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Next wave of Al: spatial and physical

Jensen Huang The Next Wave of Al Will Be Physical

>

NVIDIA.

COMPUTEX

“The next wave of
_ \ Al will be physical.”

—

With Spatial Intelligence, Al Will Understand the Real World | Fei-Fei Li | TED

@ Contemporary Large Foundational Models (e.g.,
GPT-40) still far from having spatial intelligence



What is computer graphics (CG)?

e \Wikipedia: computer graphics (computer science
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Wicnen A Computer graphics (computer science)
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“It focuses on the mathematical and computational

foundations of image generation and processing ...”

About Wikipedia 3 Subfields in computer graphics

Community portal 3.1 Geometry A modern rendering of the Utah &
Recent changes . " teapot, an iconic model in 3D computer
N 8.2 Animation graphics created by Martin Newell in
1975.

3.3 Rendering
4 Notable researchers in computer graphics
5 See also
6 References
7 Further reading
8 External links
8.1 University groups

Wikidata item 8.2 Industry
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Download as PDF i I ipulation of visual and geometric information using computational techniques] It focuses on the mathematical and computational foundations
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What do the experts say?

A

COMPUTER GRAPHICS

PRINCIPLES AND PRACTICE

Perhaps the most I L0
classic computer =
graphics textbook

JOHN F. HUGHES * ANDRIES VAN DAM * MORCAN MCGUIRE
DAVID F. SKLAR + JAMES D. FOLEY - STEVEN K. FEINER - KURT AKELEY

Third edition @ 2014



What do the experts say?

e Hughes, van Dam, et al.: COMPUTER GRAPHICS

PRINCIPLES AND PRACTICE

THIRD EDITION

e “Computer graphics is the
science and art of
communicating visually via

a computer’s display and its

Interaction devices.”

JOHN F. HUGHES - ANDRIES VAN DAM * MORCAN MCGUIRE
DAVID F. SKLAR + JAMES D. FOLEY - STEVEN K. FEINER - KURT AKELEY

Third edition @ 2014
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COMPUTER GRAPHICS

Classical CG

e Hughes, van Dam, et al.:

e “Taking a model of the objects in a scene and a model
of the light emitted into the scene and producing a

representation of a particular view of the scene.”



COMPUTER GRAPHICS

Classical CG

e Hughes, van Dam, et al.:

e “Taking a model of the objects in a scene and a model
of the light emitted into the scene and producing a
representation of a particular view of the scene.”

e “A glorified multiplication: multiplying incoming light by
reflectivity of objects ... for all light reaching the camera”

------ page 2, “A narrow definition”.



List of CG topics from CMPT 361

e The graphics (vertex & pixel) pipeline

e Transformation, viewing, projection, clipping & visibility

e Light, color, local & global illumination

e Sampling and reconstruction: Fourier transform; aliasing
e Image representation, manipulation, and texture mapping

e Curves, surfaces, meshes, and other geometry reps

All about model representation and rendering




Classical CG

e EXxplicit scene description is given

e Key problem #1: how to best represent geometry,

texture, and lighting for the given scene
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Classical CG

e EXxplicit scene description is given

e Key problem #1: how to best represent geometry,
texture, and lighting for the given scene

e Key problem #2: how to render the scene with

o Efficiency

A forward problem:
Explicit model description === rendered image
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The “forward” problem

e "The quick brown fox jumps over a lazy dog.”

e Need explicit models for
A brown fox
A dog
Quick jump

Sleeping dog ...
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The “forward” problem

e "The quick brown fox jumps over a lazy dog.”

e Need explicit models for

e A brown fox
e A dog

e Quick jump

e Sleeping dog ...
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COMPUTER GRAPHICS

What about computer vision?

e Lower level:

e Analysis: given one view of a scene, determine the
illumination and the scene’s content, which a graphics

system could use to produce the scene
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COMPUTER GRAPHICS

What about computer vision?

e Lower level:

e Analysis: given one view of a scene, determine the
illumination and the scene’s content, which a graphics

system could use to produce the scene

e Higher level: infer an understanding of what are

An inverse problem:
From a rendered image to a model description

15



The “Inverse” problem

e Ask Claude: Please describe this image.
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The “inverse” problem

e Ask Claude: Please describe this image.
o There is a fox
e There is a dog
e Fox jumps over dog

e Fox is quick

e Dog is lazy ...
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Graphics vs. vision
e Graphics is about synthesis

Classical graphics is about image synthesis
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Graphics vs. vision
e Graphics is about synthesis

Classical graphics is about image synthesis

e Vision is about image analysis
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Graphics vs. vision — classically
e Graphics is about synthesis

Classical graphics is about image synthesis

e Vision is about image analysis

e In classical setting, they were opposite problems

Forward vs. inverse problems: which is harder? ©

X = ? VS. ? x| ?

20



Difference in DATA — classically

e Before jumping to “the new graphics”, what
would be one big difference between “data in

classic CG” and “data in classic CV”?

2D image data for computer vision
VS.
3D shape/scene data for computer graphics

21



Difference in DATA — classically

e Wikipedia: computer graphics (computer science)

;‘ AR
z o o9
2q Q e Article  Talk Read Edit View history Q
} 5
My
wixmpepiA  Computer graphics (computer science)
The Free Encyclopedia From Wikipedia, the free encyclopedia
R This article is about the scientific discipline of computer graphics. For other uses see Computer graphics (disambiguation).
Contents

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual
content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional

Featured content
Current events
Random article

graphics and image processing.

Donate to Wikipedia
Wikipedia store Contents [hide]
Interaction 1 Overview
Help 2 History
About JMKipedia 3 Subfields in computer graphics
3.1 Geometry A modern rendering of the Utah
. . teapot, an iconic model in 3D computer
392 mmn - | .

“Although the term (computer graphics) often refers to
the study of three-dimensional computer graphics, it
also encompasses two-dimensional graphics and
Image processing ..."
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Regardless: challenges with 3D data
e Acquisition of 3D models is hard

e 3D modeling is hard

e Spatial reasoning and computation in 3D is hard

e Interaction in 3D iIs hard

24



3D challenge: acquisition

e Harder to acquire 3D chairs than chair images
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3D challenge: classical acquisition

e Reconstruction or modeling from 3D point clouds

e Missing data

\ LRy
L EEURRN

Laser scan Poisson MPU
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3D challenge: classical acquisition

e Reconstruction or modeling from 3D point clouds

e Missing data + dynamic data

Occluded partial observations

\ \ W

. ¢ ¢
- E :
o

Sin

HE E N EEEEEEENEENEBEHR Novel View Synthesis Novel Pose Synthesis

Input: Monocular Video Output: Animatable Person 3D-GS

[Lee et al. CVPR 2024] 27



3D challenge: classical acquisition

e Reconstruction or modeling from 3D point clouds

e Missing data + dynamic data + large scales

' W"/z rﬁ{"\": ¥

[Liu et al. SIGGRAPH Asia 2022]  2s



3D challenge: acquisition in 2025

e Image-to-3D, text-to-3D, or text-to-image-to-3D

Text:
“A bunny on

panca es”

Single-view NeRF [Mildenhall et al. ECCV 2020] Magic3
Image via multi-view [Lin et al. CVPR

2023]
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3D challenge: acquisition in 2025
e Image-to-3D, text-to-3D, or text-to-image-to-3D

Text:
“A Joottecf cactus }ofcmt”

SirTgIe-view 3D Gaussians via multi-view DreamGaussian
Image [Kerbl et al. SIGGRAPH 2023] [Tang et al. ICLR 2024]
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3D challenge: modeling

. Autodesk Maya 2011 x64 - Trial Version: untitled* --- pPipel.f[58]
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3D challenge: modeling

Autodesk
Maya

Maya User Interface Overview

1 Menu Sets -

While Maya’s first seven menus are
always available, the remaining menus
change depending on which Menu Set
you choose. This helps focus your work
on related tools.

2) Menus - 3) Status Line -

Menus contain tools and actions for
creating and editing objects and setting
up scenes. There is a main menu at the top
of the Maya window and individual menus
for the panels and option windows.

8 QWERTY Tool Box -

The QWERTY hot keys can be used o =
to Select (1), Move (), Rotate (2),

Scale (1) and Show Manipulators (t),

as well as access the last tool

used (v) in the scene.

TORLYCEULE

TIleo?

»ANs s MENNCEE O

A

9) Quick Layout Buttons - 6

The Quick Layout Buttons provide
predefined configurations of the
Maya Workspace. Hold the Right
Mouse button over these buttons
to give access to more options.

Workspace -

The Status Line contains shortcuts for
anumber of menu items as well as tools

for setting up object selection and snapping.
A Quick Selection field is also available that
can be set up for numeric input.

4) Shelf -

The Shelf is available to you to set up customized
tool sets that can be quickly accessed with a
single click. You can set up shelves to support
different workflows. Press when
selecting a menu item to add it to a Shelf.

5) Panel Toolbar -

The panel toolbar rests below the
panel menu in each view panel.
It lets you readily access many of
the frequently used items in the
panel menu with a button click.
You can toggle view the toolbar
by pressing

6) Channel Box -

The Channel Box lets you edit
and key values for selected
objects.

The workspace consists of multiple

10 Help Line -

The Help Line gives a short
description of tools and menu items
as you scroll over them in the Ul.
This bar also prompts you with

the steps required to complete

a certain tool workflow.

11 Time Slider -

The Time Slider shows you the time

13 Ual 11a> al airga W uie s o Ine Playback controls 1et you
move around time and preview
your animations as defined by

the Time Slider range.

12) Range Slider -

This bar lets you set up the start

and end time of the scene’s animation
and a playback range if you want to
focus on a smaller portion of the time.

inputting simple MEL commands
and an area to the right for feedback.
You will use these areas if you choose

to become familiar with Maya’s MEL
scripting Language.

panels that offer different ways of
creating and evaluating your scenes.

3D modeling is not a job for everyone!

7) Layers -
Maya has three types of Layers.

used to manage
ascene.

used to set up
render passes for compositing.

used to blend,
lock, or mute multiple levels
of animation.

Ine Ammation or Lharacter
menus allow you to quickly
switch the animation layer
or current character set.

In all cases, there is a default
layer where objects are initially
placed upon creation.
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3D reasoning is hard

e Humans very good at pattern recognition (vision)

e But not so good at 3D reasoning or manipulation

é@@;ﬁ;&

But we live in a 3D world and many real-world
problems are 3D!

> g o )
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Many real-world problems are 3D

How to easily generate many 3D indoor scenes
that are realistic and diverse, e.g., for AR/VR?

34



Many real-world problems are 3D

e How to subtly make the table stackable?

35



Stackabilization

e How to subtly make the table stackable?

Requires precise measurement and transform of
3D objects: difficult for human users to model

36




Foldabilization

e How to subtly make the chair foldable?

Like solving a puzzle:
acute 3D spatial reasoning
skills are needed

Computationally hard with
very large search space

[Li et al. Siggraph 2015]

37



Foldabilization

EMBRY-RIDDLE

Aeronautical University. International Journal of Aviation,
SCHOLARLY COMMONS Aeronautics, and Aerospace

Volume 8 | Issue 1 Article 1

2021

Folding Methodology for Flexible Aircraft Interiors

Aditya Venkatesh

Ryerson University, Toronto, Canada, avenkatesh@ryerson.ca
Fengfeng (Jeff) Xi

Ryerson University, Toronto, Canada, fengxi@ryerson.ca
Joon Chung

Ryerson University, Toronto, Canada, j3chung@ryerson.ca
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Seats across table Two-door mid-size .
credenza Two-door cabinet

Three seat sofa Full size bed

Seats across table

Figure 3. Partially sectioned top view with extended furniture pieces.

Figures 4 and Figure 5 illustrate the Open-on-Demand concept along the
starboard and port sides of the partially sectioned cabin with zero-thickness
furniture pieces. The area highlighted in yellow refers to the floor space the
furniture pieces occupy in their extended forms.

Figure 4. Starboard side partial section view with stowed furniture pieces.
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Figure 9. Port side partial section view of a bed reconfigured into a seat.

The furniture folding methodology can also be quantitively assessed to
analyze advantages. A zero-thickness seat frame with measurements reflecting the
lounge seat on a business jet was recreated using SketchUp 2020. Figure 10
illustrates an extended seat and stowed seat, following the furniture folding
methodology, with a length of 27.25”, width of 31.33” and height of 44.23” and
new a length of 27, width of 31.33” and height of 44.23”, respectively.

Figure 10. Recreation of an extended(left) and stowed(right) zero-thickness

business jet lounge seat frame. 40



A cool decomposition for 3D printing

e How to decompose into few terrain-like parts?

A

Terrain-like part

Zero material waste for
layer-based 3D printing

41



Pyramidal decomposition

e How to decompose into few terrain-like parts?

1= PR N = R

[Hu et al., Siggraph Asia 2014]
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Pyramidal decomposition

e How to decompose into few terrain-like parts?

A4S

3D problem is provably NP-hard

Computer graphics is responsible for addressing
the various 3D data challenges
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3D printing may be a blessing

e Graphics likes 3D to be wanted & used everywhere

e The internet has not made 3D data ubiquitous as

promised: remember VRML around 15 years ago?

e 3D printing just might!

44



New graphics
e Keep doing synthesis, but focus on modeling

e Synthesis of all visual contents, not just images

expllc:lt. mpdel | synthesized
description content ¥

rendering

45



New graphics: no explicit model

e Keep doing synthesis, but focus on modeling

e Synthesis of all visual contents, not just images

Model | synthesized

description content ¥
rendering
Model description is only abstract (e.g., texts or a
sketch), hard to quantify (functional or creative), or
unknown entirely (input = set of examples)

46



New graphics: novel content

e Synthesis and manipulation of-i-magee-\

novel

Implicit or abstract
iInputs, examples, ...

-+

visual contents

=) NOVeEl content

especially 3D,
e.d., geometric
modeling

47



New kinds of inputs

A rough sketch

48



New kinds of inputs

A rough sketch One or more
Images

49



New kinds of inputs

Just some examples

One or more

A rough sketch

Images

50



Text-to-3D

"“A baby bunny sitting on top of a stack of pancakes”
3D model generated from text [Zhu et al. 2023]
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Text-driven 3D scene synthesis

Initial Scene

@

-+

There is a A messy coffee More

TV in front table is in front Sentences _

of the sofa of the sofa Synthesized
Scene

[Li et al. SIGGRAPH 2018] 52



Photo-inspired modeling

e 3D model from a single photograph

53



Has to be data-driven

e Abstract inputs: ill-posed synthesis problem

e Needs extra knowledge, e.g., pre-existing dataset

e |

1

[Xu et al. SIGGRAPH 2011] 54



Example-based modeling

e Key: understand the set of examples by learning

e To infer commonality and diversity in the set




Inverse modeling

e Learn a generative model, e.g., from examples

e Apply the model forwardly, maybe with a random

input, to synthesize novel contents

Generative Adversarial
Network

B GAN




In the new graphics s x

We generate/synthesize objects/scenes that are

e Plausible: “What makes a chair a chair?”

o With the right style: “Essence of Gothic style?”

e Functional: “Shape vs. functional similarities?”

e Ergonomic: “How to quantify human comfort?”

e Creative: "What is a model of human creativity?”
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To generate/synthesize

2D/3D objects or scenes that are

e Plausible, stylistically compatible, aesthetically pleasing,

functional, ergonomic, or creative, etc.
e We must first learn plausibility, style, function, etc.

e 10 generate from texts/sketches, we must learn

the right mapping/regression model

58



Workflow of new graphics research

e Analysis to acquire understanding of

grouping/clustering patterns, object/scene composition,

human activities, styles, functionality, creativity, etc.

e Synthesis of images, shapes, scenes via

iInteractive modeling, genetic algorithm, statistic models,

deep regression and generative neural networks, etc.
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Example: generative structural reps

e Generative autoencoders via recursive neural nets

> fu_u
Enc(x)
> fi—>
Ls fo —

Encoder is trained to learn —
recursive/hierarchical grouping of
words in a sentence, regions in
an image, parts in a 3D shape, or
objects in an indoor scenes

Decoder, the generative or

2, ~p(2) synthesis model, is trained

to convert a random code
into a hierarchy

GRASS: Generative Recursive Autoencoders for Shape Structures [SIG 2017]
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Example: generative structural reps

e Combine autoencoder with GAN: VAE-GAN

e Structure-aware; coarse-to-fine; clean parts; high res

b ﬂ% 1324 (e Oh b= T

\bu—;_;:_é:\:l’” T T = AR ), JT' i yal i il Qv’? d (I | \\‘; T |
3 = ) . ] - ! | ) | @l - ‘
b = — ' - i : = S
,-":':;ﬁ‘)\‘\ . : [ [ 4I‘ i N 1 : Byt
’J' A A ‘ \ ‘ | ’ | 0 ’,/ ‘ <
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Example: scenes from random codes

GRAINS: Generative Recursive Autoencoders for INdoor Scenes [2018]
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New graphics: not forward problem

e Inverse analyses and learning generative models
e Keying on shape/scene understanding

e Only with a good understanding of a shape/scene

category (“bicycle” or “kitchen”) can one recreate!
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Important problems in new graphics

e Modeling from abstract description, e.g., texts
e Modeling from few examples
e Inverse procedural modeling

e Learning generative neural networks

Knowledge, learning, and data
play the key roles!
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e Wikipedia was already catching up: The Free Encyclopedia

Our new view of graphics

o Something | hid: Computer graphics = methods for

digitally synthesizing and manipulating visual content

e From image production to all (3D) visual content

Novelty

of the synthesized content is the BIG challenge!
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Current graphics and computer vision

e Hughes, van Dam, et al.:

e “Much of current research in graphics is in methods for
creating geometric models, methods for representing
surface reflectance, the animation of scenes ..., and in
recent years, an increasing integration of techniques

fromm computer vision.”
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Computer graphics vs. vision again

e Shape understanding and inverse modeling are
very much “vision-like” research problems

e S0, graphics is “catching up” ©

e But could we do more?

67



.

Steven‘A. Coons Aw.ard




. ¥
Jim Kajiya; What human capabilities does
each CS discipline try t‘ognhancelr:eplace?

SteveniA. Coons Award

Artificial intelligence
human intelligence

.
-

Computer vision:
pattern recognition

What about computer grphics? Human imagination!

R
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Graphics and imagination

1“_ = “"(t ' ‘
l

Think oft oI n .\‘\ Bhd games
« k \\"' ﬁ"m
Think of the VR/A \”jif'“ eate

\a—

Computer raphic allows ur imagination
to be realized into (virtual) reality!

a| Itallows a mental concept to turnintoa [
.;: dlgltal representatlon and now fabrlcated' pat

-




Still a long way to go

e Only scratching the surface in the new graphics

e Smart ideas: data-driven, data reuse, co-analysis,

supervised learning, active learning, etc.

e Future of modeling in computer graphics

Data + knowledge + learning

4l



A new 3D data challenge

Google image search for chair: 64,000,000 results

€0 gle chair

Web Images Videos

I About

Shopping Maps

Any size
Large
Medium
Icon
Any color
Full color
Black and white L
Transparent
ikea.com worldmarket.com
KRITTER Children's chair IKEA  Fuchsia Nina Chair. Rollover to
Any type 500 x 500 - 14k - jpg Zoom | Click to View Larger
Face 2000 x 2000 - 189k - fcgi
Photo

3D Warehouse: 24,951 results

Books

en.wikipedia.org

n Moderate SafeSearch is on

|-

ikea.com
SUNDVIK Children's chair IKEA

Eames Lounge Chair and ottoman 5
500 x 500 - 19k -
1693 x 1728 - 202k - jpg I

3D Warehouse

24,951 Results

i,
%

suard Chair

Sign In chair n

Sort by Relevance Go

2
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No “Big 3D Data” yet

Google image search for chair: 64,000,000 results

AAAAAAA

cccccccc
Full color
Black ar h
Tra
ea.com

KRTTERChId chair IKEA
Any type 500 x 500 - 14k - ]pg
Face
Photo

3D Warehouse: 24,951 results

e Bicycles

29,900,000 vs. 1,225

!iﬁ

worldmarket.

Fuchsia i = Chair. Rollov k"fd s S SUNDVKChIdrens chair IKEA

s iow " 500 x 500 - 19K - I e'

Zoom ik 0 ViewLargr 000 % 1725 092 -ipg i . O S
2000 % 2000 - 160K - o

5,070,000 vs. 36

3D Warehouse

24,951 Results
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Problems with “sma1 3D data?

e Lack of knowledge for learning-based 3D analyses

e Lack of examples for example-driven 3D syntheses

e Small data is *the* detriment to

Data + knowledge + learning
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To fix the “snai 3D data” problem

e Need to synthesize more and more 3D models!

e Not only volume, but variation, variety, and novelty!

Novelty

of synthesized content may enhance knowledge!

Computer graphics is responsible for producing
such Big 3D Data
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Whaehabauthathine becoming human?
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When is a machine becoming human?

e Well-known Turing test: indistinguishability between

human and machine in natural conversation

Multiple human -
judges vote who is e _
human/machine — o

_

Turing (1950’s) p@ic’ied the fest would be passed
around year 2000. An easy version of the test was
passed in 2014 by Eugene, a ChatBot.

77



When is a machine becoming human?

e Total Turing test: machines linguistically and

physically indistinguishable from a human

Hans Moravc (1999):. Total Turing Test to be
passed by the year 2040
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Is this Turing test too easy?

e Ada Lovelace (1815-1852)
o Pre-dates Turing (1912 — 1954)

o Worked on world’s first computer

o AKA: the first computer programmer

Computers can’t create anything
(Humans can!). Creation requires
originality. But computers originate
nothing; they only do that what we
order them, via programs, to do.

- Ada Lovelace
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A harder test: Lovelace Test

e Test on machines’ ability to create an artifact

e e.g., astory, poem, painting, or a 3D shape

e [est or judging criterion can vary

Key message: What really separates humans
from machines is not the ability to make
conversation, but the ability to create!

Creation and synthesis of visual content is the
goal of computer graphics!
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Computational creativity

e Goal: model or simulate creativity using a computer

L Q Article  Talk rend
Tt

WikipepiA ~ Computational gpéativity

The Free Encyclopedi
e ey From Wikipedia, th Zpedia

Main page

GContents N This article has multiple issues. Please help improve it or discuss these issues on the talk pag:

Featured content
Current events
Random article

+ The neutrality of this article is disputed. {Uanuary 2013)
« This article needs additional citations for verification. May 2013)

Donate to Wikipedia . . g . . . . . . . . -
Wikimedia Shoz Computational creativity (also known as artificial creativity, mechanical creativity or creative computation) is a multidisciplin:
fields of artificial intelligence, cognitive psychology, philosophy, and the arts.
= Interaction
Help The goal of computational creativity is to model, simulate or replicate creativity using a computer, to achieve one of several ends:
About Wikipedia » To construct a program or computer capable of human-level creativity.
Community portal

» To better understand human creativity and to formulate an algorithmic perspective on creative behavior in humans.

BRI « To design programs that can enhance human creativity without necessarily being creative themselves.

-~ s s _
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Goals of computational creativity

*** Construct a program capable of human creativity

** Understand creativity and formulate an algorithmic

perspective on creative behavior in humans

* Design a program which may enhance human

creativity without the program being creative itself
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Creative 3D modeling

e Creativity: machines stochastically generate models

e Has to be controlled

3

311
(T
4K IA
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Creative 3D modeling

e Creativity: machines stochastically generate models

e Control by humans operating on a “design gallery”
¥ TN
7 X ¥

KT
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Creative 3D modeling via evolution

e Evolve an entire set (initial population) to obtain

generations of fit and diverse new creations

[Xu et al. SIGGRAPH 2012] s



Creative 3D modeling

e Allows creative generation of novel 3D contents

—

Geneti algorlthm + Interactlve modellng

Very far from an intelligent machine that is creative
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Machine to generate creative logos?

zp Y )i6C0 C
C(D)CK Sm.)e Nird U




?
What can we do NOW [Tanveer et al. ICCV 2023]

DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion
Paper ID 1938
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Graphics ia thepmesdfldlfor
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Graphics is responsible for

e Addressing the various 3D data challenges:

acquisition, modeling, interaction, etc.

Initial Scene
o n M
= =
@
+ + +

There is a A messy coffee More
TV in front table is in front Sentences .
of the sofa of the sofa Synthesized

Scene
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Graphics is responsible for

e Producing BIG 3D data
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Graphics is responsible for

e Training machines and neural networks capable of
generating (novel) 3D content from abstract,

iImplicit descriptions, sets of examples, etc.

Zg ~N (H: O-)
— fu_ —
Enc(x) -
% - <§§K§
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Graphics is responsible for

e Realizing and enhancing human imagination
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New graphics: synthesis challenges

e No explicit model description
e Synthesize novel 3D content

e Synthesize Big 3D Data

— 4 V's: Volume + Variation + Variety + NoVelty

e Synthesize creative 3D content = 3D generative Al

We are only scratching the surface!
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Graphics ia thepgesdfleclootics
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Foundational model for robotics (RFM)

[Submitted on 13 Dec 2023]
Foundation Models in Robotics: Applications, Challenges, and the Future

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu, Shuran Song,
Ashish Kapoor, Karol Hausman, Brian Ichter, Danny Driess, Jiajun Wu, Cewu Lu, Mac Schwager

We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are trained on
small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast, foundation
models pretrained on internet-scale data appear to have superior generalization capabilities, and in some instances display an
emergent ability to find zero-shot solutions to problems that are not present in the training data. Foundation models may hold
the potential to enhance various components of the robot autonomy stack, from perception to decision-making and control.
For example, large language models can generate code or provide common sense reasoning, while vision-language models

enable open-vocabulary visual recognition. However, significant open research challenges remain, particularly around the
scarcity of robot-relevant training data, safety guarantees and uncertaint

uantification, and real-time execution. In this

survey, we study recent papers that have used or built foundation models to solve robotics problems. We explore how \
foundation models contribute to improving robot capabilities in the domains of perception, decision-making, and control. We
discuss the challenges hindering the adoption of foundation models in robot autonomy and provide opportunities and potential
.. significant research challenges remain, particularly around the

scarC|ty of robot-relevant data, safety guarantees and uncertainty
qguantification, and real-time performance.
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3D datasets for RFMs

@ High-quality:

e.g., Amazon-Berkeley Objects (ABO)

Amazon Berkeley Objects (ABO) Dataset

A CC BY 4.0-licensed dataset of Amazon products with metadata, catalog images, and 3D models.

Product Metadata Catalog Images 360° Images 3D Models

{

t _id" 8075X4QMX3

"item_nam £ [

{

}
{
"language_tag": "zh_CN",
"value": "WD#G@AE - Stg
h
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3D datasets for RFMs

@ High-quality

@ Affordance: robots know what objects can do, how they are used

Pl L J 1oh And K-

Knife Scissors Bowl Bottle Bag Dishwasher  Clock Trashcan Table Storage Furniture  Chair

AeAE=nsiClTe

Refrlgexator Muz Mlcrowave Laptop Keyboard Faucet Earphone Door Display Vase

Grasp Coutam Lift Open Lay Sit  Support Wrap. Pour Move Display Push Pull Listen Wea1 Press  Cut Stab

3D AffordanceNet [Deng et al. CVPR 2021]: 23K shapes
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3D datasets for RFMs

Affordance
Structured Active learning [Yu et al. ICCV 2023]

Text-grounded

object- or part -level semantic labels material/style functionality/design logo/packaging label

Zero-shot, open-vocabulary, arbitrary referring segmentation
in image, then back-project to 3D [Wang et al. 2025]
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3D datasets for RFMs

et NI 04 TS
stk BLEJEEL
Motion-enabled &0 '/%\ 6 x§ '.i

Robots need to recognize and interact with object parts to expect proper

responses (motions) and fulfill tasks. But such RFMs are still far away!

~2,300 models from PartNet-Mobility [Xiang et al. CVPR 2020]
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