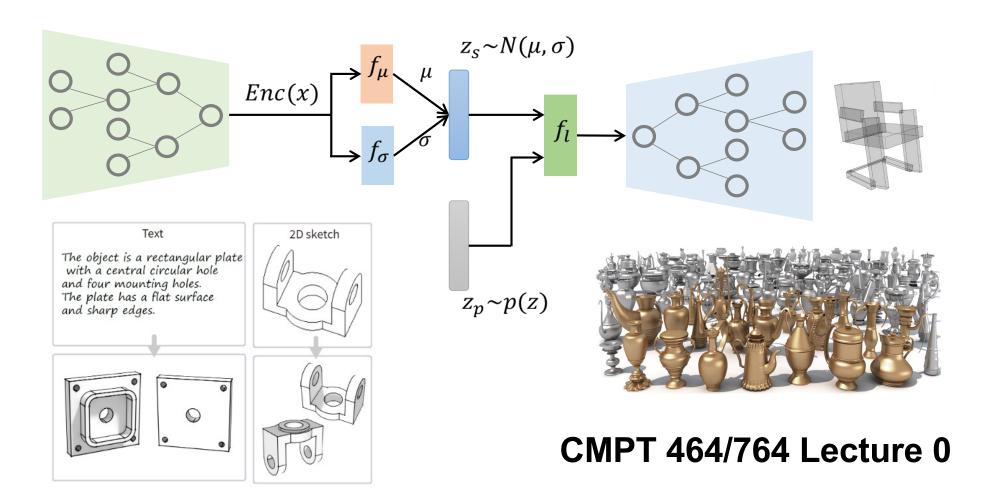
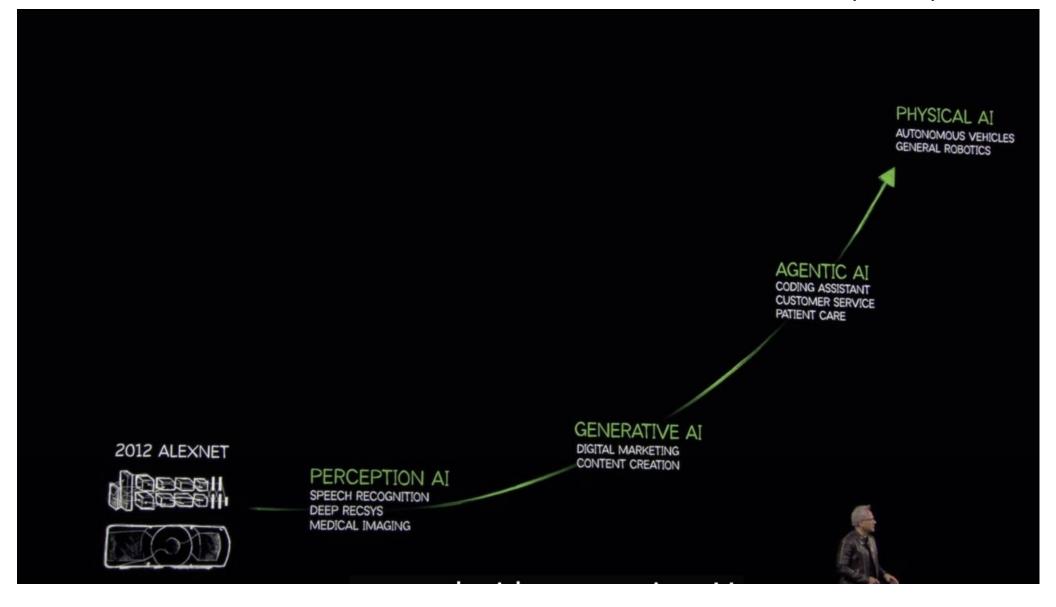
The New Computer Graphics in the Age of Al and Robotics

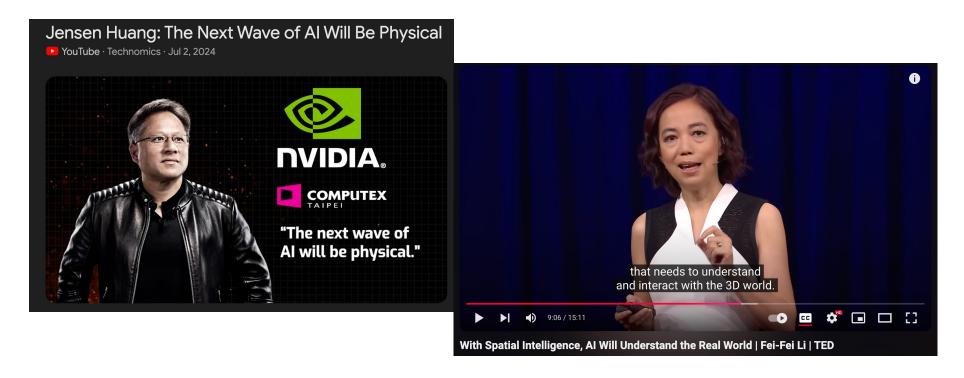


Why robotics?

Nvidia GPU Tech Conf (GTC) 2025



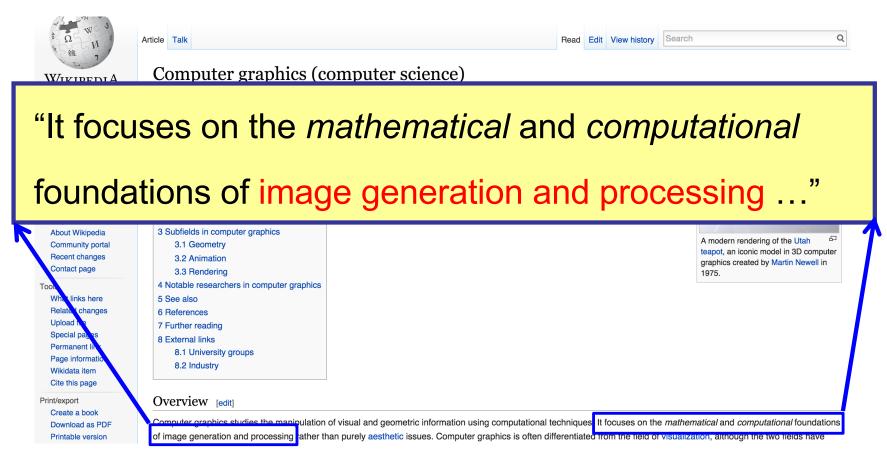
Next wave of AI: spatial and physical



Contemporary Large Foundational Models (e.g., GPT-4o) still far from having spatial intelligence

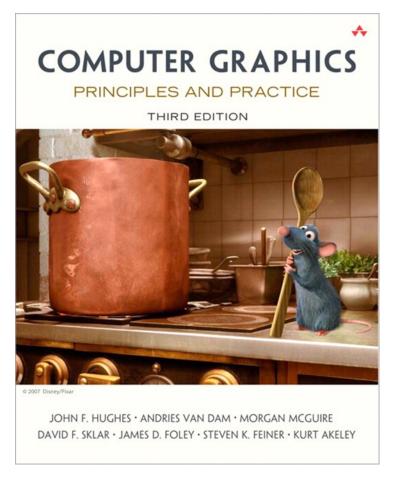
What is computer graphics (CG)?

Wikipedia: computer graphics (computer science)



What do the experts say?

Perhaps the most classic computer graphics textbook

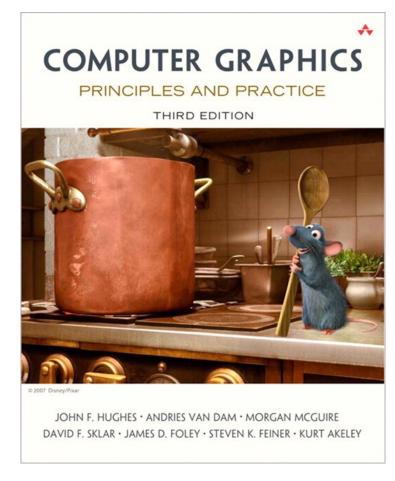


Third edition @ 2014

What do the experts say?

- Hughes, van Dam, et al.:
 - "Computer graphics is the science and art of communicating visually via a computer's display and its interaction devices."

---- page 1.



Third edition @ 2014

Classical CG

Hughes, van Dam, et al.:

- "Taking a model of the objects in a scene and a model of the light emitted into the scene and producing a representation of a particular view of the scene."

Classical CG

COMPUTER GRAPHICS

PRINCIPLES AND PRACTICE

THIRD EDITION

**DIFF OF THE PROPERTY OF THE

- Hughes, van Dam, et al.:
 - "Taking a model of the objects in a scene and a model of the light emitted into the scene and producing a representation of a particular view of the scene."
 - "A glorified multiplication: multiplying incoming light by reflectivity of objects ... for all light reaching the camera"

---- page 2, "A narrow definition".

List of CG topics from CMPT 361

- The graphics (vertex & pixel) pipeline
- Transformation, viewing, projection, clipping & visibility
- Light, color, local & global illumination
- Sampling and reconstruction: Fourier transform; aliasing
- Image representation, manipulation, and texture mapping
- Curves, surfaces, meshes, and other geometry reps

All about model representation and rendering

Classical CG

- Explicit scene description is given
- Key problem #1: how to best represent geometry, texture, and lighting for the given scene

Classical CG

- Explicit scene description is given
- Key problem #1: how to best represent geometry, texture, and lighting for the given scene
- Key problem #2: how to render the scene with
 - Efficiency

A forward problem:

Explicit model description rendered image

The "forward" problem

- "The quick brown fox jumps over a lazy dog."
- Need explicit models for
 - A brown fox
 - A dog
 - Quick jump
 - Sleeping dog ...

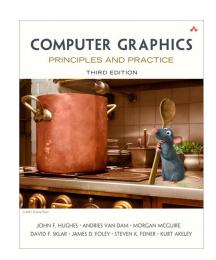
The "forward" problem

"The quick brown fox jumps over a lazy dog."

Need explicit models for

- A brown fox
- A dog
- Quick jump
- Sleeping dog ...

What about computer vision?



- Lower level:
 - Analysis: given one view of a scene, determine the illumination and the scene's content, which a graphics system could use to produce the scene

What about computer vision?

COMPUTER GRAPHICS

PRINCIPLES AND PRACTICE

THIRD EDITION

***RIFF ENERGY OF THE PROPERTY OF T

- Lower level:
 - Analysis: given one view of a scene, determine the illumination and the scene's content, which a graphics system could use to produce the scene
- Higher level: infer an understanding of what are

An inverse problem:

From a rendered image to a model description

The "inverse" problem

Ask Claude: Please describe this image.



The "inverse" problem

- Ask Claude: Please describe this image.
 - There is a fox
 - There is a dog
 - Fox jumps over dog
 - Fox is quick
 - Dog is lazy ...

Graphics vs. vision

- Graphics is about synthesis
 - Classical graphics is about image synthesis

Graphics vs. vision

- Graphics is about synthesis
 - Classical graphics is about image synthesis
- Vision is about image analysis

Graphics vs. vision – classically

- Graphics is about synthesis
 - Classical graphics is about image synthesis
- Vision is about image analysis
- In classical setting, they were opposite problems
 - Forward vs. inverse problems: which is harder?

Difference in DATA – classically

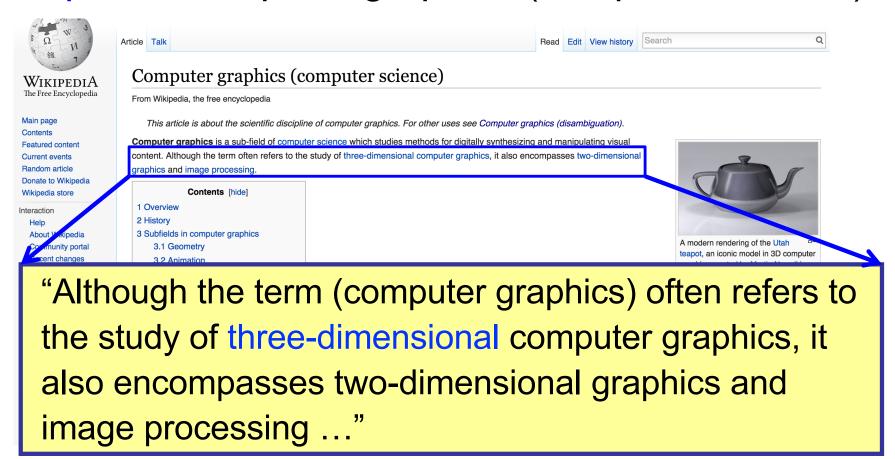
 Before jumping to "the new graphics", what would be one big difference between "data in classic CG" and "data in classic CV"?

2D image data for computer vision vs.

3D shape/scene data for computer graphics

Difference in DATA – classically

Wikipedia: computer graphics (computer science)



3D Vision 2026, Vancouver, 03/24-27

General Chairs

Manolis Savva Simon Fraser University

Christian Theobalt
MPII / Saarland

Angjoo Kanazawa

Program Chairs

Contact: 3dv-2026- pcs [at] googlegroups [dot] com

Lingjie Liu University of Pennsylvania

Arash(Ali)
Mahdavi-Amiri
Simon Fraser University

Daniel Ritchie Brown University

Young Min Kim Seoul National University

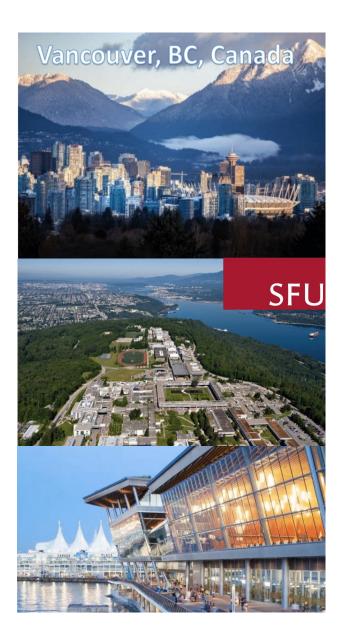
Keynote Speakers

Jitendra Malik

Angela Dai

Christian Rupprecht

Alec Jacobson

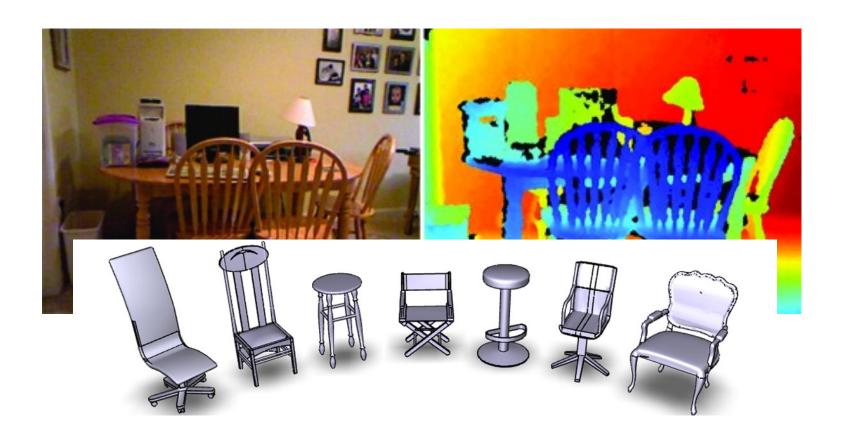


Regardless: challenges with 3D data

- Acquisition of 3D models is hard
- 3D modeling is hard
- Spatial reasoning and computation in 3D is hard
- Interaction in 3D is hard

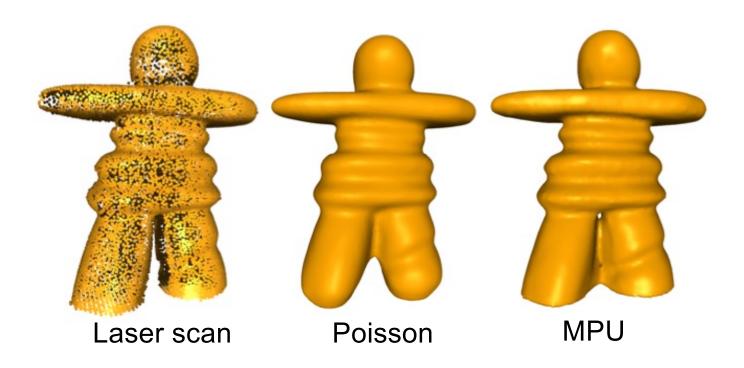
3D challenge: acquisition

Harder to acquire 3D chairs than chair images



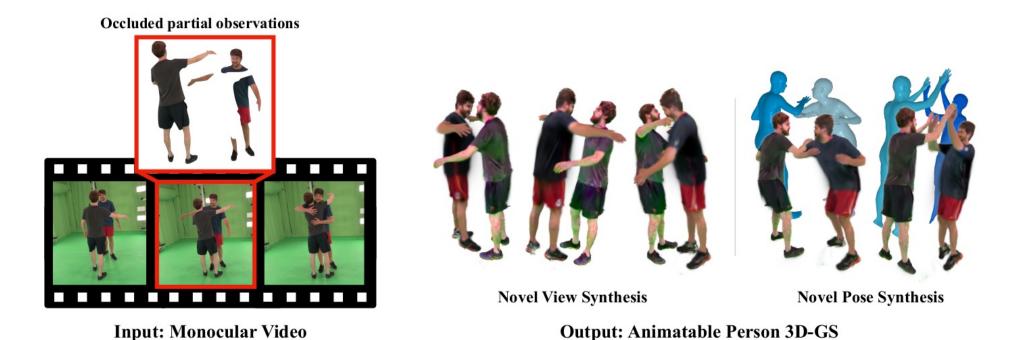
3D challenge: classical acquisition

- Reconstruction or modeling from 3D point clouds
- Missing data



3D challenge: classical acquisition

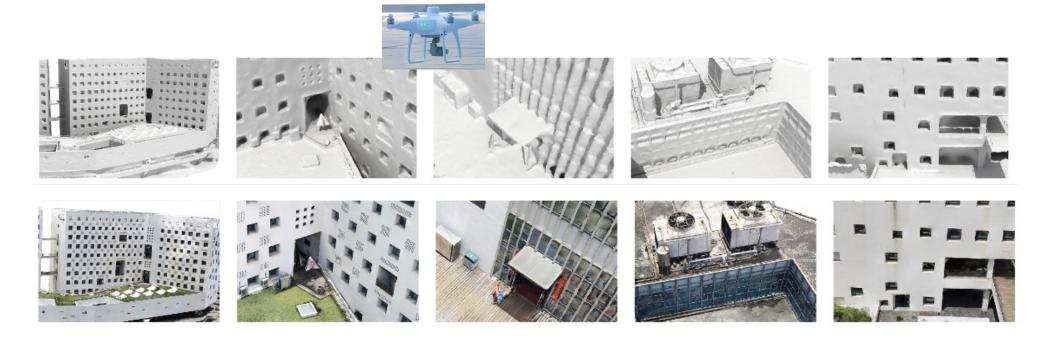
- Reconstruction or modeling from 3D point clouds
- Missing data + dynamic data



[Lee et al. CVPR 2024]

3D challenge: classical acquisition

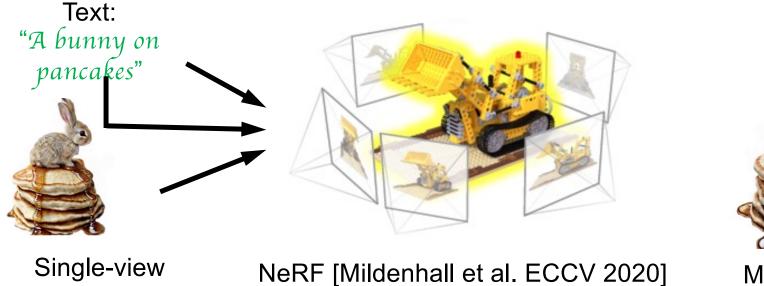
- Reconstruction or modeling from 3D point clouds
- Missing data + dynamic data + large scales



3D challenge: acquisition in 2025

Image-to-3D, text-to-3D, or text-to-image-to-3D

via multi-view

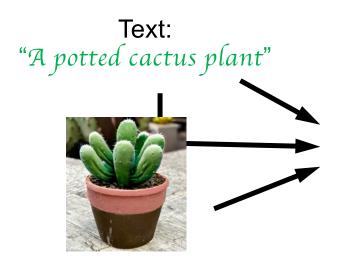


image

Magic3D [Lin et al. CVPR 2023]

3D challenge: acquisition in 2025

Image-to-3D, text-to-3D, or text-to-image-to-3D



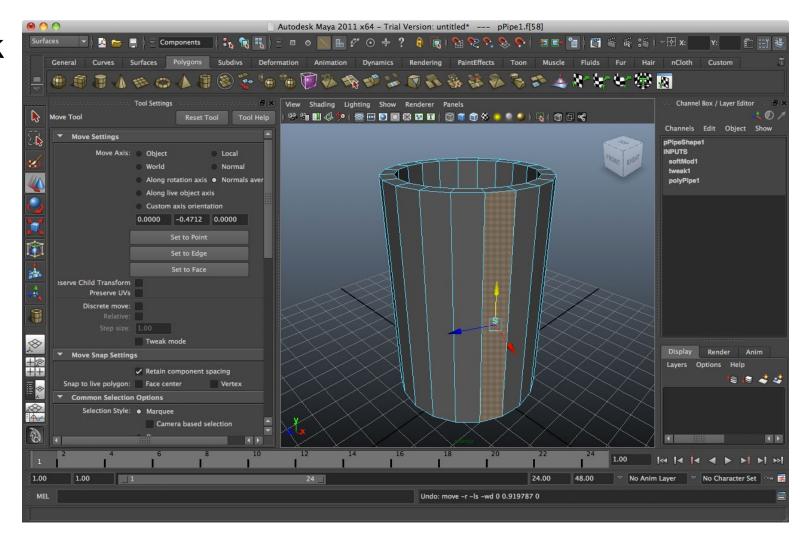
Single-view image

3D Gaussians via multi-view [Kerbl et al. SIGGRAPH 2023]

DreamGaussian
[Tang et al. ICLR 2024]

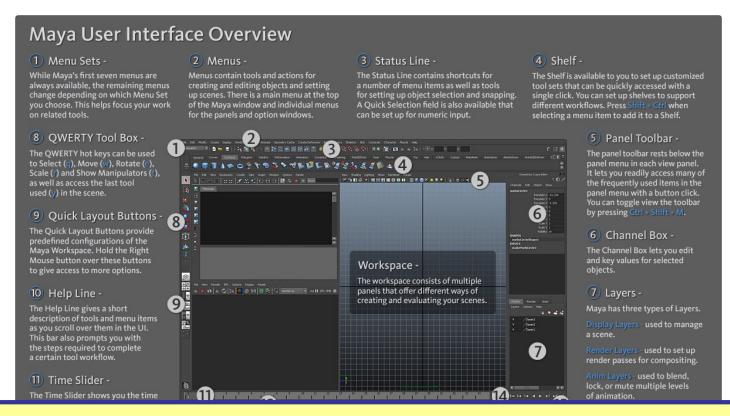
3D challenge: modeling

Autodesk Maya



3D challenge: modeling

Autodesk Maya



3D modeling is not a job for everyone!

12) Range Slider -

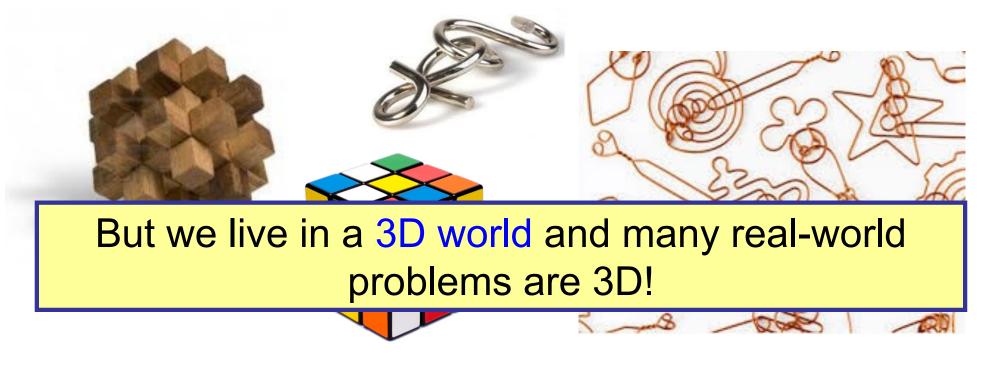
This bar lets you set up the start and end time of the scene's animation and a playback range if you want to focus on a smaller portion of the time. inputting simple MEL commands and an area to the right for feedback. You will use these areas if you choose to become familiar with Maya's MEL scripting Language. The Playback controls let you move around time and preview your animations as defined by the Time Slider range.

The Animation or Character menus allow you to quickly switch the animation layer or current character set.

In all cases, there is a default layer where objects are initially placed upon creation.

3D reasoning is hard

- Humans very good at pattern recognition (vision)
- But not so good at 3D reasoning or manipulation



Many real-world problems are 3D

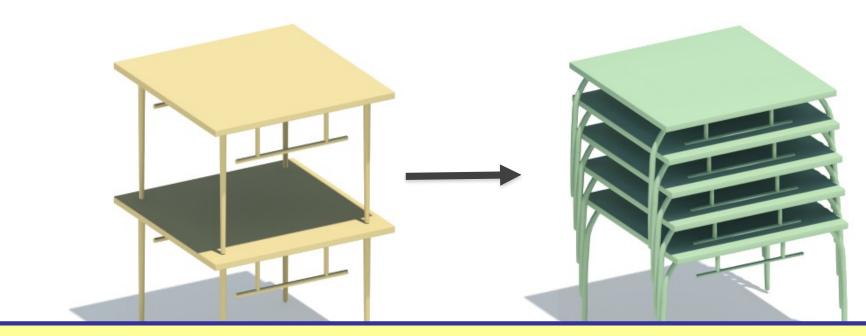
How to easily generate many 3D indoor scenes that are realistic and diverse, e.g., for AR/VR?

Many real-world problems are 3D

How to subtly make the table stackable?

Stackabilization

How to subtly make the table stackable?



Requires precise measurement and transform of 3D objects: difficult for human users to model

Foldabilization

How to subtly make the chair foldable?

Like solving a puzzle: acute 3D spatial reasoning skills are needed

Computationally hard with very large search space

[Li et al. Siggraph 2015]

Foldabilization

International Journal of Aviation, Aeronautics, and Aerospace

Volume 8 Issue 1 Article 1

2021

Folding Methodology for Flexible Aircraft Interiors

Aditya Venkatesh

Ryerson University, Toronto, Canada, avenkatesh@ryerson.ca

Fengfeng (Jeff) Xi

Ryerson University, Toronto, Canada, fengxi@ryerson.ca

Joon Chung

Ryerson University, Toronto, Canada, j3chung@ryerson.ca

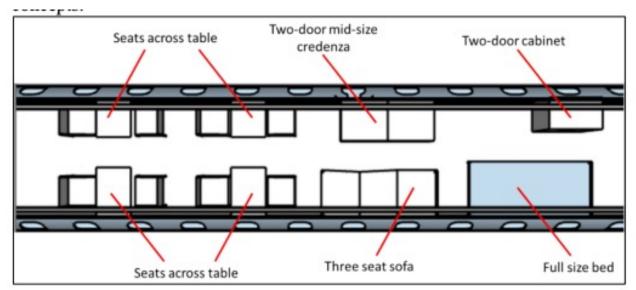


Figure 3. Partially sectioned top view with extended furniture pieces.

Figures 4 and Figure 5 illustrate the Open-on-Demand concept along the starboard and port sides of the partially sectioned cabin with zero-thickness furniture pieces. The area highlighted in yellow refers to the floor space the

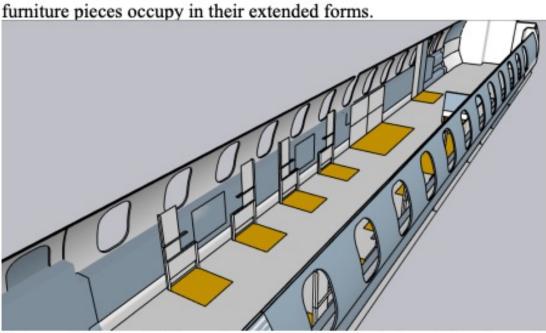


Figure 4. Starboard side partial section view with stowed furniture pieces.

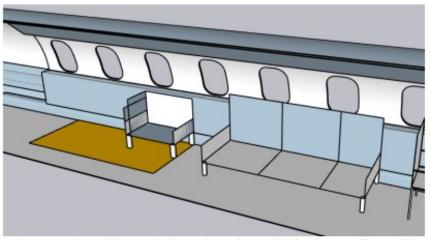


Figure 9. Port side partial section view of a bed reconfigured into a seat.

The furniture folding methodology can also be quantitively assessed to analyze advantages. A zero-thickness seat frame with measurements reflecting the lounge seat on a business jet was recreated using SketchUp 2020. Figure 10 illustrates an extended seat and stowed seat, following the furniture folding methodology, with a length of 27.25", width of 31.33" and height of 44.23" and new a length of 2", width of 31.33" and height of 44.23", respectively.

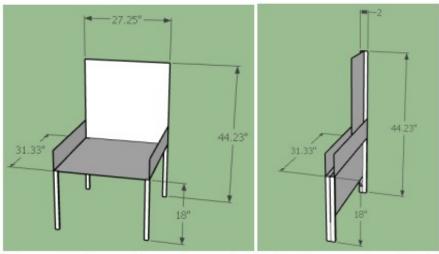
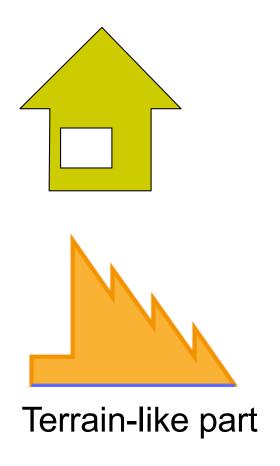
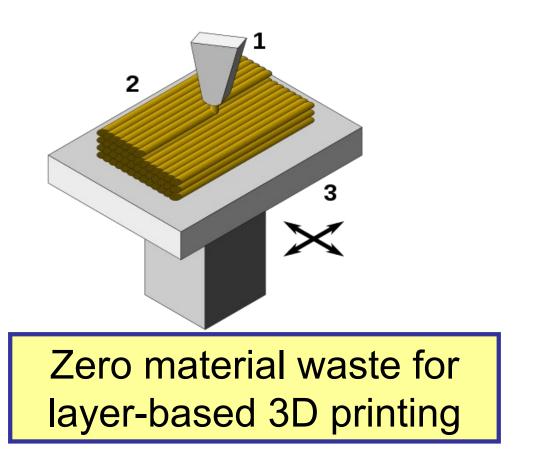


Figure 10. Recreation of an extended(left) and stowed(right) zero-thickness business jet lounge seat frame.

A cool decomposition for 3D printing

How to decompose into few terrain-like parts?





Pyramidal decomposition

How to decompose into few terrain-like parts?

[Hu et al., Siggraph Asia 2014]

Pyramidal decomposition

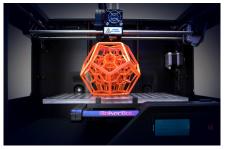
How to decompose into few terrain-like parts?

3D problem is provably NP-hard

Computer graphics is responsible for addressing the various 3D data challenges

3D printing may be a blessing

- Graphics likes 3D to be wanted & used everywhere
- The internet has not made 3D data ubiquitous as promised: remember VRML around 15 years ago?
- 3D printing just might!



New graphics

- Keep doing synthesis, but focus on modeling
- Synthesis of all visual contents, not just images

explicit model synthesized content rendering

New graphics: no explicit model

- Keep doing synthesis, but focus on modeling
- Synthesis of all visual contents, not just images



Model description is only abstract (e.g., texts or a sketch), hard to quantify (functional or creative), or unknown entirely (input = set of examples)

New graphics: novel content

Synthesis and manipulation of images

Implicit or abstract inputs, examples, ...

novel + visual contents

novel content especially 3D, e.g., geometric modeling

New kinds of inputs

A rough sketch

New kinds of inputs

A rough sketch

One or more images

New kinds of inputs

A rough sketch

One or more images

Just some examples

Text-to-3D

"A baby bunny sitting on top of a stack of pancakes"

3D model generated from text [Zhu et al. 2023]

Text-driven 3D scene synthesis

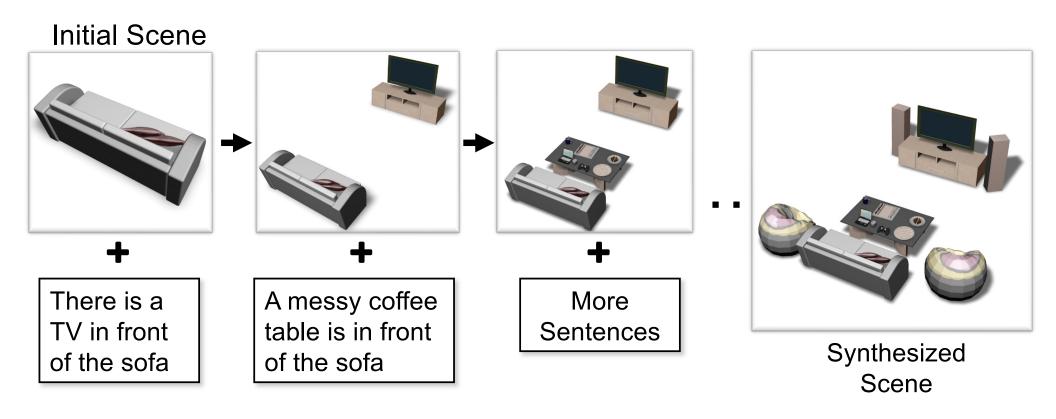
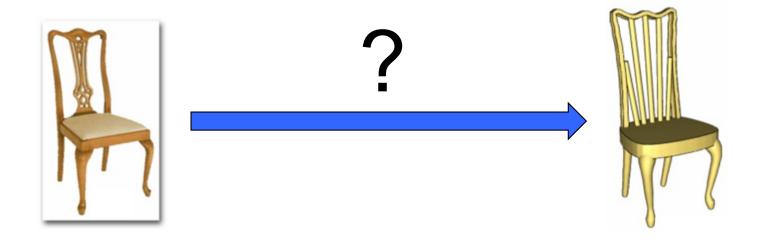


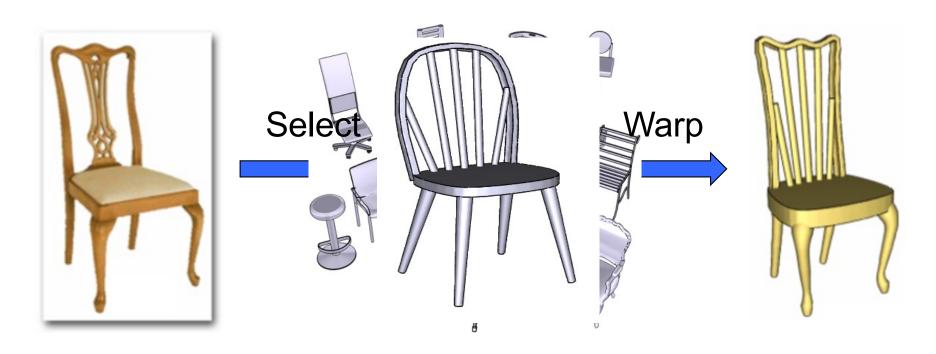
Photo-inspired modeling

3D model from a single photograph



Has to be data-driven

- Abstract inputs: ill-posed synthesis problem
- Needs extra knowledge, e.g., pre-existing dataset

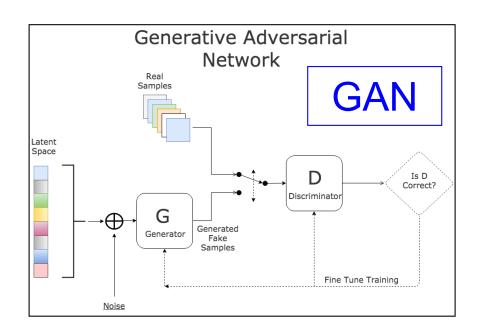


Example-based modeling

- Key: understand the set of examples by learning
- To infer commonality and diversity in the set

Inverse modeling

- Learn a generative model, e.g., from examples
- Apply the model forwardly, maybe with a random input, to synthesize novel contents



We generate/synthesize objects/scenes that are

- Plausible: "What makes a chair a chair?"
- With the right style: "Essence of Gothic style?"
- Functional: "Shape vs. functional similarities?"
- Ergonomic: "How to quantify human comfort?"
- Creative: "What is a model of human creativity?"

• . . .

2D/3D objects or scenes that are

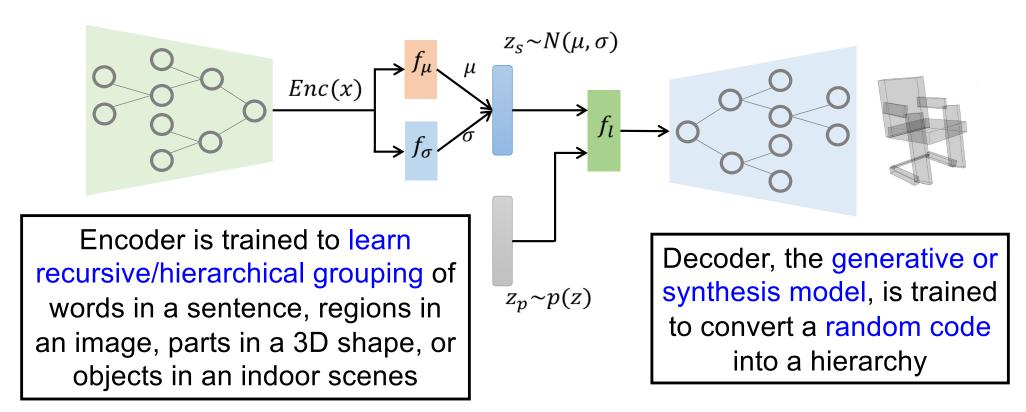
- Plausible, stylistically compatible, aesthetically pleasing, functional, ergonomic, or creative, etc.
- We must first learn plausibility, style, function, etc.
- To generate from texts/sketches, we must learn the right mapping/regression model

Workflow of new graphics research

- Analysis to acquire understanding of
 - grouping/clustering patterns, object/scene composition, human activities, styles, functionality, creativity, etc.
- Synthesis of images, shapes, scenes via
 - interactive modeling, genetic algorithm, statistic models, deep regression and generative neural networks, etc.

Example: generative structural reps

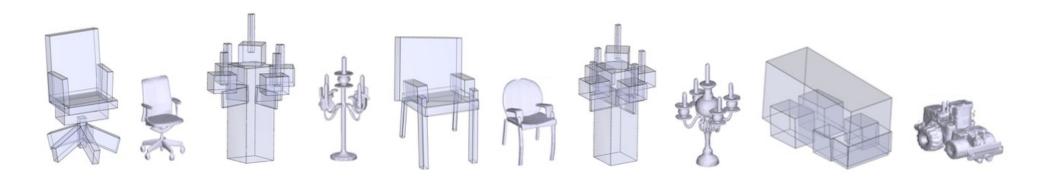
Generative autoencoders via recursive neural nets



GRASS: Generative Recursive Autoencoders for Shape Structures [SIG 2017]

Example: generative structural reps

- Combine autoencoder with GAN: VAE-GAN
- Structure-aware; coarse-to-fine; clean parts; high res



Example: scenes from random codes

Takes less than one second to generate a 3D scene!

GRAINS: Generative Recursive Autoencoders for INdoor Scenes [2018]

New graphics: not forward problem

- Inverse analyses and learning generative models
- Keying on shape/scene understanding
- Only with a good understanding of a shape/scene category ("bicycle" or "kitchen") can one recreate!

Important problems in new graphics

- Modeling from abstract description, e.g., texts
- Modeling from few examples
- Inverse procedural modeling
- Learning generative neural networks

Knowledge, learning, and data play the key roles!

Our new view of graphics

- Wikipedia was already catching up:
 - Something I hid: Computer graphics = methods for digitally synthesizing and manipulating visual content
- From image production to all (3D) visual content

Novelty

of the synthesized content is the BIG challenge!

Current graphics and computer vision

- Hughes, van Dam, et al.:
 - "Much of current research in graphics is in methods for creating geometric models, methods for representing surface reflectance, the animation of scenes ..., and in recent years, an increasing integration of techniques
 from computer vision."

---- page 2 of

Computer graphics vs. vision again

- Shape understanding and inverse modeling are very much "vision-like" research problems
- So, graphics is "catching up"
- But could we do more?

Artificial intelligence: human intelligence

Computer vision: pattern recognition

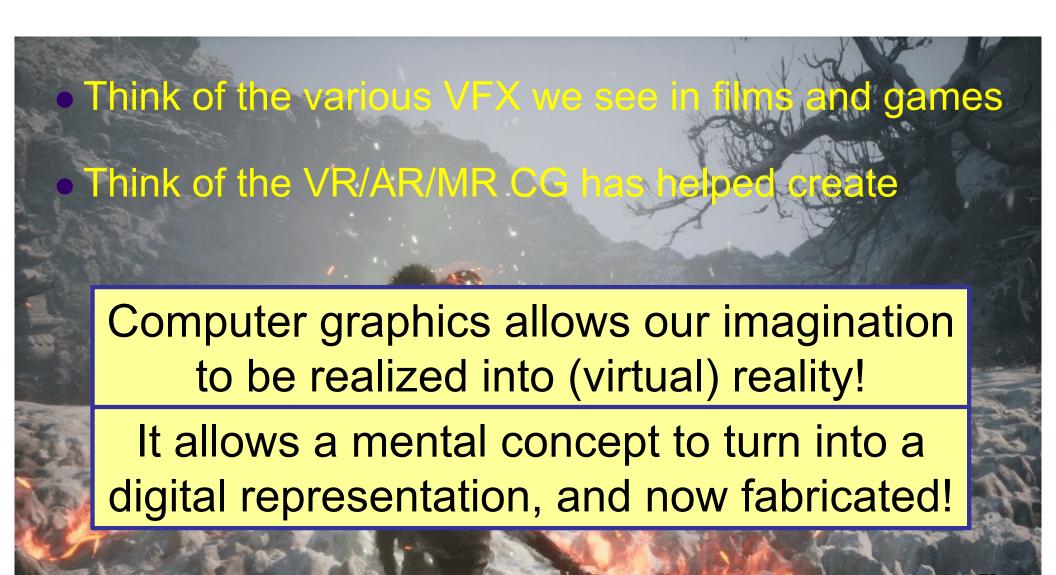
Steven A. Coons Award

SIGGRAPH2011

What about computer graphics?

Human imagination!

Graphics and imagination



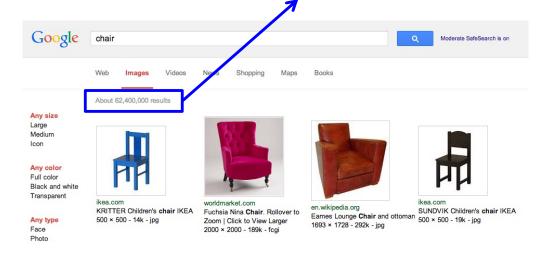
Still a long way to go

- Only scratching the surface in the new graphics
- Smart ideas: data-driven, data reuse, co-analysis, supervised learning, active learning, etc.
- Future of modeling in computer graphics

Data + knowledge + learning

A new 3D data challenge

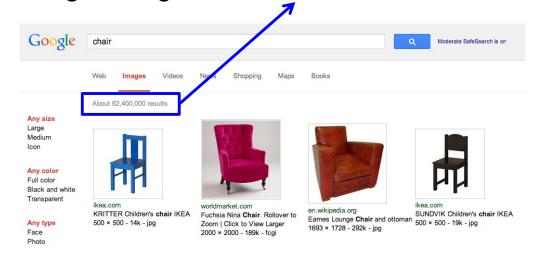
Google image search for chair: 64,000,000 results



3D Warehouse: 24,951 results

No "Big 3D Data" yet

Google image search for chair: 64,000,000 results



Bicycles

29,900,000 vs. 1,225

Strollers

5,070,000 vs. 36

3D Warehouse: 24,951 results

Problems with "small 3D data"?

- Lack of knowledge for learning-based 3D analyses
- Lack of examples for example-driven 3D syntheses
- Small data is *the* detriment to

Data + knowledge + learning

To fix the "small 3D data" problem

- Need to synthesize more and more 3D models!
- Not only volume, but variation, variety, and novelty!

Novelty

of synthesized content may enhance knowledge!

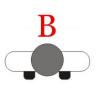
Computer graphics is responsible for producing such Big 3D Data

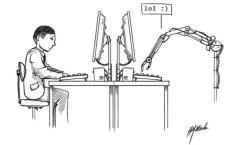
Whatabouthathine becoming human?

When is a machine becoming human?

 Well-known Turing test: indistinguishability between human and machine in natural conversation

Multiple human judges vote who is human/machine





Turing (1950's) predicted the test would be passed around year 2000. An easy version of the test was passed in 2014 by *Eugene*, a ChatBot.

When is a machine becoming human?

 Total Turing test: machines linguistically and physically indistinguishable from a human

Hans Moravec (1999): Total Turing Test to be passed by the year 2040

Is this Turing test too easy?

- Ada Lovelace (1815-1852)
 - Pre-dates Turing (1912 1954)
 - Worked on world's first computer
 - AKA: the first computer programmer

Computers can't create anything (Humans can!). Creation requires originality. But computers originate nothing; they only do that what we order them, via programs, to do.

- Ada Lovelace

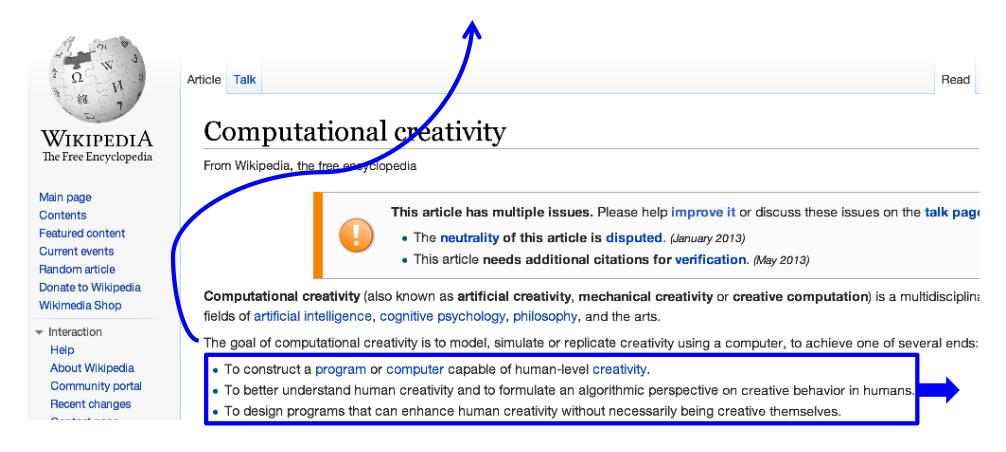
- Test on machines' ability to create an artifact
 - e.g., a story, poem, painting, or a 3D shape
- Test or judging criterion can vary

Key message: What really separates humans from machines is not the ability to make conversation, but the ability to create!

Creation and synthesis of visual content is the goal of computer graphics!

Computational creativity

Goal: model or simulate creativity using a computer

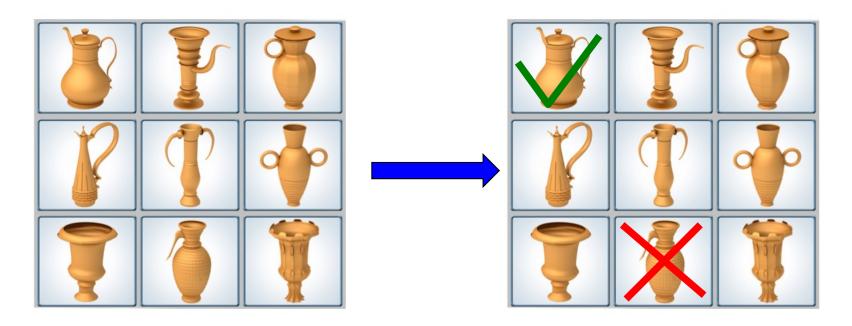


Goals of computational creativity

- *** Construct a program capable of human creativity
 - ** Understand creativity and formulate an algorithmic perspective on creative behavior in humans
 - * Design a program which may enhance human creativity without the program being creative itself

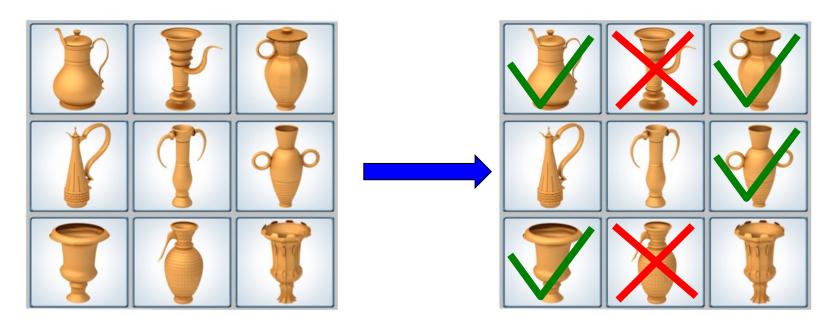
Creative 3D modeling

- Creativity: machines stochastically generate models
- Has to be controlled



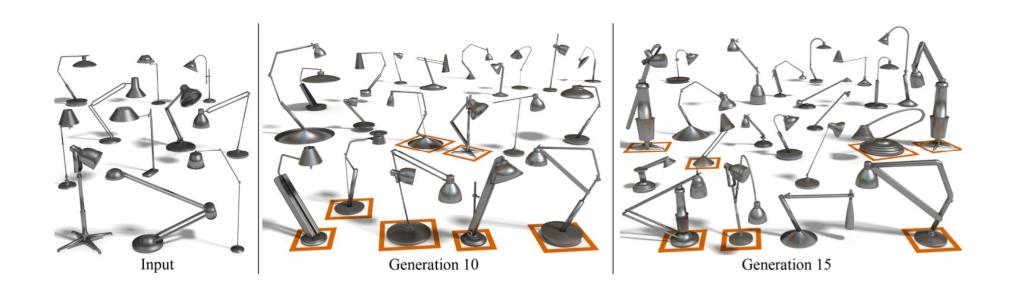
Creative 3D modeling

- Creativity: machines stochastically generate models
- Control by humans operating on a "design gallery"



Creative 3D modeling via evolution

 Evolve an entire set (initial population) to obtain generations of fit and diverse new creations



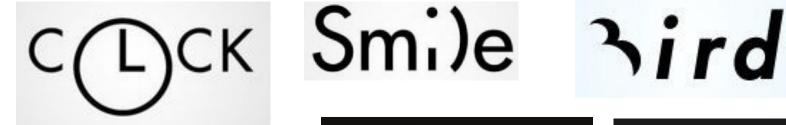
Creative 3D modeling

Allows creative generation of novel 3D contents

Genetic algorithm + Interactive modeling

Very far from an intelligent machine that is creative

Machine to generate creative logos?



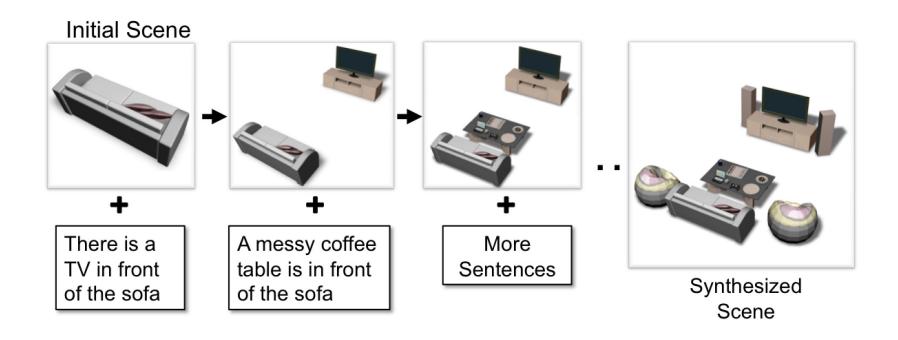
What can we do now?

[Tanveer et al. ICCV 2023]

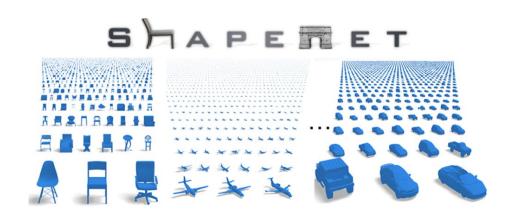
DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion Paper ID 1938

Graphics in the pages of lAlfor

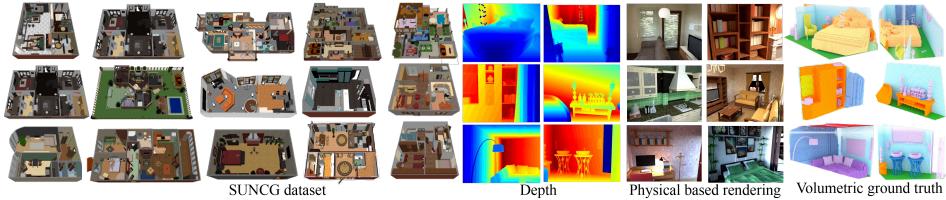
 Addressing the various 3D data challenges: acquisition, modeling, interaction, etc.



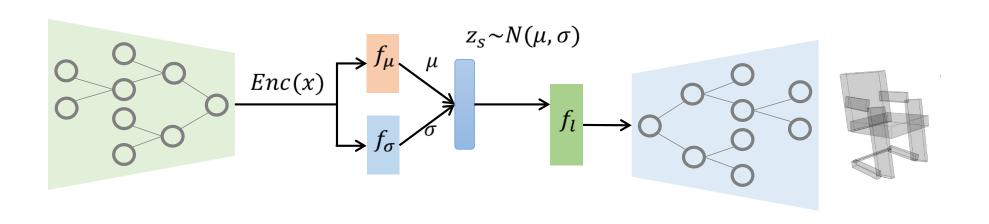
Producing BIG 3D data



ScanNET



 Training machines and neural networks capable of generating (novel) 3D content from abstract, implicit descriptions, sets of examples, etc.



Realizing and enhancing human imagination

New graphics: synthesis challenges

- No explicit model description
- Synthesize novel 3D content
- Synthesize Big 3D Data
 - 4 V's: Volume + Variation + Variety + NoVelty
- Synthesize creative 3D content = 3D generative Al

We are only scratching the surface!

Graphics in the progresibile of the control of the

Foundational model for robotics (RFM)

[Submitted on 13 Dec 2023]

Foundation Models in Robotics: Applications, Challenges, and the Future

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, Brian Ichter, Danny Driess, Jiajun Wu, Cewu Lu, Mac Schwager

We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are trained on small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast, foundation models pretrained on internet-scale data appear to have superior generalization capabilities, and in some instances display an emergent ability to find zero-shot solutions to problems that are not present in the training data. Foundation models may hold the potential to enhance various components of the robot autonomy stack, from perception to decision-making and control.

For example, large language models can generate code or provide common sense reasoning, while vision-language models enable open-vocabulary visual recognition. However, significant open research challenges remain, particularly around the scarcity of robot-relevant training data, safety guarantees and uncertainty quantification, and real-time execution. In this survey, we study recent papers that have used or built foundation models to solve robotics problems. We explore how foundation models contribute to improving robot capabilities in the domains of perception, decision-making, and control. We discuss the challenges hindering the adoption of foundation models in robot autonomy and provide opportunities and potential

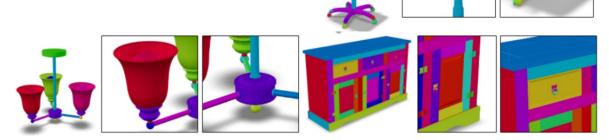
... significant research challenges remain, particularly around the scarcity of robot-relevant data, safety guarantees and uncertainty quantification, and real-time performance.

High-quality: e.g., Amazon-Berkeley Objects (ABO)

- High-quality
- Affordance: robots know what objects can do, how they are used

3D AffordanceNet [Deng et al. CVPR 2021]: 23K shapes

- High-quality
- Affordance
- Structured
- Text-grounded



Active learning [Yu et al. ICCV 2023]

Zero-shot, open-vocabulary, arbitrary referring segmentation in image, then back-project to 3D [Wang et al. 2025]

- High-quality
- Affordance
- Structured
- Text-grounded
- Motion-enabled

Robots need to recognize and interact with object parts to expect proper responses (motions) and fulfill tasks. But such RFMs are still far away!

~2,300 models from PartNet-Mobility [Xiang et al. CVPR 2020]