Meshes and Subdivision

Richard (Hao) Zhang

CMPT 464/764: Geometric Modeling in Computer Graphics

Lecture 4

Outline of 3D shape representations

- Implicit representations
- Parametric representations
- Meshes (subdivision)
- Point clouds
- Voxels
- Projective representations
- Structured representations

Smooth curves and surfaces

Discrete representations

Parts + relations = structures
Cover all lower-level part reps

Today

- Implicit representations
- Parametric representations
- Meshes (subdivision)
- Point clouds
- Voxels
- Projective representations
- Structured representations

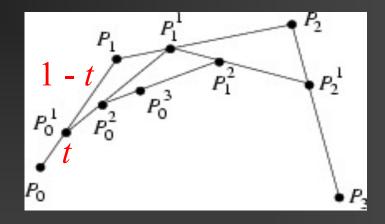
Smooth curves and surfaces

Discrete representations

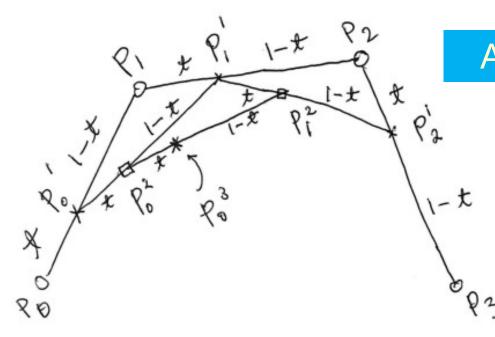
 $3D \rightarrow 2D$

Parts + relations = structures
Cover all lower-level part reps

Exercise: identify this curve



- $0 \le t \le 1$: express P_0^1, P_1^1, P_2^1 as linear combinations of P_0, \dots, P_3
- Then express P_0^2 and P_1^2 as linear combinations of P_0^1 , P_1^1 , and P_2^1
- Finally, express P_0^3 as a linear combination of P_0^2 and P_1^2
- What is this curve?



Answer: Cubic Bézier Curve

Bernstein Polynomials of
degree 3:

$$t^3$$

 $3t^2(1-t)$
 $3t(1-t)^2$
 $(1-t)^3$

$$P_0' = tP_1 + (1-t)P_0$$

 $P_1' = tP_2 + (1-t)P_1$

$$P_{2}^{1} = \pm P_{3} + (1-t) P_{2}$$

$$P_{0}^{2} = f P_{1}^{1} + (1-t) P_{0}^{1} = t^{2} P_{2} + 2t(1-t) P_{1} + (1-t)^{2} P_{0}$$

$$P_{1}^{2} = f P_{2}^{1} + (1-t) P_{1}^{1} = t^{2} P_{3} + 2t(1-t) P_{2} + (1-t)^{2} P_{1}$$

$$P_{0}^{3} = f P_{1}^{2} + (1-t) P_{0}^{2} = f^{3} P_{3} + 3f^{2} C_{1} - f^{2} P_{2} + 3f^{2} C_{1} - f^{2} P_{2}$$

$$f^{2} = f P_{1}^{2} + (1-t) P_{0}^{2} = f^{3} P_{3} + 3f^{2} C_{1} - f^{2} P_{2} + (1-t)^{2} P_{1}$$

$$f^{2} = f P_{1}^{2} + (1-t)^{2} P_{0}^{2} = f^{3} P_{3} + 3f^{2} C_{1} - f^{2} P_{2} + 3f^{2} C_{1} - f^{2} P_{2}$$

$$f^{2} = f P_{1}^{2} + (1-t)^{2} P_{0}^{2} = f^{3} P_{3} + 3f^{2} C_{1} - f^{2} P_{2} + 3f^{2} C_{1} - f^{2} P_{2}$$

Standard derivation of Cubic Bézier

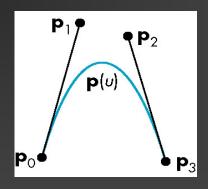
■ Defined by four control points P_0 , P_1 , P_2 , and P_3

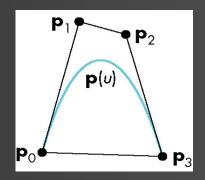
$$x(0) = P_0$$

$$x(1) = P_3$$

$$x'(0) = 3(P_1 - P_0)$$

$$x'(1) = 3(P_3 - P_2)$$





[Angel 02]

Exercise: derive the cubic Bézier change of basis matrix, following our derivation for the cubic Hermite last week

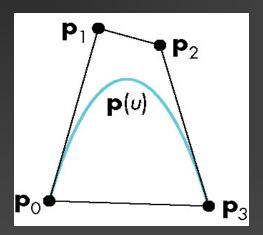
Cubic Bézier change-of-basis matrix

Symmetric matrix!

$$M_{Bezier} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Cubic Bézier: convex hull property

 Convex hull property: Bézier curve lies within the convex hull of the four control points – exhibits good design control



Convex hull of a set of points on the plane: tightest convex polygon enclosing the set – why would it be generally useful in graphics?

Convex hull property

- A cubic (degree-n) curve satisfies the convex hull property if it lies within the convex hull of its four (n + 1) control points
- Convex hull property is satisfied if and only if the basis polynomials $b_1(t)$, $b_2(t)$, $b_3(t)$, $b_4(t)$ form a partition of unity, that is:

1.
$$0 \le b_1(t)$$
, $b_2(t)$, $b_3(t)$, $b_4(t) \le 1$ for $t \in [0, 1]$, and

2.
$$b_1(t) + b_2(t) + b_3(t) + b_4(t) = 1$$

■ Each curve point is a **convex combination** of the control points

Bézier bases: Berstein polynomials

$$B_0(t) = (1 - t)^3$$
, $B_1(t) = 3t(1 - t)^2$,
 $B_2(t) = 3t^2(1 - t)$, $B_3(t) = t^3$

- Well-known as the Bernstein Polynomials of degree 3
- Bernstein polynomials of degree n

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

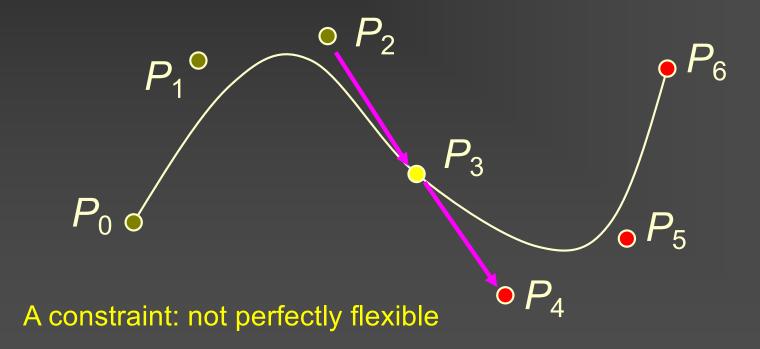
We have (a recursion)

$$B_i^n(t) = (1-t)B_i^{n-1}(t) + tB_{i-1}^{n-1}(t)$$

Partition of unity easy to see: $\Sigma_i B_i(t) = [t + (1 - t)]^n$

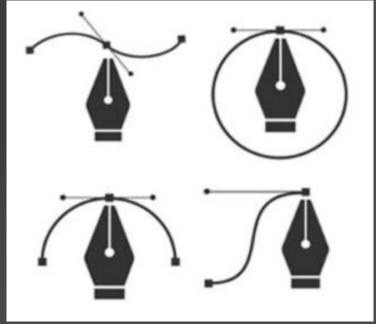
Piecewise cubic Bézier curves

- How to ensure C¹ or G¹ for piecewise Bézier curves?
- Each segment is parameterized over [0, 1] as usual



Some practical use of Bézier curves

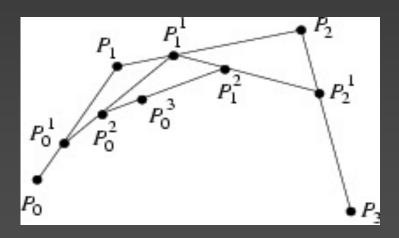
To define motion paths and tracks

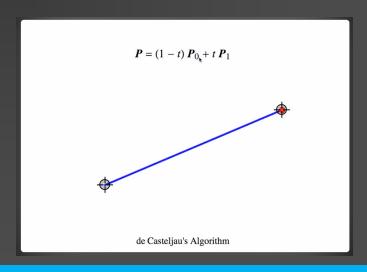


The Photoshop pen tool

How would you have rendered Bézier?

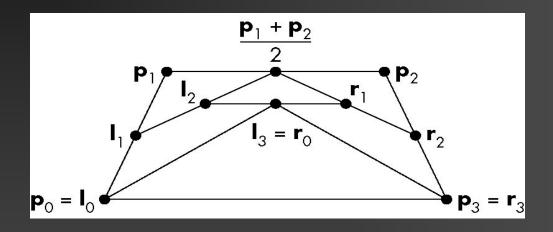
- Treat as a generic polynomial curve and apply standard polynomial evaluation for each sample point along the curve
- But Bézier curves are special and there is a nice alternative, using the de Casteljau's procedure below (also see Youtube link)





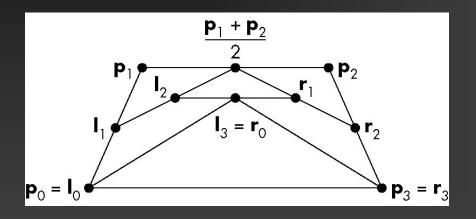
https://www.youtube.com/watch?v=YATikPP2q70

Bézier curve via de Casteljau



- Original four control points P_0 , P_1 , P_2 , P_3 become seven new control points I_0 , I_1 , I_2 , I_3 = r_0 , r_1 , r_2 , r_3
- Each set of new control points control half of the Bezier curve
- In the limit, the control points obtained form the Bézier curve determined by P₀, P₁, P₂, P₃

de Casteljau = subdivision



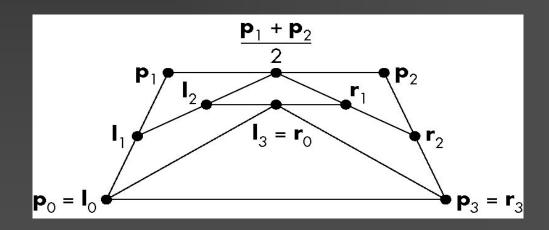
$\lceil l_0 \rceil$		1	0	0	0	
l_1		1/2	1/2	0	0	ГрЛ
l_2		1/4	1/2	1/4	0	$\left \begin{array}{c}P_0\\P\end{array}\right $
l_3	=	1/8	3/8	3/8	1/8	$\begin{vmatrix} P_1 \\ D \end{vmatrix}$
r_1		0	1/4	0 1/4 3/8 1/2 1/2	1/4	$\left \begin{array}{c}P_2\\P\end{array}\right $
r_2		0	0	1/2	1/2	$\lfloor P_3 \rfloor$
$\lfloor r_3 \rfloor$		0	0	0	1 _	

In general, $\mathbf{p}^{(k+1)} = S\mathbf{p}^{(k)}$, S is a subdivision matrix

- This is a **subdivision** scheme:
 - Subdivide to obtain new points (refinement procedure)
 - New points (I's and I's) are weighted averages of the old (P's)
 - Note: de Casteljau's is not interpolatory except at the boundary

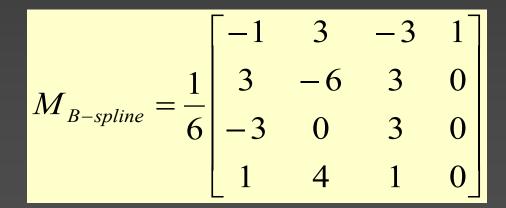
Cubic Bézier via subdivision

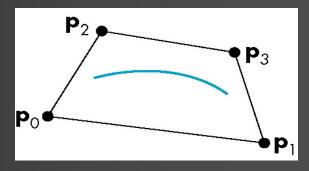
- Keep subdividing until sufficiently fine, then connect adjacent control points obtained to form polygonal curve
- A recursive algorithm
- Involve only additions and divisions by 2 shifts
- Very fast
- Multi-resolution



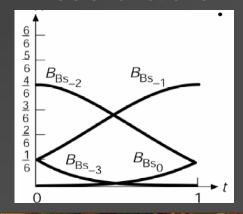
Second example: cubic B-splines

- Each cubic B-spline segment is specified by four control points
- Satisfies the convex hull property
- No interpolation in general
- Big advantage: C² continuous
- The cubic B-spline change of basis matrix



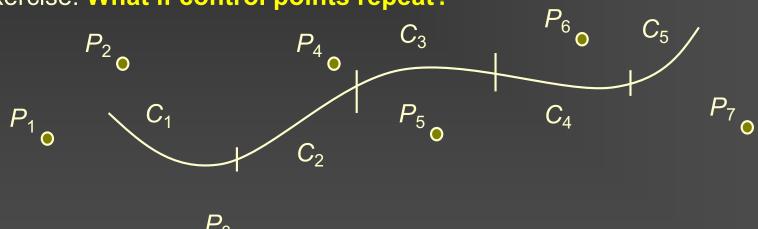


Basis functions



Piece-wise cubic B-splines

- Two consecutive segments share three control points
- m control points $\rightarrow m-3$ segments
- Exercise: Prove C² continuity for cubic B-splines
- Exercise: What if control points repeat?



B-Splines through subvidision

B-splines can also be generated via subdivision, in the same form $\mathbf{c}^{(k+1)} = S\mathbf{c}^{(k)}$

Consider any curve represented in I-th degree B-spline basis (the B's)

$$p(t) = \sum_{i} p_{i} B_{l}^{i}(t)$$

where l is the B-spline degree, i the index, and p_i 's are control points.

In matrix form, we have p(t) = B(t) p, where
 p: column vector of control points
 B(t): row vector of B-spline bases

B-Splines via subdivision

- Continue from matrix representation: $p(t) = \mathbf{B}(t) \mathbf{p} = \mathbf{B}(t)$
- Eventually, we shall rewrite

$$p(t) = \mathbf{B}(t) \mathbf{p} = \mathbf{B}(2t) \mathbf{S} \mathbf{p}$$

where

- S is the subdivision matrix
- $\mathbf{p}' = S \mathbf{p}$ is the new, refined set of control points
- B(2t) represent refined B-spline basis functions
- Let us focus on uniform B-splines

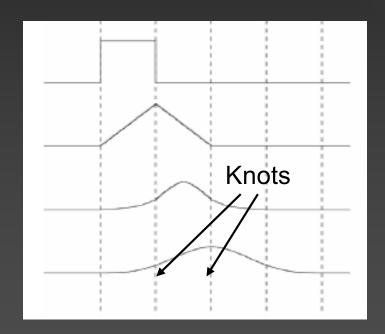
What are splines?

- An m-th degree spline is a piecewise polynomial of degree m that is \mathbb{C}^{m-1}
- A spline curve is defined by a knot sequence; the knots are at parametric t values where the polynomial pieces join
- Most common are uniform knot spacing, i.e., t = 0, 1, 2, ...
 Nonuniform knot spacing or repeated knots are also possible
- A spline basis often serves as a blending function with local control
- Resulting spline curve is given by a set of control points blended by shifted or translated versions of the spline basis

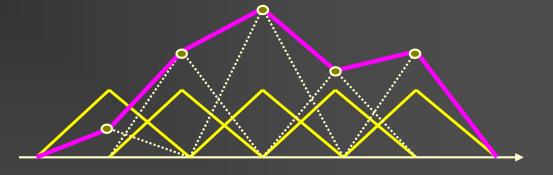
Example: uniform B-splines

B-splines: one particular class of spline curves

Degree 0-3 uniform B-splines



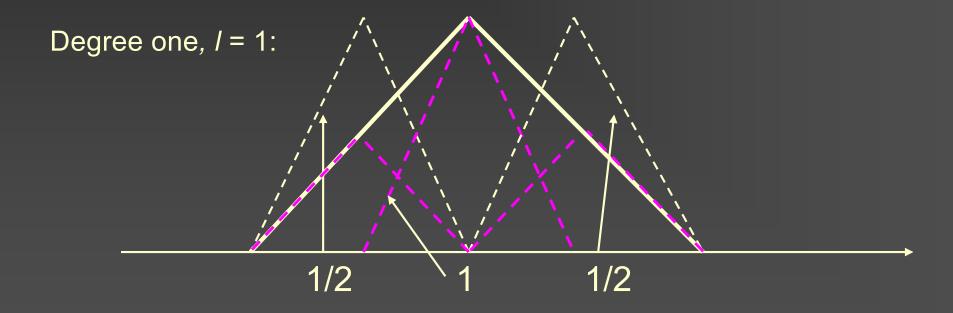
Note local control and increased continuity



A piecewise linear curve (C⁰) obtained by blending five uniform degree-1 Bsplines with control points

Key property of uniform B-splines

- A uniform B-spline can be written as a linear combination of translated (k) and dilated or compressed (2t) copies of itself
- This is the key to connect B-splines to subdivision



"Self refinement"

- B-spline of degree I, $B_I(t)$, is \mathbf{C}^{I-1} continuous, $I \ge 1$
- The *i*-th B-spline, B_l^i , is simply a **translate** of the B-spline $B_l(t)$ or $B_l^0(t)$: $B_l^i(t) = B_l(t-i)$ right shift of *i* units
- B-splines satisfy the refinement equation

$$B_l(t) = \frac{1}{2^l} \sum_{k=0}^{l+1} \binom{l+1}{k} B_l(2t-k)$$
— binomial coefficients
$$B(t) \xrightarrow{\text{compress then} \\ \text{translate by } k/2} B(2t-k)$$

- A uniform B-spline can be written as a linear combination of translated
 (k) and dilated / compressed (2t) copies of itself
- Again, this is the key to connect B-splines to subdivision

B-spline via subdivision

Using the refinement equation from last slide, we have

$$B(t) = B(2t) S$$

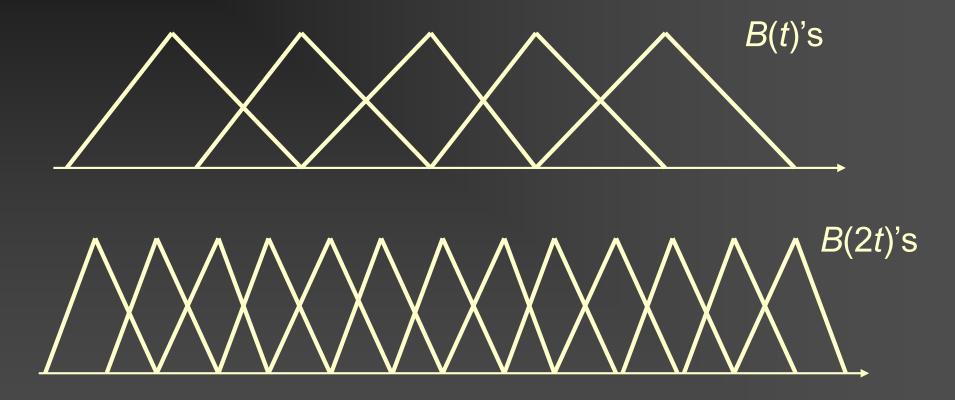
where the entries of S are given by

$$S_{2i+k,i} = S_k = \frac{1}{2^l} \binom{l+1}{k}$$

■ Thus, $p(t) = \mathbf{B}(t) \mathbf{p} = \mathbf{B}(2t) S\mathbf{p}$

We have changed B-spline bases $\mathbf{B}(t)$ to $\mathbf{B}(2t)$, where each element of $\mathbf{B}(2t)$ is half as wide as one in $\mathbf{B}(t)$ and the sequence in $\mathbf{B}(2t)$ are spaced twice as dense

Refinement of B-splines



Linear B-spline case; this extends to B-splines of any degree.

What have we done?

- Refined the B-spline basis functions, and at the same time,
- Refined the set of control points p
- Twice as many new control points p' = Sp:
 - One new point (an odd point) is inserted between two consecutive control points in p
 - Each control point in p (an even point) is either retained (interpolatory) or moved (approximating) in p'
- S is the subdivision matrix

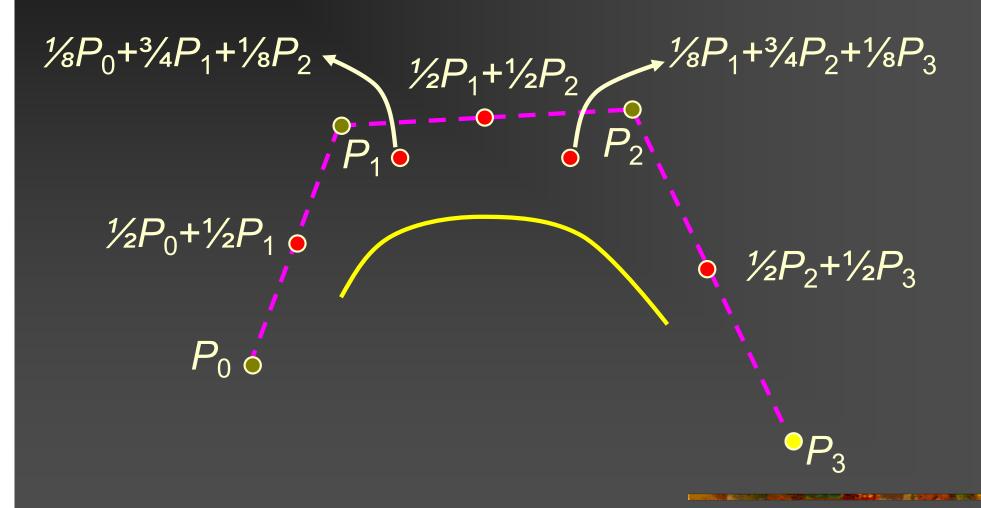
Subdivision matrix S

						4/8	0	0	0	0
	1	0	0	0	0	6/8	1/8	0	0	0
	1/2	1/2	0	0	0	4/8	4/8	0	0	0
	0	1	0	0	0	1/8	6/8	1/8	0	0
	0	1/2	1/2	0	0	0	4/8	4/8	0	0
}	0	0	1	0	0	0	1/8	6/8	1/8	0
	0	0	1/2	1/2	0	0	0	4/8	4/8	0
	0	0	0	1	0	0	0	1/8	6/8	1/8
	0	0	0	1/2	1/2	0	0	0	4/8	4/8
	0	0	0	0	1 _	0	0	0	1/8	6/8
						0	0	0	0	4/8

even points odd points

for linear uniform B-spline for uniform cubic B-splines

Cubic B-splines via subdivision



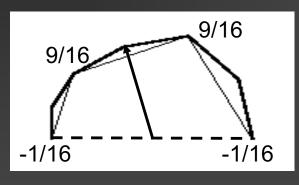
Convergence of subdivision (aside)

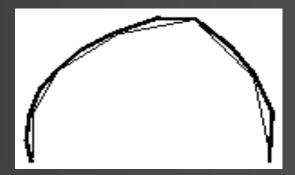
$$\mathbf{p}^{j} = S^{j} \mathbf{p}^{0}$$

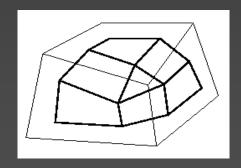
- The recursively refined set of control points converge to the actual spline curve $p(t) = \sum \mathbf{p}_i B_i/(t)$
- Have geometric rate of convergence, i.e., difference decrease by constant factor (see notes) $||\varepsilon^j|| < c\gamma^j$
- Can thus obtain spline curves via subdivision, just like de Casteljau for Bezier curves!

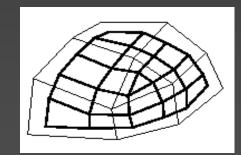
Idea of subdivision

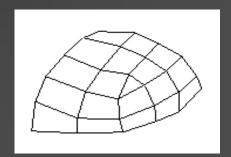
 A subdivision curve (or surface) is the limit of a sequence of successively refined control polygon (or control mesh)





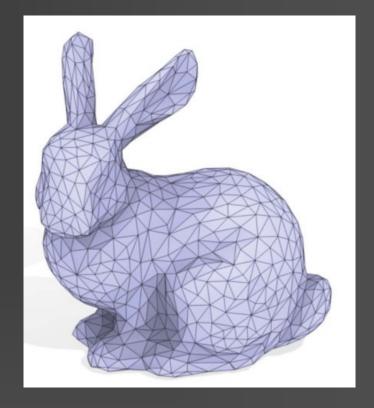






What are (polygonal) meshes?

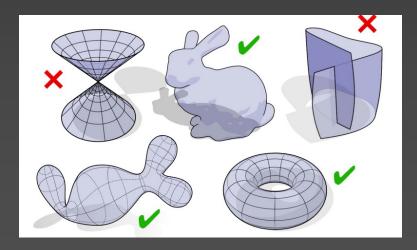
- Polygonal mesh: composed of a set of polygons pasted along their edges – triangles most common
- Still most popular in graphics and CAD

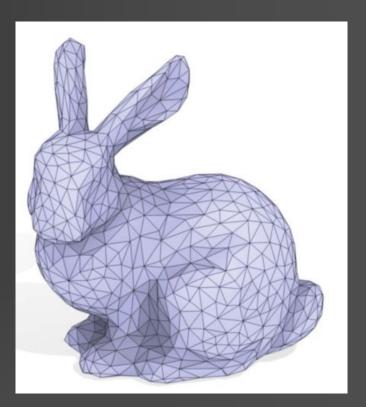


A triangle bunny mesh

What are (polygonal) meshes?

- Polygonal mesh: composed of a set of polygons pasted along their edges – triangles most common
- Still most popular in graphics and CAD.
- Basic mesh components and properties:
 vertices, edges, faces, valences, normal,
 curvature, boundaries, manifold or not





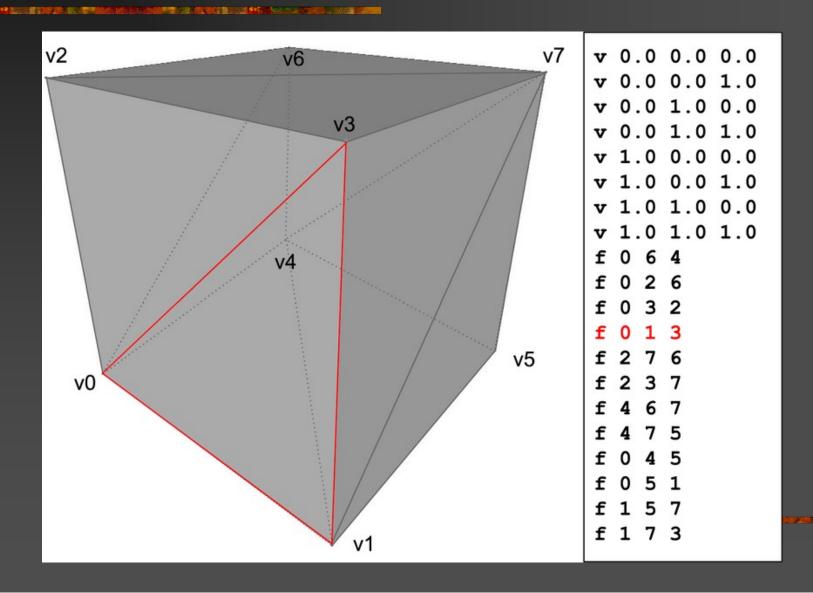
A triangle bunny mesh

Polygon soup

- For each triangle, just store 3 coordinates, no connectivity information
- Not much different from point clouds
- MobileNeRF is a polygon soup
- 3DGS is a dense "soup" of Gaussians



Mesh storage format: OBJ



Efficient storage: triangle strips

- A triangle strip gives a compact way of representing a set of triangles
- For n triangles in a strip, instead of passing through and transform 3n vertices, only need n+2 vertices
- In a sequence, e.g., v_1 , v_2 , ..., first three vertices form the first triangle; subsequent vertex forms new triangle with its preceding two vertices

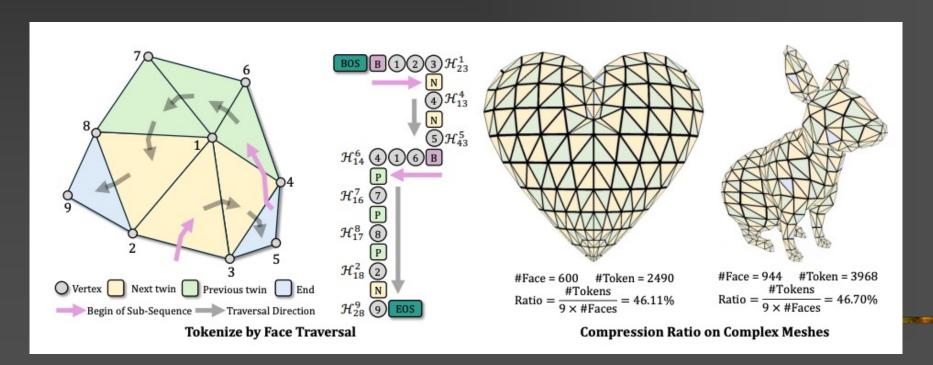
 V_3

 V_7

- Algorithms have been developed to "stripify" a triangle mesh into long triangle strips
- Triangle strips: a way to "serialize" a mesh

2025: neural mesh generation (aside)

- Key: to utilize the powerful transformer architecture
- Need to "tokenize" a mesh by traversing triangle/polygon sequences
- Quite a few examples, e.g., EdgeRunner [Tang et al., ICLR 2025]



Back to subdivision

- An effective and efficient way to model and render smooth curves and surfaces, e.g., Bezier and B-splines, via local refinement
- Two aspects:
 - Topological rule: where to insert new vertices? Are old vertices kept?
 - Geometrical rule: spatial location of the new vertices typically given as an average of nearby new or old vertices
- First introduced to graphics by Ed Catmull and Chaikin in the 1970's
- One of the most intensely studied subjects of geometric modeling (1990's) and ubiquitous in modeling and animation software today

Ed Catmull

Former President, Pixar and Walt Disney Animation Studios

Dr. Ed Catmull is a co-founder of Pixar Animation Studios, and served as President of Pixar for 33 years, while also serving as President of Walt Disney Animation Studios for 13 of those 33 years. Previously, Dr. Catmull was vice President of the Computer Division of Lucasfilm Ltd., where he managed development in the areas of computer graphics, video editing, video games and digital audio.

Catmull's book, the New York Times bestseller, "CREATIVITY, INC.: Overcoming the Unseen Forces That Stand in the Way of True Inspiration," and which Fast Company described as "what just might be the most thoughtful management book ever," was published by Random House in 2014.

Dr. Catmull is an ACM Turing Award Laureate; he has also been honored with five Academy Awards, including two Oscars for his work and a Lifetime Achievement Award.

Dr. Catmull founded three of the leading centers of computer graphics research – including the Computer Division of Lucasfilm Ltd. and Pixar Animation Studios. These organizations have been home to many of the most academically respected researchers in the field and have produced some of the most fundamental advances in computer graphics, including image compositing, motion blur, subdivision surfaces, cloth simulation and rendering techniques, texture mapping and the z-buffer. Dr. Catmull is one of the architects of the RenderMan rendering software, which has been used in over 90% of Academy Award® winners for Visual Effects over the past 20 years.

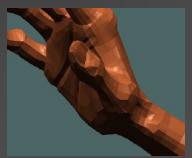
Dr. Catmull is active in several professional organizations. He has been a dedicated participant in ACM SIGGRAPH for nearly 40 years. Dr. Catmull is a member of The Academy of Motion Picture Arts and Sciences, the National Academy of Engineering, and the Visual Effects Society. He has received numerous awards from these organizations.

Dr. Catmull earned B.S. degrees in each of physics and computer science and a Ph.D. in computer science from the University of Utah. In addition, he has received honorary Doctorates from the University of Utah and Johns Hopkins University.

He retired as President of Pixar and Disney Animation in 2019.

Subdivision surfaces in animation

- Geri's game: Academy award for animated short (1998)
- Use of subdivision surfaces Geri's skins, clothing, etc.

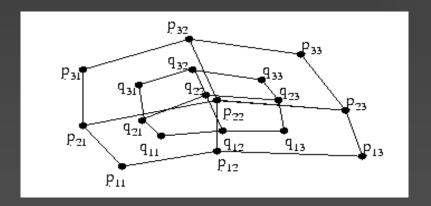




https://www.youtube.com/watch?v=uMVtpCPx8ow

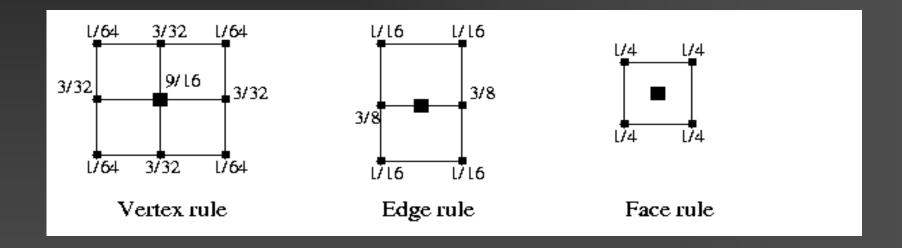
Surface example: Catmull-Clark

- Works on quadrilateral meshes
- Topological rules:
 - One new point per face and edge; retain the old vertices (not positions)
 - Connect face point with all adjacent edge points
 - Connect old vertex with all adjacent edge points



Catmull-Clark subdivision

Geometric rules (subdivision masks shown below)

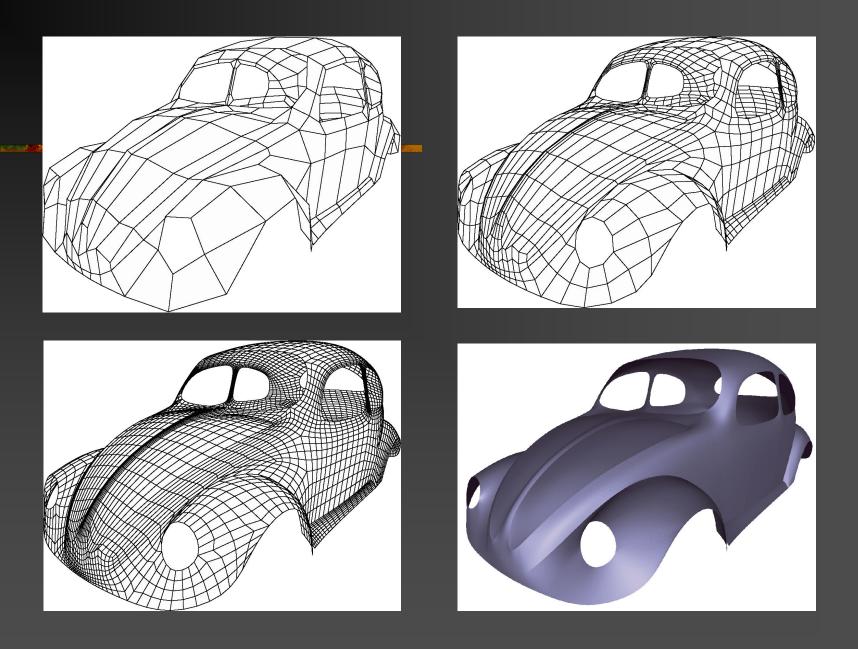


 This is all nice if the quadrilateral mesh connectivity is regular, i.e., a rectangular grid, but not always the case

Extraordinary vertices

- In a quadrilateral mesh, a vertex whose valence is not 4 is called an extraordinary vertex
- In a triangle mesh, an extraordinary vertex has valence ≠ 6
- Geometric rules for extraordinary vertices are different

Exercise: For a closed triangle mesh, can all vertices have degree 6?



Catmull-Clark and B-splines

- Even if original mesh has faces other than quadrilaterals, after one subdivision, all faces become quadrilaterals
- Number of extraordinary vertices never increase
- Over rectangular (regular) region, the limit is bicubic B-spline surface, i.e., C²
- Continuity at extraordinary vertices: C¹
- There are many other types of subdivision surfaces with different schemes giving different levels of continuity

Advantages

- Efficient to compute/render with simple algorithms: weighted averages within a local neighborhood
- Flexible local control of surface features
- Provable smoothness if well designed
- One-piece and seamless; can model surfaces with arbitrary topology (same topology as control mesh) with relative ease
- Compact representation: base mesh + (fixed) rules
- Natural level-of-detail (hierarchical) representation

Subdivision surface vs. mesh

- Subdivision surfaces are smooth limit surfaces
- But in practice, e.g., rendering, only a few subdivisions are needed to produced a mesh that is dense enough
- Polygonal meshes: a much more general geometric representation
 - Does not have to result from subdivision irregular connectivity vs.
 subdivision connectivity
 - Typically obtained from discretization of math representation or reconstruction out of a point cloud

Derivation of B-spline basis

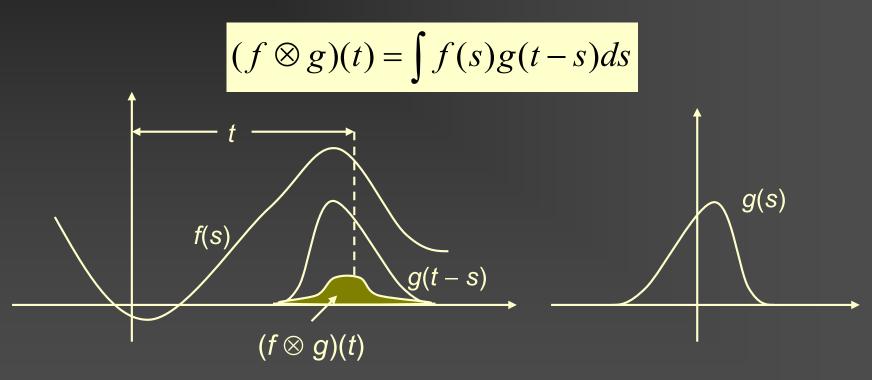
- ... via convolution
- Recall: B-spline bases defined by a knot sequence
- In uniform case (uniform B-splines), i.e., uniform spacing of the knots, B-spline basis can be defined via repeated convolution

$$B_l(t) = (B_{l-1} \otimes B_0)(t) = \int B_{l-1}(s)B_0(t-s)ds$$

■ $B_0(t)$, degree-0 B-spline, is the **box function** at t=0

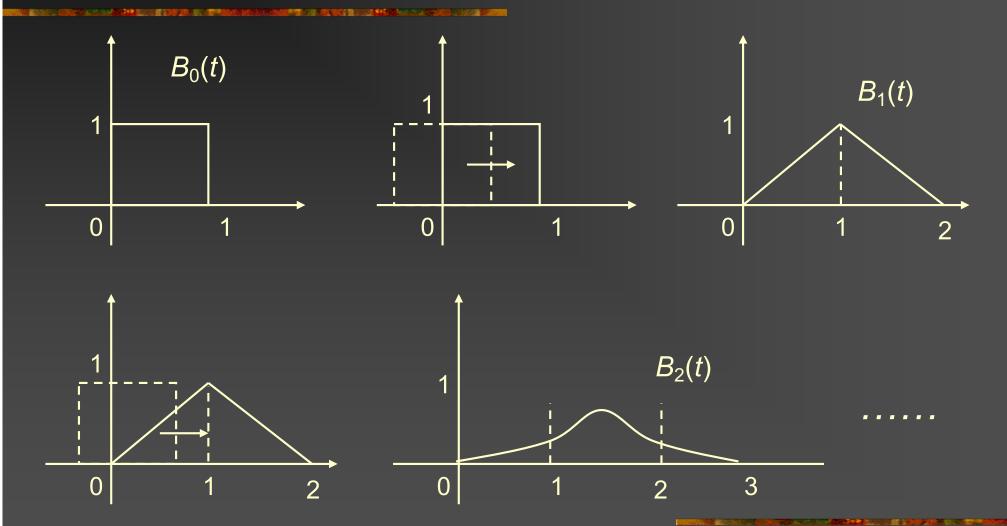
Convolution

An integral that computes a "running weighted average"



• Kernel/weighting function g is often symmetric about 0

B-splines via convolution



A few words on convolution (aside)

- Function g first reversed: differ from cross correlation
 - To ensure **commutativity**: $f \otimes g = g \otimes f$
 - Convolution is also associative: $f \otimes (g \otimes h) = (f \otimes g) \otimes h$
 - And distributive over addition: $f \otimes (g + h) = f \otimes g + f \otimes h$
- Discrete convolution in 1D: serial products

 - Length of resulting sequence: n + m − 1
 - Matrix formulation: multiplication by a Toeplitz matrix
 - Circular convolution defined by a circulant matrices, i.e., $C_{ij} = C_{kl}$ if and only if $i j \equiv k l \pmod{n}$

Important properties of subdivision

Convergence:

- Sequence of control polygons/meshes approach some continuous limit curve/surface
- Interpolation only for some subdivision schemes
 - Possible with interpolating subdivision schemes, e.g., Butterfly (next)
- Local control:
 - Allows local change to a shape, e.g., through lifting of a single vertex
 - Local change does not influence the shape globally
 - This is a result of having local subdivision rules, i.e., geometric results only depend on information in a small local neighborhood

Important properties (continued)

Affine invariance:

- To transform a shape, it is sufficient to explicitly transform its (compact) set of control points
- New shape is reconstructed (via subdivision) in transformed domain
- This is related to the row sum of the subdivision matrix

Smoothness:

- The limit curve/surface should be smooth: a local property
- Related to eigenvalues of the subdivision matrix

Subdivision matrix is key

- Subdivision matrix S characterizes the scheme
- Most relevant properties are derived from the subdivision matrix, e.g., local control (sparseness), convergence, smoothness, etc.
- First example, consider affine invariance
 - Requires S1 = 1, i.e., [1 1 ... 1]^T is an eigenvector of S with eigenvalue 1
 - Equivalently, S needs to have unit row sum
 - Proof?

Affine invariance (aside)

- Original vector of m points in dimension k: $u \in \mathbb{R}^{m \times k}$
- Vector of *n* points after subdivision: $v = Su \in \mathbb{R}^{n \times k}$, n > m
- Subdivision matrix $S \in \mathbb{R}^{n \times m}$
- Affine transformation of a point $p \in \mathbb{R}^{k \times 1}$ in dimension $k: p \to Ap + b$

Affine transform of subdivided points *v*:

$$v \to (Av^{\mathsf{T}} + b\mathbf{1}_n^{\mathsf{T}})^{\mathsf{T}} = [A(Su)^{\mathsf{T}} + b\mathbf{1}_n^{\mathsf{T}}]^{\mathsf{T}}$$
$$= SuA^{\mathsf{T}} + \mathbf{1}_n b^{\mathsf{T}}$$

Subdivide affine transformed points *u*:

$$u \to S(Au^{\mathsf{T}} + b\mathbf{1}_{m}^{\mathsf{T}})^{\mathsf{T}}$$
$$= SuA^{\mathsf{T}} + S\mathbf{1}_{m}b^{\mathsf{T}}$$

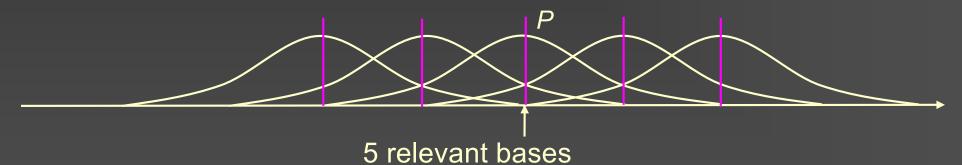
Results are equivalent if $S1_m = 1_n$, implying unit row sum for S

Smoothness of limit curve/surface

- Analyze the behavior of a subdivision scheme on or near a particular control point
- To study smoothness, we care not only about point locations, but also existence of tangent line/plane at the point in question, etc.
- So far, we have assumed subdivision matrix is bi-infinite
- To obtain a finite subdivision matrix, need to decide which control
 points influence the neighborhood of the point of interest
- Typically, the neighborhood structure does not change through subdivision — invariant neighborhood

Invariant neighborhood

- Consider spline curves represented by spline basis functions
- To decide which control points influence the behavior of the spline curve near a particular point P ...
- Look at how many spline bases influence P's neighborhood
- As an example, consider cubic B-splines



Invariant neighborhood in subdivision (aside)

- Let us look at subdivision ...
- Generally, and without a picture to help, note that

Final curve, i.e., polygonal curve joining control points after *j*-th level subdivision

Linear B-spline basis at refinement level *j* (i.e., the hat function)

control points obtained after *j*-th level subdivision

$$p^{j}(t) = B_{1}(2^{j}t)p^{j} = B_{1}(2^{j}t)S^{j}p^{0}$$

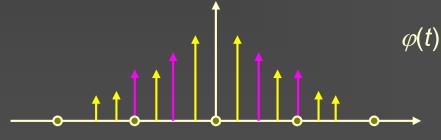
$$= B_{1}(2^{j}t)S^{j} \left[\sum_{i} p_{i}^{0} \mathbf{e}_{i}\right] = \sum_{i} p_{i}^{0} \left[B_{1}(2^{j}t)S^{j} \mathbf{e}_{i}\right] = \sum_{i} p_{i}^{0} \varphi_{i}^{j}(t)$$

Canonical basis vectors (or impulse vectors)

Invariant neighborhood in subdivision (aside)

$$p^{j}(t) = \sum_{i} p_{i}^{0} \varphi_{i}^{j}(t) \Rightarrow p^{\infty}(t) = \sum_{i} p_{i}^{0} \varphi_{i}(t), \quad \varphi_{i}(t) = \lim_{j \to \infty} \varphi_{i}^{j}(t)$$

- Each $\varphi_i(t)$ is the result of subdividing an **impulse**
- For stationary subdivision (i.e., fixed subdivision rules), $\varphi_i(t) = \varphi_0(t i)$, i.e., they are all the same, just translates of each other
- To determine size of invariant neighborhood, look at the influence of the fundamental solution
- E.g., for cubic B-spline subdivision, influence is 4 unit intervals, so 5 nearby control points influence the center point



Local subdivision matrix

Subdivision matrix is $n \times n$ if invariant neighborhood size is n

Cubic B-spline subdivision:

$$\begin{bmatrix} p_{-2}^{j+1} \\ p_{-1}^{j+1} \\ p_{0}^{j+1} \\ p_{1}^{j+1} \\ p_{2}^{j+1} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 1 & 6 & 1 & 0 & 0 \\ 0 & 4 & 4 & 0 & 0 \\ 0 & 1 & 6 & 1 & 0 \\ 0 & 0 & 4 & 4 & 0 \\ 0 & 0 & 1 & 6 & 1 \end{bmatrix} \begin{bmatrix} p_{-2}^{j} \\ p_{-1}^{j} \\ p_{0}^{j} \\ p_{1}^{j} \\ p_{2}^{j} \end{bmatrix}$$

- E.g., local subdivision matrix for cubic B-spline is 5 × 5
- Let us use eigenanalysis of subdivision matrix S to determine limit behavior about the point p_0^{∞}

Eigenvalues and eigenvectors

- For cubic B-spines
 - Eigenvalues

$$\begin{bmatrix} \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \end{bmatrix}$$

Complete set of eigenvectors

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 \\ 1 & -1/2 & 2/11 & 0 & 0 \\ 1 & 0 & -1/11 & 0 & 0 \\ 1 & 1/2 & 2/11 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Eigen-analysis

- For eigenanalysis to apply, eigenvectors of S need to form a basis, i.e., linear independence
- Not all subdivision schemes satisfy this (e.g., four-point scheme)
- Assume set of eigenvectors x_i 's are linearly independent, write the vector of (2D or 3D) control points as

$$p = \sum_{j=0}^{n-1} x_i a_i = X\mathbf{a}$$

Subdivision and repeated subdivision:

$$Sp^{0} = S\sum_{i=0}^{n-1} x_{i}a_{i} = \sum_{i=0}^{n-1} \lambda_{i}x_{i}a_{i}$$

$$p^{m} = S^{m} p^{0} = \sum_{i=0}^{n-1} \lambda_{i}^{m} x_{i} a_{i}$$

Eigenanalysis: convergence

- Assume that $\lambda_0 \geq \lambda_1 \geq ... \geq \lambda_{n-1}$, just an order ...
- Affine invariance requires 1 to be an eigenvalue due to unit row sum
- If λ_0 > 1, then divergence. So λ_0 must be 1
- It can be shown that only one eigenvalue = 1 [Warren 95]
- If one and only one eigenvalue is 1, the limit point is a_0 .
- How to compute: $a = X^{-1}p$, $X = [x_0, ..., x_{n-1}]$)

$$p = \begin{bmatrix} x \\ x \end{bmatrix}$$

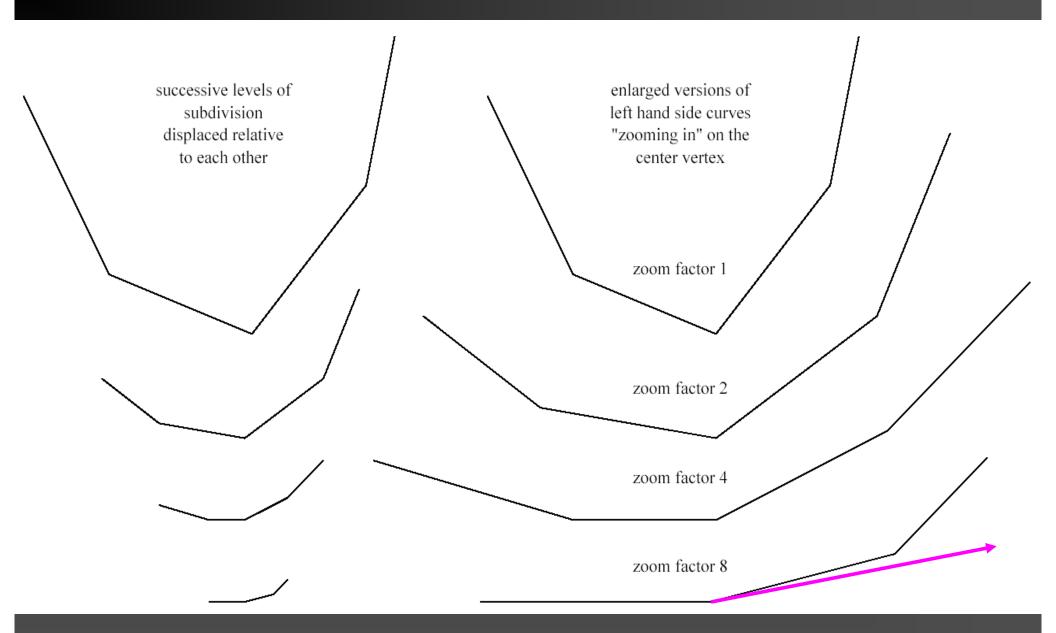
■ How about tangent at limit point? — think 2D: a_i's are 2D vectors

Eigenanalysis: tangent

Choose coordinate system so that a₀ is the origin

$$p^{j} = \sum_{i=1}^{n-1} \lambda_{i}^{j} x_{i} a_{i}$$
 and $\frac{p^{j}}{\lambda_{1}^{j}} = x_{1} a_{1} + \sum_{i=2}^{n-1} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{j} x_{i} a_{i}$

- If λ_1 , the subdominant eigenvalue, is unique, then there exists a tangent line, aligned with *vector* a_1 , at p^{∞}
- How to compute the tangent? Again, need to use the inverse of the eigenvector matrix X



Progressively aligned with tangent vector [pp. 44, Zorin 00]

Example: cubic B-splines

$$X = \begin{bmatrix} 1 & -1 & 1 & 1 & 0 \\ 1 & -1/2 & 2/11 & 0 & 0 \\ 1 & 0 & -1/11 & 0 & 0 \\ 1 & 1/2 & 2/11 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$X^{-1} = \begin{bmatrix} 0 & 1/6 & 2/3 & 1/6 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 1.8333 & -3.6667 & 1.8333 & 0 \\ 1 & -3 & 3 & -1 & 0 \\ 0 & -1 & 3 & -3 & 1 \end{bmatrix}$$

Limit behavior

- $p_0^{\infty} = p_{-1}^{0/6} + 2p_0^{0/3} + p_{+1}^{0/6}$
- Tangent at p_0^{∞} is $p_{+1}^0 p_{-1}^0$

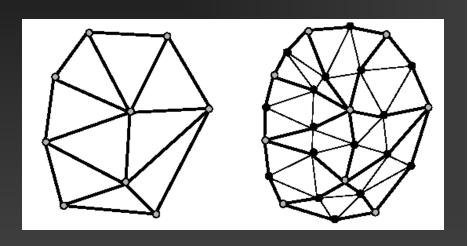
Summary of desirables

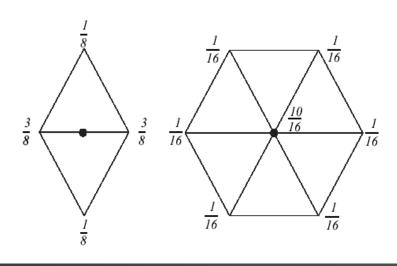
- Eigenvectors form a basis, i.e., complete set with linear independence
- Largest eigenvalue is 1 affine invariance and convergence
- The subdominant eigenvalue is less than 1 convergence
- All the other eigenvalues are less than the subdominant eigenvalue existence of tangent, but does not say about C¹...
- Note: most of these are sufficient conditions, i.e., not necessary (4-pt)

Eigen-analysis of subdivision surfaces

- Local control same as for curves
- Affine invariance same need row sum of subdivision matrix to be 1
- Sufficient conditions for tangent existence a bit different
- There may be extraordinary vertices
 - Subdivision rules are often different there so as to ensure nice properties
 at and near these vertices
 - One fundamental solution per extraordinary case

Example: (Charles) Loop Scheme





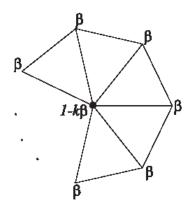


Figure 3.3: Loop scheme: coefficients for extraordinary vertices. The choice of β is not unique; Loop [16] suggests $\frac{1}{k}(5/8 - (\frac{3}{8} + \frac{1}{4}\cos\frac{2\pi}{k})^2)$.

[pp. 48-50, Zorin 00]

Analysis

- Similar to the case for curves, however ...
- There will be at least one subdivision matrix for each valence (can also change between levels – non-stationary)
- Notion of invariant neighborhoods still applies

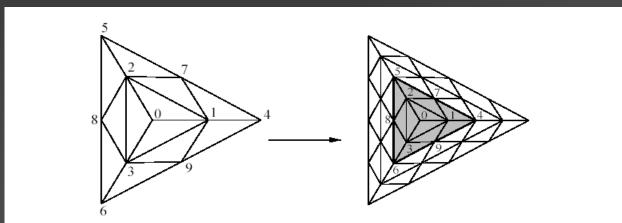


Figure 3.6: The Loop subdivision scheme near a vertex of degree 3. Note that $3 \times 3 + 1 = 10$ points in two rings are required.

Eigenanalysis

 Express control vector as linear sum of the eigenvectors of the subdivision matrix S, assuming linear independence

$$p = \sum_{j=0}^{n-1} x_i a_i$$

Subdivision and repeated subdivision

$$Sp^{0} = S\sum_{i=0}^{n-1} x_{i}a_{i} = \sum_{i=0}^{n-1} \lambda_{i}x_{i}a_{i}$$

$$p^{m} = S^{m} p^{0} = \sum_{i=0}^{n-1} \lambda_{i}^{m} x_{i} a_{i}$$

Note that a_i 's are now 3D points

Eigenanalysis

Again, assume that
$$\lambda_0 \geq \lambda_1 \geq ... \geq \lambda_{n-1}$$

- For affine invariance and convergence, require $\lambda_0 = 1$ and be unique
- For existence of tangent plane, note that

$$\frac{p^{j}}{\lambda^{j}} = x_1 a_1 + x_2 a_2 + \left(\frac{\lambda_3}{\lambda}\right)^{j} x_3 a_3 + \dots$$

if origin is at $a_0 = \mathbf{0}$, and

$$\lambda = \lambda_1 = \lambda_2 > \lambda_3$$

The tangent plane will be spanned by vectors a_1 and a_2

Smoothness of subdivision surfaces (aside)

- Two notions: C¹-continuous vs. tangent plane continuous
 - Technical definition of C¹ continuity of surface [pp. 56, Zorin 00]
 - Tangent-plane continuity (weaker) requires the limit of normals exist
 - Tangent-plane continuity + one-to-one projection between surface and tangent plane ⇒ C¹ continuity
- Essential/pioneering work for subdivision surfaces near extraordinary vertices:
 - Reif 's sufficient conditions for subdivision surfaces to be C¹ [Section 3.5, Zorin 00] as further reading

