
The New Computer Graphics in 
the Age of AI and Robotics

CMPT 464/764 Lecture 0
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Why robotics?
Nvidia GPU Tech Conf (GTC) 2025
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Next wave of AI: spatial and physical

☹ Contemporary Large Foundational Models (e.g., 
GPT-4o) still far from having spatial intelligence
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l Wikipedia: computer graphics (computer science) 

What is computer graphics (CG)?

“It focuses on the mathematical and computational 

foundations of image generation and processing …”
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What do the experts say?

Third edition @ 2014

Perhaps the most 
classic computer 
graphics textbook
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l Hughes, van Dam, et al.:

l “Computer graphics is the 

science and art of 

communicating visually via 

a computer’s display and its 

interaction devices.”

                           ------ page 1.

What do the experts say?

Third edition @ 2014
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l Hughes, van Dam, et al.: 

l “Taking a model of the objects in a scene and a model 

of the light emitted into the scene and producing a 

representation of a particular view of the scene.”

Classical CG
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l Hughes, van Dam, et al.:

l “Taking a model of the objects in a scene and a model 

of the light emitted into the scene and producing a 

representation of a particular view of the scene.”

l “A glorified multiplication: multiplying incoming light by 

reflectivity of objects … for all light reaching the camera”

                                      ------ page 2, “A narrow definition”.

Classical CG
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l The graphics (vertex & pixel) pipeline

l Transformation, viewing, projection, clipping & visibility

l Light, color, local & global illumination

l Sampling and reconstruction: Fourier transform; aliasing

l Image representation, manipulation, and texture mapping 

l Curves, surfaces, meshes, and other geometry reps

List of CG topics from CMPT 361

All about model representation and rendering
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l Explicit scene description is given

l Key problem #1: how to best represent geometry, 

texture, and lighting for the given scene

Classical CG
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l Explicit scene description is given

l Key problem #1: how to best represent geometry, 

texture, and lighting for the given scene

l Key problem #2: how to render the scene with
l Efficiency

l photo or physical realism

Classical CG

A forward problem: 
Explicit model description             rendered image
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l “The quick brown fox jumps over a lazy dog.”

l Need explicit models for

l A brown fox

l A dog

l Quick jump 

l Sleeping dog …

The “forward” problem
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l “The quick brown fox jumps over a lazy dog.”

l Need explicit models for

l A brown fox

l A dog

l Quick jump 

l Sleeping dog …

The “forward” problem
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l Lower level: 

l Analysis: given one view of a scene, determine the 

illumination and the scene’s content, which a graphics 

system could use to produce the scene

What about computer vision?
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l Lower level: 

l Analysis: given one view of a scene, determine the 

illumination and the scene’s content, which a graphics 

system could use to produce the scene

l Higher level: infer an understanding of what are 

in the scene and what “they” are doing

What about computer vision?

An inverse problem: 
From a rendered image to a model description
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l Ask Claude: Please describe this image.

The “inverse” problem
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l Ask Claude: Please describe this image.

l There is a fox

l There is a dog

l Fox jumps over dog

l Fox is quick

l Dog is lazy …

The “inverse” problem



18

l Graphics is about synthesis

l Classical graphics is about image synthesis 

Graphics vs. vision
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l Graphics is about synthesis

l Classical graphics is about image synthesis 

l Vision is about image analysis

Graphics vs. vision
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l Graphics is about synthesis

l Classical graphics is about image synthesis 

l Vision is about image analysis

l In classical setting, they were opposite problems

l Forward vs. inverse problems: which is harder? J

Graphics vs. vision – classically 

x = ? x= ??vs.
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l Before jumping to “the new graphics”, what 

would be one big difference between “data in 

classic CG” and “data in classic CV”?

Difference in DATA – classically 

2D image data for computer vision 
vs.

3D shape/scene data for computer graphics
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Difference in DATA – classically 

l Wikipedia: computer graphics (computer science) 

“Although the term (computer graphics) often refers to 
the study of three-dimensional computer graphics, it 
also encompasses two-dimensional graphics and 
image processing …”



3D Vision 2026, Vancouver, 03/24-27
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l Acquisition of 3D models is hard

l 3D modeling is hard

l Spatial reasoning and computation in 3D is hard

l Interaction in 3D is hard

Regardless: challenges with 3D data
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l Harder to acquire 3D chairs than chair images

3D challenge: acquisition

RGBD acquisition with lots of missing data
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l Reconstruction or modeling from 3D point clouds  

l Missing data

3D challenge: classical acquisition

Poisson MPULaser scan
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l Reconstruction or modeling from 3D point clouds

l Missing data + dynamic data

3D challenge: classical acquisition

[Lee et al. CVPR 2024]
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l Reconstruction or modeling from 3D point clouds

l Missing data + dynamic data + large scales

3D challenge: classical acquisition

[Liu et al. SIGGRAPH Asia 2022]
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l Image-to-3D, text-to-3D, or text-to-image-to-3D

3D challenge: acquisition in 2025

NeRF [Mildenhall et al. ECCV 2020]
via multi-view

Text: 
“A bunny on 

pancakes”

Single-view 
image

Magic3D 
[Lin et al. CVPR 

2023]
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l Image-to-3D, text-to-3D, or text-to-image-to-3D

3D challenge: acquisition in 2025

Text: 
“A potted cactus plant”

Single-view 
image

DreamGaussian
[Tang et al. ICLR 2024]

3D Gaussians via multi-view 
[Kerbl et al. SIGGRAPH 2023]
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3D challenge: modeling 
Autodesk 
Maya
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3D challenge: modeling 
Autodesk 
Maya

3D modeling is not a job for everyone!
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l Humans very good at pattern recognition (vision)

l But not so good at 3D reasoning or manipulation

3D reasoning is hard

But we live in a 3D world and many real-world 
problems are 3D!
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How to easily generate many 3D indoor scenes 
that are realistic and diverse, e.g., for AR/VR?

Many real-world problems are 3D
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l How to subtly make the table stackable?

Many real-world problems are 3D
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l How to subtly make the table stackable?

Stackabilization

[Li et al. Siggraph Asia 2012]

Requires precise measurement and transform of 
3D objects: difficult for human users to model 



l How to subtly make the chair foldable?
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Foldabilization

[Li et al. Siggraph 2015]

Like solving a puzzle: 
acute 3D spatial reasoning 

skills are needed

Computationally hard with 
very large search space
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Foldabilization
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l How to decompose into few terrain-like parts?

41

A cool decomposition for 3D printing

Terrain-like part

Zero material waste for 
layer-based 3D printing



l How to decompose into few terrain-like parts?
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Pyramidal decomposition

[Hu et al., Siggraph Asia 2014]



l How to decompose into few terrain-like parts?
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Pyramidal decomposition

3D problem is provably NP-hard
Computer graphics is responsible for addressing 

the various 3D data challenges



l Graphics likes 3D to be wanted & used everywhere

l The internet has not made 3D data ubiquitous as 

promised: remember VRML around 15 years ago?

l 3D printing just might!
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3D printing may be a blessing



l Keep doing synthesis, but focus on modeling

l Synthesis of all visual contents, not just images

45

New graphics

explicit model 
description

synthesized 
content

rendering



l Keep doing synthesis, but focus on modeling

l Synthesis of all visual contents, not just images

explicit model 
description
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New graphics: no explicit model

synthesized 
content

rendering

Model description is only abstract (e.g., texts or a 
sketch), hard to quantify (functional or creative), or 

unknown entirely (input = set of examples)



l Synthesis and manipulation of images
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New graphics: novel content

Implicit or abstract 
inputs, examples, … novel content

especially 3D, 
e.g., geometric 

modeling

visual contentsnovel +
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New kinds of inputs

A rough sketch
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New kinds of inputs

One or more 
images

A rough sketch
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New kinds of inputs

One or more 
images

Just some examplesA rough sketch
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Text-to-3D

“A baby bunny sitting on top of a stack of pancakes” 
3D model generated from text [Zhu et al. 2023]



Text-driven 3D scene synthesis 

There is a 
TV in front 
of the sofa

Initial Scene

…
A messy coffee 
table is in front 
of the sofa

More 
Sentences

Synthesized 
Scene

52[Li et al. SIGGRAPH 2018]



l 3D model from a single photograph
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Photo-inspired modeling

?



54

l Abstract inputs: ill-posed synthesis problem

l Needs extra knowledge, e.g., pre-existing dataset

Has to be data-driven

Select Warp

[Xu et al. SIGGRAPH 2011]
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l Key: understand the set of examples by learning                 

l To infer commonality and diversity in the set

Example-based modeling
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l Learn a generative model, e.g., from examples

l Apply the model forwardly, maybe with a random 

input, to synthesize novel contents

Inverse modeling

GAN
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We generate/synthesize objects/scenes that are

l Plausible: “What makes a chair a chair?”

l With the right style: “Essence of Gothic style?”

l Functional: “Shape vs. functional similarities?”

l Ergonomic: “How to quantify human comfort?”

l Creative: “What is a model of human creativity?”

l …

In the new graphics
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2D/3D objects or scenes that are

l Plausible, stylistically compatible, aesthetically pleasing, 

functional, ergonomic, or creative, etc.

l We must first learn plausibility, style, function, etc.

l To generate from texts/sketches, we must learn 

the right mapping/regression model

To generate/synthesize
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l Analysis to acquire understanding of

l grouping/clustering patterns, object/scene composition, 

human activities, styles, functionality, creativity, etc.

l Synthesis of images, shapes, scenes via

l interactive modeling, genetic algorithm, statistic models, 

deep regression and generative neural networks, etc.

Workflow of new graphics research
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l Generative autoencoders via recursive neural nets

Example: generative structural reps

Encoder is trained to learn 
recursive/hierarchical grouping of 
words in a sentence, regions in 

an image, parts in a 3D shape, or 
objects in an indoor scenes 

Decoder, the generative or 
synthesis model, is trained 
to convert a random code 

into a hierarchy

GRASS: Generative Recursive Autoencoders for Shape Structures [SIG 2017]



l Combine autoencoder with GAN: VAE-GAN

l Structure-aware; coarse-to-fine; clean parts; high res

Example: generative structural reps

61
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Example: scenes from random codes

GRAINS: Generative Recursive Autoencoders for INdoor Scenes [2018]

Takes less than one second to generate a 3D scene!
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l Inverse analyses and learning generative models

l Keying on shape/scene understanding

l Only with a good understanding of a shape/scene 

category (“bicycle” or “kitchen”) can one recreate!

New graphics: not forward problem
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l Modeling from abstract description, e.g., texts

l Modeling from few examples

l Inverse procedural modeling

l Learning generative neural networks

Important problems in new graphics

Knowledge, learning, and data
play the key roles!
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l Wikipedia was already catching up:

l Something I hid: Computer graphics = methods for 

digitally synthesizing and manipulating visual content

l From image production to all (3D) visual content

Our new view of graphics 

Novelty 
of the synthesized content is the BIG challenge!
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l Hughes, van Dam, et al.:

l “Much of current research in graphics is in methods for 

creating geometric models, methods for representing 

surface reflectance, the animation of scenes …, and in 

recent years, an increasing integration of techniques 

from computer vision.”

                                                        ------ page 2 of

Current graphics and computer vision
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l Shape understanding and inverse modeling are 

very much “vision-like” research problems

l So, graphics is “catching up” J

l But could we do more?

Computer graphics vs. vision again



Steven A. Coons Award

68



Jim Kajiya: What human capabilities does 
each CS discipline try to enhance/replace?

Artificial intelligence: 
human intelligence

Computer vision: 
pattern recognition

What about computer graphics? Human imagination!

Steven A. Coons Award

69
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l Think of the various VFX we see in films and games

l Think of the VR/AR/MR CG has helped create

Graphics and imagination

Computer graphics allows our imagination 
to be realized into (virtual) reality!

It allows a mental concept to turn into a 
digital representation, and now fabricated!
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l Only scratching the surface in the new graphics

l Smart ideas: data-driven, data reuse, co-analysis, 

supervised learning, active learning, etc.

l Future of modeling in computer graphics

Still a long way to go

Data + knowledge + learning



A new 3D data challenge

3D Warehouse: 24,951 results

Google image search for chair: 64,000,000 results

72



l Bicycles

29,900,000 vs. 1,225

l Strollers

5,070,000 vs. 36

No “Big 3D Data” yet

3D Warehouse: 24,951 results

Google image search for chair: 64,000,000 results

73
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l Lack of knowledge for learning-based 3D analyses

l Lack of examples for example-driven 3D syntheses

l Small data is *the* detriment to

Problems with “small 3D data”?

Data + knowledge + learning
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l Need to synthesize more and more 3D models!

l Not only volume, but variation, variety, and novelty!

To fix the “small 3D data” problem

Novelty 
of synthesized content may enhance knowledge!
Computer graphics is responsible for producing 

such Big 3D Data



When is a machine becoming human?

76

What about AI?
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l Well-known Turing test: indistinguishability between 

human and machine in natural conversation

When is a machine becoming human?

Multiple human 
judges vote who is 
human/machine

Turing (1950’s) predicted the test would be passed 
around year 2000.  An easy version of the test was 

passed in 2014 by Eugene, a ChatBot. 
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l Total Turing test: machines linguistically and 

physically indistinguishable from a human

Hans Moravec (1999): Total Turing Test to be 
passed by the year 2040

When is a machine becoming human?
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l Ada Lovelace (1815-1852)
l Pre-dates Turing (1912 – 1954)

l Worked on world’s first computer 

l AKA: the first computer programmer

Is this Turing test too easy?

Computers can’t create anything 
(Humans can!). Creation requires 

originality. But computers originate 
nothing; they only do that what we 

order them, via programs, to do.
- Ada Lovelace
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l Test on machines’ ability to create an artifact
l e.g., a story, poem, painting, or a 3D shape

l Test or judging criterion can vary
l e.g., human creator of agent cannot explain the creation

A harder test: Lovelace Test

[Bringsjord, Bello, and Ferrucci, Minds and Machines, 2001]
Key message:  What really separates humans 

from machines is not the ability to make 
conversation, but the ability to create!

Creation and synthesis of visual content is the 
goal of computer graphics!



l Goal: model or simulate creativity using a computer
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Computational creativity



*** Construct a program capable of human creativity

 ** Understand creativity and formulate an algorithmic 

perspective on creative behavior in humans

  * Design a program which may enhance human 

creativity without the program being creative itself

82

Goals of computational creativity
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l Creativity: machines stochastically generate models

l Has to be controlled

Creative 3D modeling
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l Creativity: machines stochastically generate models

l Control by humans operating on a “design gallery” 

Creative 3D modeling
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l Evolve an entire set (initial population) to obtain 

generations of fit and diverse new creations 

Creative 3D modeling via evolution

[Xu et al. SIGGRAPH 2012]
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l Allows creative generation of novel 3D contents

Creative 3D modeling

Genetic algorithm + Interactive modeling

Very far from an intelligent machine that is creative
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Machine to generate creative logos?
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What can we do now?
[Tanveer et al. ICCV 2023]



Graphics is responsible forGraphics in the age of AI 

89
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l Addressing the various 3D data challenges: 

acquisition, modeling, interaction, etc.

Graphics is responsible for
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l Producing BIG 3D data

Graphics is responsible for
ScanNET
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l Training machines and neural networks capable of 

generating (novel) 3D content from abstract, 

implicit descriptions, sets of examples, etc.

Graphics is responsible for
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l Realizing and enhancing human imagination

Graphics is responsible for
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l No explicit model description

l Synthesize novel 3D content

l Synthesize Big 3D Data                                        

— 4 V’s: Volume + Variation + Variety + NoVelty

l Synthesize creative 3D content = 3D generative AI

New graphics: synthesis challenges

We are only scratching the surface!



Graphics is responsible for
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Graphics in the age of robotics 



Foundational model for robotics (RFM)
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… significant research challenges remain, particularly around the 
scarcity of robot-relevant data, safety guarantees and uncertainty 

quantification, and real-time performance.



😀 High-quality: e.g., Amazon-Berkeley Objects (ABO)

3D datasets for RFMs
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😀 High-quality

😀 Affordance: robots know what objects can do, how they are used

3D AffordanceNet [Deng et al. CVPR 2021]: 23K shapes

3D datasets for RFMs
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😀 High-quality

😀 Affordance

😀 Structured

😀 Text-grounded

Zero-shot, open-vocabulary, arbitrary referring segmentation 
in image, then back-project to 3D [Wang et al. 2025]

Active learning [Yu et al. ICCV 2023]

3D datasets for RFMs
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😀 High-quality

😀 Affordance

😀 Structured

😀 Text-grounded

😀 Motion-enabled

~2,300 models from PartNet-Mobility [Xiang et al. CVPR 2020]

Robots need to recognize and interact with object parts to expect proper 
responses (motions) and fulfill tasks. But such RFMs are still far away!

3D datasets for RFMs
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