.com/watch?v=uMVtpCPx8ow

https://www.youtube.com/watch?v=uMVtpCPx8ow
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Surface example: Catmull-Clark

n Works on quadrilateral meshes

n Topological rules:

n One new point per face and edge; retain the old vertices (not positions)

n Connect face point with all adjacent edge points

n Connect old vertex with all adjacent edge points
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Catmull-Clark subdivision

n Geometric rules (subdivision masks shown below)

n This is all nice if the quadrilateral mesh connectivity is regular, i.e., 
a rectangular grid, but not always the case
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Extraordinary vertices

n In a quadrilateral mesh, a vertex whose valence is not 4 is called 
an extraordinary vertex

n In a triangle mesh, an 
extraordinary vertex has 
valence ¹ 6

n Geometric rules for 
extraordinary vertices are 
different

Exercise: For a closed triangle mesh, can all 
vertices have degree 6? 
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Catmull-Clark and B-splines

n Even if original mesh has faces other than quadrilaterals, after one 
subdivision, all faces become quadrilaterals

n Number of extraordinary vertices never increase

n Over rectangular (regular) region, the limit is bicubic B-spline 
surface, i.e., C2

n Continuity at extraordinary vertices: C1

n There are many other types of subdivision surfaces with different 
schemes giving different levels of continuity
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Advantages

n Efficient to compute/render with simple algorithms: weighted 
averages within a local neighborhood

n Flexible local control of surface features

n Provable smoothness if well designed

n One-piece and seamless; can model surfaces with arbitrary 
topology (same topology as control mesh) with relative ease

n Compact representation: base mesh + (fixed) rules

n Natural level-of-detail (hierarchical) representation
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Subdivision surface vs. mesh

n Subdivision surfaces are smooth limit surfaces 

n But in practice, e.g., rendering, only a few subdivisions are needed 
to produced a mesh that is dense enough

n Polygonal meshes: a much more general geometric representation

n Does not have to result from subdivision – irregular connectivity vs. 
subdivision connectivity

n Typically obtained from discretization of math representation or 
reconstruction out of a point cloud
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n … via convolution

n Recall: B-spline bases defined by a knot sequence

n In uniform case (uniform B-splines), i.e., uniform spacing of the 
knots, B-spline basis can be defined via repeated convolution

n B0(t), degree-0 B-spline, is the box function at t = 0

!""#$"$#$$#$
BBB !"!"!!""!" #$#$ −=⊗=
−− ∫

Derivation of B-spline basis
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Convolution

n An integral that computes a “running weighted average”

n Kernel/weighting function g is often symmetric about 0

∫ −=⊗ !""#$"%#$% !"!"!!""

f(s)
g(t - s)

g(s)

t

(f Ä g)(t)
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B-splines via convolution

1

10

1

10

1

10 2

1

10 2

1

10 2 3

B0(t)
B1(t)

B2(t)
……



52

A few words on convolution (aside)

n Function g first reversed: differ from cross correlation
n To ensure commutativity: f Ä g = g Ä f

n Convolution is also associative: f Ä (g Ä h) = (f Ä g) Ä h

n And distributive over addition: f Ä (g + h) = f Ä g + f Ä h

n Discrete convolution in 1D: serial products
n {f0, f1, …, fm -1}Ä{g0, g1, …, gn -1}= {f0g0, f0g1+f1g0, …, fm -1 gn -1} 

n Length of resulting sequence: n + m – 1

n Matrix formulation: multiplication by a Toeplitz matrix

n Circular convolution defined by a circulant matrices, i.e., Cij = Ckl if 
and only if i – j º k – l (mod n)
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Important properties of subdivision

n Convergence: 
n Sequence of control polygons/meshes approach some continuous limit 

curve/surface

n Interpolation – only for some subdivision schemes
n Possible with interpolating subdivision schemes, e.g., Butterfly (next)

n Local control: 
n Allows local change to a shape, e.g., through lifting of a single vertex

n Local change does not influence the shape globally

n This is a result of having local subdivision rules, i.e., geometric 
results only depend on information in a small local neighborhood
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Important properties (continued)

n Affine invariance: 
n To transform a shape, it is sufficient to explicitly transform its (compact) 

set of control points
n New shape is reconstructed (via subdivision) in transformed domain
n This is related to the row sum of the subdivision matrix

n Smoothness: 
n The limit curve/surface should be smooth: a local property

n Related to eigenvalues of the subdivision matrix
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Subdivision matrix is key

n Subdivision matrix S characterizes the scheme

n Most relevant properties are derived from the subdivision matrix, e.g., 
local control (sparseness), convergence, smoothness, etc.

n First example, consider affine invariance 

n Requires S1 = 1, i.e., [1 1 … 1]T is an eigenvector of S with eigenvalue 1 

n Equivalently, S needs to have unit row sum

n Proof?
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Affine invariance (aside)

n Original vector of m points in dimension k: u Î Rm ´ k

n Vector of n points after subdivision: v = Su Î Rn ´ k, n > m

n Subdivision matrix S Î Rn ´ m

n Affine transformation of a point p Î Rk ´ 1 in dimension k: p ® Ap + b

Affine transform of subdivided points v:

v ® (AvT + b1n
T)T = [A(Su)T + b1n

T]T 

        = SuAT + 1nbT

Subdivide affine transformed points u:

u ® S(AuT + b1m
T)T

        = SuAT + S1mbT

Results are equivalent if S1m = 1n , implying unit row sum for S
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n Analyze the behavior of a subdivision scheme on or near a 
particular control point

n To study smoothness, we care not only about point locations, but 
also existence of tangent line/plane at the point in question, etc. 

n So far, we have assumed subdivision matrix is bi-infinite

n To obtain a finite subdivision matrix, need to decide which control 
points influence the neighborhood of the point of interest 

n Typically, the neighborhood structure does not change through 
subdivision — invariant neighborhood

Smoothness of limit curve/surface
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Invariant neighborhood

n Consider spline curves represented by spline basis functions

n To decide which control points influence the behavior of the spline 
curve near a particular point P …

n Look at how many spline bases influence P’s neighborhood

n As an example, consider cubic B-splines 

5 relevant bases

P
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Invariant neighborhood in subdivision (aside)

n Let us look at subdivision …

n Generally, and without a picture to help, note that
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Canonical basis vectors (or 
impulse vectors)
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Invariant neighborhood in subdivision (aside)

n Each ji(t) is the result of subdividing an impulse

n For stationary subdivision (i.e., fixed subdivision rules), ji(t) = j0(t – i), 
i.e., they are all the same, just translates of each other

n j(t): the fundamental solution of the subdivision

n To determine size of invariant neighborhood, look at the influence of the 
fundamental solution

n E.g., for cubic B-spline subdivision,                                                            j(t) 
influence is 4 unit intervals, so 5                                                             
nearby control points influence                                                                 
the center point

!"#$%!"&&&!'"!"!"!" (( !!!"!"!"!" #
$#$$$ $

#
$$ $

# ϕϕϕϕ
∞→

∞ ==⇒= ∑∑



67

Local subdivision matrix

n Subdivision matrix is n ´ n if invariant neighborhood size is n 

n E.g., local subdivision matrix for cubic B-spline is 5 ´ 5 

n Let us use eigenanalysis of subdivision matrix S to determine limit 
behavior about the point p0

¥













































=























−

−

+

+

+

+
−

+
−

!

!

!

!

!

!

!

!

!

!

"
"
"
"
"

"
"
"
"
"

!

"

#

"

!

"
!

"
"

"
#

"
"

"
!

"$"##
#%%##
#"$"#
##%%#
##"$"

&
"Cubic B-spline 

subdivision:



68

Eigenvalues and eigenvectors

n For cubic B-spines
n Eigenvalues

n Complete set of eigenvectors
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n For eigenanalysis to apply, eigenvectors of S need to form a basis, 
i.e., linear independence

n Not all subdivision schemes satisfy this (e.g., four-point scheme)

n Assume set of eigenvectors xi’s are linearly independent, write the 
vector of (2D or 3D) control points as

n Subdivision and repeated subdivision:
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Eigenanalysis: convergence

n Assume that                                     , just an order …

n Affine invariance requires 1 to be an eigenvalue due to unit row sum

n If l0 > 1, then divergence. So l0 must be 1

n It can be shown that only one eigenvalue = 1 [Warren 95]

n If one and only one eigenvalue is 1, the limit point is a0. 

n How to compute: a = X-1p, X = [x0, …, xn-1])

n How about tangent at limit point? – think 2D: ai’s are 2D vectors
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Eigenanalysis: tangent

n Choose coordinate system so that a0 is the origin

n If l1, the subdominant eigenvalue, is unique, then there exists a 
tangent line, aligned with vector a1, at p¥

n How to compute the tangent? – Again, need to use the inverse of 
the eigenvector matrix X
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Progressively aligned with tangent vector [pp. 44, Zorin 00]



73

Example: cubic B-splines

Limit behavior

n p0
¥ = p–1

0/6 + 2p0
0/3 + p+1

0/6

n Tangent at p0
¥ is p+1
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Summary of desirables

n Eigenvectors form a basis, i.e., complete set with linear independence

n Largest eigenvalue is 1 – affine invariance and convergence

n The subdominant eigenvalue is less than 1 –  convergence

n All the other eigenvalues are less than the subdominant eigenvalue – 
existence of tangent, but does not say about C1…

n Note: most of these are sufficient conditions, i.e., not necessary (4-pt)
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n Local control – same as for curves

n Affine invariance – same – need row sum of subdivision matrix to be 1

n Sufficient conditions for tangent existence a bit different

n There may be extraordinary vertices 

n Subdivision rules are often different there so as to ensure nice properties 
at and near these vertices

n One fundamental solution per extraordinary case

Eigen-analysis of subdivision surfaces
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Example: (Charles) Loop Scheme

[pp. 48-50, Zorin 00] 
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Analysis

n Similar to the case for curves, however …

n There will be at least one subdivision matrix for each valence 
(can also change between levels – non-stationary)

n Notion of invariant neighborhoods still applies
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Eigenanalysis

n Express control vector as linear sum of the eigenvectors of the 
subdivision matrix S, assuming linear independence

n Subdivision and repeated subdivision

n Note that ai ’s are now 3D points
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Eigenanalysis

n Again, assume that 

n For affine invariance and convergence, require l0 = 1 and be unique

n For existence of tangent plane, note that

      if origin is at a0 = 0, and

n The tangent plane will be spanned by vectors a1 and a2
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Smoothness of subdivision surfaces (aside)

n Two notions: C1-continuous vs. tangent plane continuous
n Technical definition of C1 continuity of surface [pp. 56, Zorin 00]

n Tangent-plane continuity (weaker) requires the limit of normals exist

n Tangent-plane continuity + one-to-one projection between surface and 
tangent plane Þ C1 continuity

n Essential/pioneering work for subdivision surfaces                             
near extraordinary vertices: 

n Reif ’s sufficient conditions for subdivision surfaces                                 
to be C1 — [Section 3.5, Zorin 00] as further reading 


