
Legible Compact Calligrams

Changqing Zou1,2∗ Junjie Cao3,1∗ Warunika Ranaweera1 Ibraheem Alhashim1

Ping Tan1 Alla Sheffer4 Hao Zhang1

1Simon Fraser University 2Hengyang Normal University 3Dalian University of Technology 4University of British Columbia

Abstract

A calligram is an arrangement of words or letters that creates a vi-
sual image, and a compact calligram fits one word into a 2D shape.
We introduce a fully automatic method for the generation of legible
compact calligrams which provides a balance between conveying
the input shape, legibility, and aesthetics. Our method has three
key elements: a path generation step which computes a global lay-
out path suitable for embedding the input word; an alignment step
to place the letters so as to achieve feature alignment between let-
ter and shape protrusions while maintaining word legibility; and
a final deformation step which deforms the letters to fit the shape
while balancing fit against letter legibility. As letter legibility is crit-
ical to the quality of compact calligrams, we conduct a large-scale
crowd-sourced study on the impact of different letter deformations
on legibility and use the results to train a letter legibility measure
which guides the letter deformation. We show automatically gen-
erated calligrams on an extensive set of word-image combinations.
The legibility and overall quality of the calligrams are evaluated and
compared, via user studies, to those produced by human creators,
including a professional artist, and existing works.

Keywords: calligram, legibility, shape deformation

Concepts: •Computing methodologies → Parametric curve
and surface models; Shape analysis;

1 Introduction

A calligram is an arrangement of words or letters that creates a
visual image [Wikipedia 2014]. The beauty and elegance of cal-
ligrams is well appreciated in many languages. Visually express-
ing words or phrases while reflecting their meanings has a strong
intellectual and artistic appeal. Well-designed calligrams must si-
multaneously convey the input image and be both readable and ap-
pealing [Maharik et al. 2011]. Such calligrams require significant
effort and time to create even for experts. An intriguing question is
whether calligram generation could be automated.

What makes calligram generation an attractive pursuit in computer
graphics is its geometric appeal: embedding an input text into a vi-
sual image inevitably involves modeling, as well as manipulating,
both the shapes and spatial arrangements of the letters or strokes
which make up the text to fit them into the shape of the input im-
age. Such a processing of the letter or stroke shapes becomes more

∗Corresponding authors: {jjcao1231,aaronzou1125}@gmail.com
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24 - 28, 2016, Anaheim, CA
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925887

Figure 1: A few compact calligrams generated by our algorithm
fully automatically. Input images are shown as insets.

critical when the input consists of a short text. Long textual cal-
ligrams such as micrographies [Maharik et al. 2011] convey the in-
put shapes by aligning lines of text with the shape outlines and only
minimally deforming individual letters. For a compact calligram
formed by one or few words, conveying the input shape requires
placing and deforming the individual letters to fit the shape outline
and this directly impacts readability or legibility of the words and
individual letters. This key consideration poses an inherently dif-
ferent challenge to those addressed by long text layouts.

In this paper, we introduce a fully automatic method to generate
legible compact calligrams, providing a desired balance between
conveying the input shape, legibility, and aesthetics. Figure 2 shows
several calligrams which fulfill these criteria; they are called word
animals and were designed by the professional artist Dan Fleming.
Note the significant variability in how the letters are deformed and
arranged. Coming up with a fully automatic solution to reach a
comparable level of artistry is highly challenging.

Following the above goals, we first identify a set of geometric cri-
teria to fulfill. To convey the input shape, we want the outer hull
and interior coverage of the deformed letters to closely fit the input
shape. Previous work [Maharik et al. 2011] indicates that texts are
easier to read when letters are laid out along a smooth low-curvature
path; we refer to this criterion as text flow. Next, we account for leg-
ibility and aesthetics at the word level, which point to a preference
for the letters to be evenly sized and consistently oriented. Lastly
and critically, we seek maximal letter legibility.

Aiming to satisfy all these criteria at once leads to an unwieldy
optimization, which is impractical to solve directly. Instead, we

Figure 2: Word animal calligrams designed by the artist Dan Flem-
ing (images taken with permission from the artist).

http://dx.doi.org/10.1145/2897824.2925887


(d)(c)
bunny

(b)
bunny

(a)

Figure 3: An overview of our legible compact calligram gener-
ation method: (a) an input word and an outline image; (b) text
layout path (thick blue curve), color-coded corresponding letter
anchors, and outline protrusions; (c) correspondence-based letter
alignment; (d) final result achieved by letter deformation driven by
a legibility measure learned from crowdsourced data.

note that our set of criteria naturally leads to a coarse-to-fine lay-
out approach, where at each level, we solve an optimization which
balances fit against legibility and aesthetics; see Figure 3.

Given a word and an input shape, which is assumed to be a solid
binary image, we first search for a layout path whose induced text
flow fits the input shape. With word legibility in mind, we focus
on single-line text flows, like that of the bunny, monkey, or even
elephant in Figure 2, but not the penguin or orangutan. The next
challenge is to position the letters along the path while balancing
the fit criterion against word legibility and aesthetics. For fit at this
level, we distribute and scale the letters to align protruding letter
features with their counterparts on the input shape boundary; see
Figures 3(b-c). Through an optimization with mixed objectives, fit
is balanced against legibility and aesthetics considerations reflected
by letter sizes, distribution, and orientation.

At the finest and most critical level of our solution pipeline, we col-
lectively deform the letters to locally optimize fit while maximally
retaining legibility. This task is the most challenging and least re-
searched. Few, if any, studies exist on the impact of shape deforma-
tion on letter legibility. Without any such insights, one cannot arrive
at an algorithm to preserve legibility. Our work fills this void. We
first conduct a large-scale crowd-sourced study on the impact of
different deformations on letter legibility. We use the results of our
study to train a letter legibility measure and utilize this measure in
the letter deformation step to refine the calligram.

Contributions. Our overall contribution is the first fully auto-
matic method for legible, compact calligram generation. Another
contribution is our legibility measure learned from crowdsourced
data, which is likely of interest to other text layout problems.

Letter legibility depends on letter shapes and on the types and de-
gree of variations a reader can tolerate; it is thus alphabet- and font-
dependent. In our work, we focus on using lowercase letters from
the Latin alphabet and train the legibility measure with letters writ-
ten in freeform handwriting style as well as a simple font suitable
for calligram design. We expect our general framework for cal-
ligram generation and legibility learning to carry to other alphabets
and font styles, but require an additional user study and different
selection of features to account for the new letter shapes.

We show automatically generated calligrams on an extensive set of
word-image combinations including a variety of shapes. Through
several user studies, the legibility and overall quality of these cal-
ligrams are evaluated and compared qualitatively to those produced
by human creators, including a professional artist, and the most
closely related existing method [Xu and Kaplan 2007].

2 Related work

In general, our method for generating legible compact calligrams is
related to and builds on existing works on text art layout, packing,
2D shape deformation, and text analysis and recognition.

Text art. Computer graphics research has addressed artistic text
layout in a number of contexts. Technologies for placing texts along
user-specified paths are widely available in commercial software
such as Adobe Illustrator [2010]. These methods are designed for
laying out long texts and do not address image fit. Algorithmic gen-
eration of text art has been explored in several other contexts. Xu
et al. [2010] generate structure-based ASCII art by careful analysis
of line structures. They approximate shapes using a limited set of
symbols under rigid rules for alignment and positioning. Calligram
generation is complementary to this approach as we allow letter
shapes and placement to vary more freely to achieve fit. Several
software packages, e.g. [Helmond 2010] generate grid-aligned text
mosaics. Compact calligrams allow for a greater artistic freedom
capturing not only the text but the geometry of an input shape.

Maharik et al. [2011] develop a method for generating microgra-
phy images formed by laying out long sequences of text inside a
2D contour. While the high-level criteria they use for the layout are
directly applicable to compact calligrams, the technical challenges
they face are significantly different. In particular, their core compu-
tational problem is to optimize the layout of multiple lines of text
to balance aesthetics and readability of the text flows; letter shapes
are only minimally altered. Our calligrams are single-line, where
the key challenge instead is to embed and deform letter shapes, per-
haps drastically if necessary, to achieve a balance between fit and
readability of the word and the letters.

Calligraphic packing. To the best of our knowledge, the work
of Xu and Kaplan [2007] is the only known prior attempt at gen-
erating compact calligrams. They solve the calligraphic packing
problem using a semi-automatic technique: the initial position and
orientation of the letters are specified by the user, and guide the sub-
sequent segmentation of the input shape and the letter packing. In
contrast, our framework automatically computes letter placement,
packing, as well as deformation. Unless stated otherwise, all the
results shown in the paper have been generated fully automatically.
However, as discussed in Section 8, we can easily support user in-
tervention. To account for letter legibility, their work merely em-
ploys a shape context-based similarity between the deformed and
original letters. This measure leads to inferior results compared to
our systematically learned legibility score; see Figure 17.

Non-textual packing and layout. Multiple methods address the
problem of filling a region or shape with smaller elements. A photo
collage, e.g., [Goferman et al. 2010], packs a set of photo segments
into a rectangular frame where the segments may be trimmed or
expanded. The work by [Kim and Pellacini 2002] produces a jig-
saw mosaic for an arbitrarily-shaped input image by selecting and
packing a set of pre-defined image tiles, also of arbitrary shapes.
Gal et al. [2007] abstract a given 3D object using an assembly of
related shapes. These methods share some similarity with our work
in terms of the need to embed input elements into a container, but
do not address any of the readability concerns that are critical in the
context of calligram generation and text layout in general.

Character recognition. There has been a great deal of work on
OCR, as well as the recognition of handwritten digits and charac-
ters. The primary goal of recognition or classification is to discrim-
inate between different characters, e.g., the letters ‘q’ vs. ‘g’, rather
than answering questions about what makes a given letter more or
less legible over shape variations. Our work focuses on the lat-



ter, in particular, the quantification and improvement of legibility
of printed, deformed letters. That said, legibility and recognizabil-
ity are closely related. However, the kind of letter shape distortions
OCR or other character recognition methods typically deal with are
quite different from those in compact calligrams.

Letter legibility. We are not aware of previous studies on learning
or rating letter legibility, and specifically reader sensitivity to dif-
ferent types of alphabet deformation. Works from the psychology
community, e.g.,[Loomis 1990; Sheedy et al. 2005; Cai et al. 2008],
focus on identifying and testing factors, e.g., fonts, colors, and spa-
tial complexity, which may impact character legibility. For exam-
ple, through a small-scale user study, Cai et al. [2008] examined
how several image descriptors for letters in Times New Roman may
influence legibility. The learned factors may help enrich the way
we generate training data for our legibility study, but these works
do not propose ways to quantitatively measure legibility. Legibil-
ity was one of the many font attributes considered in [O’Donovan
et al. 2014]. Through crowdsourcing, they learn a set of high-level
and descriptive attributes to facilitate font selection. Our focus is on
shape-based letter legibility. In our work, we also rely on crowd-
sourcing for data collection. We ask pairwise comparison queries,
rank representative inputs, and learn a prediction model, much like
Zhu et al. [2014], with the goal of rating the legibility of new letters
to drive their deformation.

CAPTCHA. The purpose of CAPTCHA, e.g., [Chellapilla et al.
2005], is to alter images which contain characters so that the char-
acters are easily recognized by humans but hardly recognizable by
a machine in an economic way. Letter shape deformations are
involved, but the focus is more on manipulating image content
around the letters which affects OCR. Similar to psychology re-
search, CAPCHA works do not propose legibility measures.

2D deformation. Many 2D shape deformation algorithms have
been proposed over the years, e.g., [Igarashi et al. 2005; Lipman
et al. 2008; Weber et al. 2009; Jacobson et al. 2011], just to name
a few. These methods largely focus on interactive, free-form de-
formation of a single 2D shape, in the context of shape editing,
keyframe animation, or morphing. Our framework deforms multi-
ple letters to fit them within a container. The problem setting also
adds two new dimensions to the deformation problem. First, our de-
formation is controlled by letter legibility, which has a much more
complex relation to shape geometry than those considered by com-
mon geometric transformations. Second, we need to deform mul-
tiple letters in the container in tandem, simultaneously optimizing
their shapes under a multitude of constraints.

3 Overview

Our algorithm takes as input a lowercase text in the Latin alphabet
and a 2D outline shape S, and automatically produces a legible
calligram, via a coarse-to-fine approach; see Figure 3.

Path generation. At the coarsest level of processing, our input
text can be viewed as a horizontal rectangle which we wish to fit
into our outline image with minimal deformation. The fit criterion
simply refers to having sufficient space along the layout path to
place the input word. So we map the horizontal middle axis of the
rectangle to the skeleton of our outline. Effectively, this mapping
takes the skeleton as an approximate text layout path.

Letter alignment. At the next level of our hierarchy, we need
to position the letters along the path. From a pure legibility and
aesthetics perspective, the optimal positioning is given by an arc-
length spacing in which each letter is allocated equal-sized space.

This naı̈ve solution does not account for the needs of deforming in-
dividual letters to fit into large protrusions in the outline, such as
animal legs. To balance readability and fit, we correspond protru-
sions on the input shape outline with protruding features, or simply,
anchors, on the individual letters to roughly position the letters. We
also adjust for evenly distributed letter size, consistent letter orien-
tation, and minimal letter overlap, through a weighted optimization,
while maintaining a smooth text flow.

Letter deformation. Given the approximate locations, scales and
orientations of all the letters, the finest-level step of our method de-
forms the individual letters to best satisfy our fit criteria, while pre-
serving their legibility. In developing a method that addresses this
task, our key challenge is a lack of a well defined measure that can
evaluate the impact of deformation on legibility. We address this
challenge by developing a perception-based, viewer-validated leg-
ibility measure. To define this measure we use a range of features
inspired by typography literature and learn their relative importance
using crowdsourced input. We then propose a deformation scheme
that employs this measure as a guide.

4 Outline image analysis

We analyze the input outline image to extract a text layout path and
some protrusions to align the input letters to the outline.

Protrusion detection. Deep protrusions on the outline require
special processing to fit without significantly affecting legibility.
We decompose the outline image into several parts with the method
in [Luo et al. 2015]. Among these parts, we choose deep and rel-
atively narrow regions as protrusions, because shallow protrusions
can be fitted by only slight letter deformation, while large ones can
be fitted using multiple letters with the distortion evenly distributed
between them. Given the area AreaS of the input shape, we ex-
pect the average letter size to be AreaS/N , where N is the letter
count. We thus filter out any protrusion whose area is larger than
2 · AreaS/N . We similarly filter out small protrusions with areas
less than 0.2 · AreaS/N . For each protrusion, we fit a bounding
box aligned with the corresponding skeletal branch, and filter out
too shallow ones when W/H > 3/4, where H and W are the
height and width of the box. We denote the boundary separating a
protrusion from the main ‘body’ of the input shape as a separator.

Path computation. We compute a skeleton of our outline to ap-
proximate the text layout path, since it is long, of low curvature,
and sufficiently distant from the contour to allow readably-sized
text. We first use the thinning tool in [Kovesi 2006] to extract the
shape skeleton. We take the longest branch which is not covered by
a protrusion as the seed path and greedily grow it to include consec-
utive branches. A branch is added if the angle between it and the
current path tangent directions at the intersection point is smaller
than 5π/6, and it is not covered by a protrusion. Figure 4 shows
some sample skeletons and the paths we extract from them. The
text goes from left to right (or top to bottom) along this path, which
separates the outline image into below and above portions.

5 Letter alignment

We match letter anchors, i.e., protruding shape features on the input
letters, to outline protrusions detected in the previous section. A
rough text layout is computed from this correspondence, which is
further refined to minimize letter distortion during deformation.

Traditional typography provides an extensive classification of the
different strokes that constitute a letter. We simplify this classifi-
cation and abuse the terminology a bit here to better fit to our ap-



separator

Figure 4: Detected protrusions (with colors different from the main
body) and layout paths (red) on a few shapes.

descender

straight

right

left

right

left

straight

ascender

cutting edge

Figure 5: Manually defined letter anchors on the lowercase Latin
letters. The anchors are highlighted with different colors marked
below their category labels.

plication. We define protruding features on letters as anchors and
classify letter anchors as ascenders and descenders depending on
their relative positions on the letter. As shown in Figure 5, ascen-
ders and descenders extend upward or downward of a letter.

We manually specify the extent of each identified anchor, placing
the cutting line (see Figure 5) so as to separate it from the rest of the
letter. We further introduce an orientation attribute for each letter
anchor, which can be “straight”, “left”, or “right”. Figure 5 shows
the anchors, with marked orientation attributes, of the lowercase
Latin letters. Three letters, ‘a’, ‘o’, and ‘z’, without anchors are
not included in this figure. Throughout the paper we use the “Fu-
tura Bold” font to facilitate deformation and other computations,
though other fonts might be used too. While manual, this analysis
is required only once per alphabet per font.

5.1 Anchor-Protrusion Correspondence

Our algorithm matches identified outline protrusions with letter an-
chors in the input text. Intuitively, we would like to compute a cor-
responding anchor for each protrusion that satisfies two goals. On
the one hand, we wish to minimize the local letter deformation nec-
essary to fit a letter’s anchor to the protrusion. On the other hand,
we also wish to minimally change the letter spacing along the path.
In particular, we seek matches that minimally shift letter locations
from a default even letter spacing, and forbid matches that switch
the letter order. We formulate this as an assignment cost with a set
of constraints. The cost of matching a letter anchor to an outline
protrusion is dependent on two functions: the relative positional
compatibility, and the type and orientation compatibility.

Positional compatibility. Relative positional compatibility be-
tween a protrusion ai and a letter anchor sj is defined as a function

Figure 6: Alignment of letters in the outline image. The ideal letter
position is computed by uniformly segmenting the layout path. For
example, the position of the letter ‘g’ is marked by a yellow dot.
The approximate position of a protrusion, e.g., the kangaroo’s leg
a1, is computed by projecting the end points (i.e., P0 and P1) of its
separator to the path. Its position L(a1) is set at the middle of the
two projections P ′0 and P ′1.

of the letter’s optimal position L(sj) and the approximate location
of the protrusion along the path L(ai). Suppose the input word
has N letters and suppose the letter anchor sj is on the j-th letter.
The optimal position L(sj) is the position of the j-th letter using
arc-length parameterization of the path. We divide the path into N
equal segments, and specify the optimal position of the jth letter as
the midpoint of the jth segment. For example, the position of the
letter ‘g’ is marked by a yellow dot in Figure 6 on the skeleton. For
each outline protrusion, we compute its approximate location along
the path by first projecting the end points of its separator to the
closest locations on the path, and then using the mid-point of the
two projections as its approximate location (see L(ai) in Figure 6).
The positional compatibility of the assignment is then given by the
Gaussian function

Ploc(ai, sj) = exp

(
−(
L(ai)− L(sj)

2 ·W/N )2
)
, (1)

where W is the length of the text path.

Type and orientation compatibility. We evaluate the type and
orientation compatibility of an outline protrusion and letter anchor
with a discrete function Psim. We classify each protrusion as as-
cending or descending based on whether it is above or below the
layout path. We use PCA to compute the major axis of each pro-
trusion, and classify its orientation as “right”, “straight”, or “left”,
based on the angle θ between the major axis and the text path di-
rection. The orientation is set to “right”, “straight”, or “left”, if
θ <= π

3
, π
3
< θ <= 2π

3
, or 2π

3
< θ < π, respectively. If the

anchor and the protrusion are on different sides (e.g., an ascending
anchor and a descending protrusion), we set Psim = 0. If the two
are on the same side, we evaluate their orientation compatibility. If
the orientations match (e.g., right and right), we set Psim = 1. If
the mismatch is minor (i.e., one of the two orientations is “straight”)
we set Psim = 0.75; and if it is major, i.e., one is right and one is
left, then we set Psim = 0.5.

Final cost and non-inversion constraints. The overall compat-
ibility cost for matching a protrusion ai and a letter anchor sj is:

c(ai, sj) = 1− Ploc(ai, sj) · Psim(ai, sj). (2)

Given a set of image protrusions A = {ai}(i = 1, ...,M) and a set
of letter anchors S = {sj}(j = 1, ..., Ns), we find the best corre-



Figure 7: Stroke decompositions and local coordinate frames for all letters. The origin of the local coordinate frame is marked by a black
dot, and is either located at the center of the minimum bounding rectangle (MBR) (left) or at the center junction of strokes (right). The y-axis
is chosen as an edge of the MBR (left) or according to some reference strokes (right). The reference strokes are marked with a black outline.

sponding anchor for each protrusion by minimizing the combined
assignment cost, subject to non-inversion constraints,

c(A, S) =

M∑
i=1

c(ai,M(ai)), (3)

s.t. L(M(ai)) < L(M(aj)), if L(ai) < L(aj). (4)

Here, M(ai) is the corresponding letter anchor for the protrusion ai.
M(ai) could be a void anchor to allow protrusions without corre-
sponding anchor. We define the compatibility Ploc(·, ·), Psim(·, ·)
between a void anchor and a protrusion to be 0.

We could use a Markov Chain optimization to obtain the best solu-
tion. However, our search space is typically small, with less than a
dozen protrusions and less than two dozen anchors, so that an ex-
haustive search which quickly discards invalid and poor solutions is
equally effective. Specifically, for each protrusion ai, we first limit
its correspondence to the top three anchors with largest location
compatibility score Ploc(·, ·) and exclude anchors whose location
compatibility score is smaller than 0.1. After that, there is typically
a few thousand different combinations to be evaluated.

5.2 Initial alignment

After finding correspondences between letter anchors and protru-
sions, we use their matches to align the letters to the outline image.
To minimize letter overlaps in this initial layout, we set the initial
scale of each letter to a portion of its expected final size. Specifi-
cally, we compute per-letter scales such that the area of the scaled
letter equals toAreaS/2N . We first position letters whose anchors
have corresponding protrusions and then position the rest, keeping
them as evenly spaced as possible. For each letter with an anchor
that corresponds to a protrusion, we place the letter by aligning the
centers and orientations of the anchor’s cutting line (Figure 5) with
the protrusion’s separator (Figure 4). The orientation and location
of letters with more than one corresponding protrusions are decided
by the largest one.

After fixing letters with corresponding protrusions, we insert the
remaining letters in-between them. Suppose n consecutive letters
need to be inserted between two fixed letters. We divide the path
between the two fixed letters into n intervals, and put one letter at
each interval. The orientations of these letters are then set to match
the normal of the path (see e.g. the letter ‘u’ in Figure 3).

5.3 Refined alignment

The coarse layout from the initial alignment is readable and fairly
evenly spaced, but the letter boundaries remain relatively far from
the image outline. We improve the fit by adjusting the position, ori-
entation, and scale of the letters. This step produces a good starting
point for the deformation in Section 7, which is controlled by a full
legibility measure learned from crowdsourced data.

This refinement is driven by three key criteria. First, we aim to
compute the per-letter transformations that optimize fit, or outline
alignment. Second, while we allow letters to scale along both axes,
to maintain readability, we minimize changes in their aspect ratios.
Finally, to maintain both readability and aesthetics, we seek smooth
letter flow. That is, we want the letters to have similar overall scale
and orientation, with minimal overlap.

We formulate these criteria as follows. We encode the preference
for preserving letter aspect ratio as:

scorel =

N∑
i=1

∣∣∣∣ln rd(li)ro(li)

∣∣∣∣ /N, (5)

where ro(li) and rd(li) are the aspect ratios of a letter li before and
after refinement respectively.

The fit criterion is encoded as:

scoreg =

∣∣∣∣∣ln AreaS

Area(L,S)

∣∣∣∣∣ , (6)

where AreaS is the area of the input outline image S and
Area(L,S) is defined as the difference between two areas, i.e.,
Area(L,S) = B − A. Here, B is the area of the intersection of
letters L and the outline S, and A is the area of the outline S un-
covered by the letters L. We define Area(L,S) in this way to maxi-
mize the intersection of L and S, and at the same time to minimize
the uncovered region of S.

The smooth flow is encoded as:

scorew = ωzV ars(L) + ωoV aro(L) + ωbΣi
Overlap(li,li+1)

AreaS
.

(7)
Here, V ars(L) denotes the variation of the areas of all letters in a
word L. When evaluating this variation term, each letter li ∈ L
is normalized using the area AreaS/N to make the result indepen-
dent of the size of the input outline image. V aro(L) is the variation
of the orientations (in radians) of all letters in L. Overlap(li,li+1)

denotes the overlapping area of two neighboring letters. The com-
bination weights ωz, ωo, and ωb are all fixed at 1.

The combined layout energy is

S = λscorel + scoreg + γscorew. (8)

We empirically set λ = 0.4, and γ = 0.6 in all experiments, prior-
itizing fit and flow over aspect ratio preservation.

This function has no continuous derivatives, and thus requires a dis-
crete solver to optimize. We use hill-climbing [Russell and Norvig
2010] to find the location, orientation, and vertical and horizontal
scales of each letter that minimize this function. This iterative opti-
mization stops when the change in energy function is smaller than
a prefixed threshold (ε = 0.001), for two consecutive iterations.



20

40

60

80

0

20

40

60

st
ro

ke
-p

oi
nt

 lo
ca

tio
n

st
ro

ke
-p

oi
nt

 d
ire

ct
io

n

st
ro

ke
-th

ic
kn

es
s

20

40

60

80

0.25 0.5 0.75

Figure 8: Stroke features. From left to right, they are the histogram features of stroke orientation, position, and thickness. Histograms bins
are colored according to the color of the corresponding stroke in the letter ‘d’.

6 Letter legibility

A key to the final deformation step, which adjusts the letter shapes
to best fit the image outline, is the ability to evaluate the impact
of these shape changes on letter legibility. There are no existing
methods that can assist us with this measurement. Moreover, due
to the structural variance between the different letters, it is not clear
if one can develop a unified legibility function that works for all
letters. For example, simple letters such as ‘o’ appear less sensitive
to deformation, while pairs of easier to confuse letters, such as ‘h’
and ‘n’, seem to be more sensitive to edits. We therefore choose to
learn an individual legibility measure for each letter in the alphabet
by the relative attribute ranking method [Parikh and Grauman 2011]
with a large-margin approach [Joachims 2002].

Feature space. The first question to address is how to repre-
sent the deformed letters for our legibility measurement. We need
an effective representation that can be generalized to work for all
Latin letters, and has a moderate dimensionality since high dimen-
sional features usually require more training data [Jin and Wang
2012]. We encode letters using the popular, see e.g. [Phan et al.
2015], skeleton-plus-thickness-profile representation. Specifically,
we separate each letter into its strokes and define a feature vector
for each stroke, representing its skeleton and thickness profile. We
describe each letter by concatenating the features from all strokes.
For example, the feature representation of letter ‘d’ is shown in Fig-
ure 8, where the skeletons of different strokes are color-coded.

Feature extraction. For each letter, we set up a local coordinate
system to evaluate its features based on skeleton length, direction,
position, and stroke thickness. These coordinate systems are chosen
to make the extracted features invariant to translation, scale, and ro-
tation of letters. Generally, the origin is at the center of a letter and
strokes are uniformly distributed in different quadrants. In the end,
we design these coordinate systems for different letters as shown
in Figure 7, while different choices might work equally well. The
origins are either at the center of a letter’s bounding box, or at a
stroke junction nearest to the letter center. The y-axis is then set to
an axis of the bounding rectangle, or with regards to some reference
strokes, e.g., perpendicular to a reference stroke, or bisecting two
reference strokes. Please refer to Figure 7 for the local coordinates
of different letters.

We define length, direction, position, and thickness features for
each stroke. The length feature is the stroke’s skeleton length nor-
malized by the total length of all strokes. The direction feature is an
orientation histogram. Specifically, we take each pixel on a stroke
as a sample point and compute the angle between the y-axis and
the skeleton’s tangent direction at each sample point. This angle
takes on a value between [0, π] and we quantize it to four equal
sized bins, i.e., [0, π/8] ∪ [7π/8, π], [π/8, 3π/8], [3π/8, 5π/8],
and [5π/8, 7π/8], to build a direction histogram. This histogram
is further normalized by the total number of points as shown in the
left of Figure 8. The position feature is also a histogram. Specifi-

cally, we divide the local coordinate plane into eight octaves, count
the number of skeleton points in each octave, and normalize this
histogram by the total number of points, as shown in the middle
of Figure 8. The thickness of a stroke is also encoded as a his-
togram. We compute the minimum distance between each stroke
sample point to the stroke’s boundary. This distance is then nor-
malized by the minimum of the letter’s skeleton width and height,
and quantized into four equal sized bins between [0, 1] to define the
thickness feature as shown in the right of Figure 8.

Finally, a stroke’s feature vector consists of:

• The relative length, represented by a scalar.

• The orientation histogram, represented by a 4D vector.

• The position histogram, represented by an 8D vector.

• The relative thickness histogram, represented by a 4D vector.

Therefore, a stroke is described by a 17D vector. We concatenate
the feature vectors computed for all the strokes to form the feature
of each letter. Taking a letter with three strokes as an example, its
feature is a 51D vector.

Training objective. For each letter l, we learn a ranking function
rl. We first collect a set of training images Il containing different
deformed variations of the same letter. We then obtain two sets
of crowdsourced pairwise visual comparisons on those deformed
letters. Pairwise comparison is used, since it is much harder to mark
absolute metric scores [Parikh and Grauman 2011].

The first set Ol = (i, j) contains ranked pairs for which the first
image i is more legible than the second image j. The second set
Sl = (i, j) consists of unordered pairs for which both images have
the same legibility. We wish to learn a ranking function

rl(x) = wTl x (9)

with the feature vector x satisfying the training constraints:

∀(i, j) ∈ Ol : wTl xi > wTl xj
∀(i, j) ∈ Sl : wTl xi = wTl xj .

We directly solve the optimization by the large-margin ap-
proach [Parikh and Grauman 2011], obtaining a score in [−1, 1] for
each deformed letter with higher scores implying higher legibility.

Warped letter generation. We collect more than 30,000 de-
formed shapes for all the 26 lowercase Latin letters. There are
more than 1,500 shapes for most of the letters. Less shapes are used
for simple letters, such as ‘i’ and ‘l’. The various deformed letters
are generated by either stroke thickness transformation or projec-
tive transformation. Taking the letter ’d’ for example, we gener-
ate in total 1,535 shapes, where 80% of them come from stroke
thickness transformation (according to 307 human sketched letter
skeletons), and 20% of them come from projective transformation



Figure 9: Deformed letter generation (to train the legibility mea-
sure). The first row shows letters generated by applying randomly
sampled thickness profiles to a human sketched skeleton. The sec-
ond row are letters generated by applying random projective trans-
formations to the standard letter.

of the standard form, see Figure 9. Stroke thickness transformation
varies the thickness of each stroke in a human sketched skeleton.
We concatenate points of all strokes into an array pi, i = 1, ..., n.
New letter shapes are generated by the union of disks with differ-
ent radiuses centered at these points. The radiuses are controlled
by a cubic spline curve defined in the range [1, n]. The spline
curve interpolates ns thicknesses uniformly distributed in [1, n] and
ns ∈ {4, 6, 8, 10}. The thickness of each data point is specified by
a base thickness plus a random variation in the range of minus to
plus half of the base thickness. The base thickness is also deter-
mined randomly, in [0.8, 1.5] of the default stroke thickness.

Once the data from the thickness transformation is ready, we add
the remaining 20% of the data from random projective transfor-
mations of a standard letter. For each standard letter, we randomly
perturb the four corners of its bounding box. The perturbed position
of each corner is confined to a disk centered at its original location
and with a radius of 0.4 times the minimum of the letter’s width
and height. The four perturbed points define a projective transfor-
mation which warps the original letter. Finally, 40% of the dataset
is selected for training and 60% for testing.

Crowdsourced data. We collect crowdsourced pairwise legibil-
ity comparisons of deformed letters via the Amazon Mechanical
Turk service. At each time, a participant is shown two deformed
letters side by side. The participant is asked to choose if the left or
right letter on display is more legible or if both have similar legi-
bility. The webpage we used for data collection is included in the
supplementary material. About 200 random pairs were generated
for each letter, and each pair was compared by 5 participants. Less
queries are generated for simple letters such as ‘i’ and ‘o’, and more
for complex ones such as ‘b’ and ‘k’. In total, 20, 000 (200 pairs
× 20 letters × 5 comparisons) pairwise legibility comparisons are
collected for all the 26 letters from 90+ participants. The compar-
ison tasks are divided into 20 batches, such that each batch can be
finished by a participant in about half an hour.

As suggested by [Joachims 2002; Liang and Grauman 2014], we
validate our learned legibility measure using prediction accuracy
and Kendall’s τ index [Kendall 1938]. The average accuracy and τ
for all the letters are about 0.8 and 0.6 respectively. These values are
not very high since our labeled data is noisy with many inconsisten-
cies. Hence, we further empirically validate the learned legibility
measure using the test data in Figure 10, which shows letter ranking
consistent with human perceived legibility.

7 Legibility-preserving letter deformation

The final step of our calligram computation deforms the individual
letters to best satisfy fit, while minimally affecting legibility. Our

0.1735 0.1675 0.1643 0.142 0.1356

0.1355 0.1306 0.1249 0.1194 0.1174

0.08027 0.02578 -0.008988 -0.04515 -0.09244

-0.1213 -0.1576 -0.1804 -0.2449 -0.2835

-0.3253 -0.3879 -0.4163 -0.4909 -0.5258

0.4864 0.3847 0.3252 0.2744 0.2127

0.1468 0.1377 0.1143 0.0965 0.09614

0.08297 0.05338 0.03955 0.03808 0.0245

-0.02614 -0.06499 -0.07651 -0.07971 -0.1257

-0.1628 -0.18 -0.3408 -0.4174 -0.7369

Figure 10: Some deformed letters of ‘h’ and ‘r’, ranked according
to our legibility measure.

(a) (b)

control points

Figure 11: Deformation of a letter boundary (a) and post-
processing after letter deformations (b).

optimization uses the same criteria as the refined letter alignment,
balancing legibility, fit, and textual flow. We therefore use the same
energy function (Equation 8) but replace the coarse, aspect ratio
based legibility measure scorel with a more sophisticated alterna-
tive ˆscorel that accounts for local deformations,

ˆscorel = (1−
N∑
i=1

(r(li) + 1)/2N), (10)

where r(li) is the ranking score for letter li.

Letter boundary discretization. To allow fine-scale deforma-
tion of our letters, we represent the boundary of each letter using
Catmull-Rom splines [DeRose and Barsky 1988] (see Figure 11
(a)), and use their control points to deform the letter boundary. To
determine the control point density, we use a distance parameter µ
which is progressively refined for fine-tuning. Specifically, we use
µ = [10, 5, 3] pixels at different iterations. The initial set of control
points includes the corner points of the letter strokes, detected us-
ing the feature detection method of [Harris and Stephens 1988]. We
iteratively insert a new control point at the middle of two consecu-
tive control points whose distance is larger than 2µ. This insertion
of control points is applied after each iteration of deformation.

Legibility-driven deformation. We deform the boundary con-
trol points to minimize the energy function Equation (8) with the
learned letter legibility measure Equation (10). Suppose there are
m control points along the letter contour. At each iteration, we gen-
erate 2m samples by randomly moving each control point inward
or outward along its normal direction, with the step size bounded
by our distance parameter µ. If a control point is within distance µ
from the input outline, we consider fit as fully satisfied locally and
prevent the point from moving further. An example of the process
is shown in Figure 11 (a), where a deformed letter is generated by
moving the control point p along the normal of the boundary. Some



sampled deformations can lead to self-intersections of letter bound-
aries. We discard those samples and pick the optimal solution that
minimizes Equation (8).

Evaluating the legibility measure in Equation (10) requires tracking
the motion of the letters’ skeleton. We compute the initial skele-
ton using the skeletonization method of [Kovesi 2006]. We use
Green coordinates [Lipman et al. 2008] to track the motion of the
skeleton during deformation. We compute the feature vector x(li)
as described in Section 6 and obtain the letter legibility score with
Equation (9) and Equation (10).

For each step size µ, we repeat this iteration until ‖Sn − Sn+1‖ <
ε, where ε = 0.001 in our implementation. Once the iteration con-
verges, we reduce the step size µ and refine the deformation.

While the deformation control mechanisms adopted at the training
and legibility-driven calligram construction stages are different, we
generally obtain similar letter shapes. During calligram generation,
a more refined deformation, by manipulating control points, is nec-
essary for the fine-grained inter-letter constraints. During training,
we aim to sparsely cover the space of letter deformations, where
a coarse deformation mechanism is better suited. Fine-level defor-
mation would require many more samples to obtain coverage.

Post-processing. Up to this point, the deformed letters still may
not fit the image outline perfectly, as shown in Figure 11(b), we per-
form post-processing to address the following three issues. First,
part of the letters may protrude outside the outline; see purple re-
gions in Figure 11(b). We simply remove these protruding regions.
Secondly, the deformed letter might not reach the outline precisely,
(green gaps in Figure 11 (b)). We simply add those green regions
to the corresponding letters, if the green gap is between the out-
line contour and some critical edges of a letter. The critical edges
are those within a five-pixel distance from the convex hull of the
deformed letter. Finally, two letters may be too close to (even over-
lapping with) each other (blue overlaps in Figure 11 (b)). We de-
fine a minimal gap – six pixels in our implementation, between let-
ters. Once overlapping letters are detected, we shrink both letters’
boundaries by half of the minimal gap.

8 Results and evaluation

We have tested our method on a range of input shapes, including or-
ganic ones and those of man-made artifacts. All the results conform
to our aesthetics and legibility considerations and they have been
obtained all under the same default parameter setting (Figures 1
and 12-17) unless otherwise specified. We compare our method to
calligraphic packing and to manual designs in terms of the legibil-
ity and overall quality of the generated calligrams. We also evaluate
our objective function and legibility scoring.

Parameters. Our method has five tunable parameters: weight λ
for letter legibility, weight γ for word legibility, and with respect to
word legibility, the weights wz , wo, and wb, which influence letter
scale, orientation, and interrelations, respectively. All the calligram
results shown in the paper have been obtained fully automatically,
under the default parameter setting: λ = 0.4, γ = 0.6, and wz =
wo = wb = 1.0, unless stated otherwise.

Word animals. Word animal calligrams designed beautifully by
professional artist Dan Fleming provided the initial motivation to
our work. We have tested our method on all the word animal shapes
we could find. Figure 12 shows, side-by-side, some calligrams cre-
ated by the artist and by our method, whose input shape is the one
which tightly bounds the artist’s design. As one can observe, while
in some cases, automatically generated results still lack the ele-

Figure 12: A gallery of word animals generated by our automatic
algorithm (right image in each pair), compared to designs from Dan
Fleming (images taken with permission). In most cases, the overall
quality of the results are quite close.

Figure 13: Additional examples comparing algorithmic generation
with expert design, showing more noticeable discrepancies. Yet, our
results are still seen as providing reasonable alternatives.

gance originating from an artist’s touch, by and large, the overall
quality of the results are visually quite close and essentially indis-
tinguishable in some cases, e.g., the pig, bunny, and camel.

Expert designs shown in Figure 13 exhibit more significant letter
deformations and arrangement variations. Extreme examples in-
clude the elephant’s eye using the letter ‘e’, which is significantly
smaller than the other letters, the kitten’s head given entirely by the
diacritic of the letter ‘i’, and the monkey skull by a drastically de-
formed ‘m’. Our current method does not attain such solutions and
its results deviate more noticeably from professional designs; this
is dictated by the criteria set for low-curvature text flow, as well
as letter and word legibility. The leg of the flamingo was not as-
signed to ‘g’ but to ‘n’ since our current alignment scheme slightly
favors mapping the long leg to a stem in ‘n’ than to a descending
anchor in ‘g’. Nevertheless, the automatically generated calligrams
are generally seen as offering reasonable alternatives.



Figure 14: A gallery of compact calligrams obtained by our method on input shapes obtained via Google image search.

On “wild” inputs. Results for word animals have all been ob-
tained on input shapes converted from expert designs. Figure 14
shows a set of calligrams generated by our method on input shapes
obtained “from the wild” via Google image search. Most of them
represent man-made artifacts and have not been associated with cal-
ligram designs before. To assess the robustness and generality of
our method, we embedded words of varying lengths, from “bat” to
“batmanforever”, to the same image. Another stress test is on the
embedding of a very long “word” (bottom of Figure 14).

Legibility test. The validation presented in Section 6 serves to
assess the learned legibility measure for individual letters. In our
first user study, we evaluate how consistent our combined (word
and letter) legibility score, as defined by λscorel + γscorew in
Equation (8), is with respect to human judgment.

The study consists of 20 pairs of calligrams: each pair embeds the
same word, but the word is not spelt out. For each pair, a participant
was asked to choose which one he/she thinks is more legible or
the assessment that the two calligrams are equally legible. The 20
word-shape combinations for the study were randomly chosen from
the set of all available examples. The pair of calligrams were chosen
at random stages over our optimization process, ensuring that the
gap between their legibility scores varies.

In the end, 30 participants provided feedback. These participants
are either graduate students from computer science and engineering
or professionals with similar backgrounds. Among a total of 593
user responses (one participant did not finish), 70.1% agree with
legibility rankings which would result from our score. Data, user
instructions, and further details about all the user studies can be
found in the supplementary material.

Overall quality test. The second user study involves ranking the
overall quality of word calligrams and serves three purposes: a) to
compare our method with calligraphic packing; b) to compare our
method with designs by a professional artist; c) to evaluate our ob-
jective function (8). The study consists of a total of 25 pairs of
calligrams: each pair embeds the same word, but the word is not
spelt out. For each pair, a participant was asked to choose which
one he/she thinks is of higher overall quality or the assessment that
the two calligrams are of equal quality. The participants were told
to judge the quality based on how well the calligram conveys the
input shape, along with legibility and aesthetics. The same 30 par-
ticipants from the first user study provided feedback.

Four of the 25 pairs compare our results to those produced by cal-
ligraphic packing; outcome related to these examples is reported
later. The 9 pairs of algorithmic and artist-designed calligrams
shown in Figure 12 are also included in the study. Among a total of
270 responses, 50.74% favored our method over artist’s designs or
indicated that they are of equal quality (9.56%).

Each of the remaining 12 pairs is composed of two algorithmically
generated results. The input word-shape combination was again
randomly chosen from the set of examples and the two results were
chosen at random stages over our optimization process. These 12
pairs serve to assess the consistency between our objective function
and human judgment when ranking quality of calligrams. Among a
total of 360 responses, 57.8% are consistent with the ranking based
on our objective function.

Participants’ feedback revealed that generally, it was not easy to
judge the overall quality of the calligrams due to the combination of
factors. Personal and stylistic preferences were clearly influential.
Some user judgments were affected by certain local elements that
were thought of as either aesthetic or unpleasant.

Algorithmic vs. manual. In the final user study, we ask viewers
to rank the overall quality of calligrams created by our method and
by humans, including Dan Fleming. To collect results from human
creators, who had not participated in any of our user studies, we
provided instructions on what legible compact calligrams are and
showed them two examples designed by Dan Fleming. The human
creators who participated in our study are all graduate students in
computer science or engineering or professionals with postgraduate
degrees in these disciplines. About half of them claim specializa-
tion in fields related to visual computing and about half possess
varying degrees of design experience. They were asked to design
calligrams on paper, taking as much time as they wish until they
were satisfied. Their creations on paper were then digitized. We
collected more such creations than we needed and chose the ones
which were clearly of higher quality for the study. All the human
creations can be accessed in the supplementary material.

The input shapes tested and the queries belong to two groups:

• The first group consists of five word animals: skunk, kanga-
roo, chicken, elephant, and kitten. Note that the last three
(Figure 13) are challenging cases. Each query set is formed
by four calligrams (in random order): two created by humans,
one by our method, and one by Fleming. The viewers were
asked to rank the calligrams based on the overall quality.

• The five test cases for the second group are shown in Fig-
ure 15. Note that the sedan, joypad, and submarine have rel-
atively simple boundaries; mermaid and motorbike are more
complex. Each query set in this group consists of three cal-
ligrams (in random order): two were created by humans and
one by our method. Note that we have no access to profes-
sional designs for these inputs. The viewers were asked to
rank all three calligrams based on their overall quality.

On average, a human creator took 16.55 minutes to complete a cal-
ligram from the two groups explained above.

A separate group of viewers, the 30 who provided feedback for



Figure 16: Result variation for calligram generation. Flamingo:
alternative letter alignments, where Mopt and Msub indicate the
optimal and one close sub-optimal matching correspondences, re-
spectively. Bunny: influences of weight γ on word legibility. Mon-
key: influences of weight wz on even letter scales. Mermaid: influ-
ences of weight wo on consistency of letter orientations.

the first two studies, were asked to rank the two query sets of cal-
ligrams. Among the 150 ranking responses for the word animal
group, 54% ranked the Fleming design first and among these re-
sponses, 37.3% ranked our method in second place. In 21.3% of
the time, our method was ranked first. Overall, 41.44% responses
ranked our method ahead of all human creators. On the other hand,
we also observe some noise in the participant’s feedback, as about
25% responses did not rank the professional designs first.

Among the 150 responses for the second group, 34.66% ranked our
method in first place and 44% placed it second. It is interesting to
note that for the more complex examples, the mermaid and motor-
bike, our method received the most first-place votes. It did not fare
as well, in users’ judgment, on the simpler inputs: joypad, sedan,
and submarine. The human creation for the submarine, with the
overlapping of ‘b’ and ‘m’, as shown in Figure 15, was well-liked,
receiving 24 first-place votes out of 30. It would appear that local
features can play a big role in user judgment.

Result variations. One option to vary the final result is to con-
sider multiple letter alignments, as no alignment objectives can
work perfectly in all cases. As shown in Figure 16, adopting a sub-
optimal alignment, which is accessible during our search, allows the
leg of the flamingo to be assigned to the letter ‘g’. Interesting vari-
ations can also be obtained by tuning parameters. De-emphasizing
letter legibility by reducing λ from 0.4 to 0.2 places more weight on
word legibility. As a result, letters of the bunny exhibit a more even
distribution, in terms of the scales of the two ‘n’ letters and less
overlap between ‘n’ and ‘y’. While holding other parameters at de-
fault, decreasing wz from 1.0 to 0.2 tolerates more variations in the
scales of the letters, as can be observed for the monkey calligram.
In another example, increasingwo from 1.0 to 3.0 emphasizes more
the consistency in letter orientation, leading to a different result for
the mermaid, particularly for the letters ‘i’ and ‘d’.

Multi-line calligrams with user assistance. Our set goal in this
work is to develop a fully automatic method. However, few user-
drawn strokes as suggestive layout paths can allow us to produce
multi-line calligrams such as the Mona Lisa and “successful” re-
sults in Figure 17. Note that a user only needs to provide the quick
strokes, splitting of the input text is done automatically by the al-

Figure 17: Our results (in color) vs. calligraphic packing results
(black) generated with initial user placement and orientation of
letters, on four examples taken from their original paper. The
Mona Lisa and “successful” examples each has two separate lay-
out paths, requiring user strokes as initialization. Our results were
otherwise generated automatically with default parameters.

gorithm. If the letters are rather scrambled, as for the orangutan in
Figure 2, user-assisted letter placement may be necessary.

Comparison to calligraphic packing. Figure 17 compares our
results to user-assisted outputs from calligraphic packing [Xu and
Kaplan 2007]. The four input shapes and the calligraphic pack-
ing results were taken directly from their paper. Only these in-
puts would allow the two methods to be comparable; all the other
examples from their paper scrambled the ordering of letters. For
the Mona Lisa and “successful”, as the calligrams are necessarily
multi-line, user strokes were provided, after which our method ran
fully automatically with default parameters. From the user study
on calligram quality, when viewers were shown side-by-side results
from Figure 17 (in random order and the same color scheme), out
of a total of 120 answers, 70% indicated preference for our method,
while 5 responses could not distinguish. The majority of votes that
went to their method are for the elephant and the Mona Lisa.

Timing. Our current implementation is entirely MATLAB-based.
All steps of the method, except for the final deformation step, take
less than 30 seconds to execute. The iterative deformation is the
most time-consuming, typically requiring hundreds of iterations.
With the un-optimized MATLAB code executed on a single-core
PC with Inter(R) Dual Core(TM) i5 CPU 540@2.53GHz, it takes
between 10-17 minutes to obtain all results shown in the paper. Av-
erage run time for the 10 examples in the final user study was 11.8
minutes, while human creators took 16.55 minutes. With a C/C++
implementation, a significant speedup is expected [Andrews 2012;
Aruoba and Fernandez-Villaverde 2014].

9 Discussion, limitation, and future work

We develop a method for automatic generation of compact and leg-
ible calligrams. Extensive tests demonstrate the effectiveness and
robustness of our method. Preliminary studies, based on viewer
feedback, indicate that in terms of overall quality, the calligrams



Figure 15: Several calligrams designed by human creators (black and white), contrasted with results by our automatic method (colored).
Human creations shown here were the selected best ones.

generated by our fully automatic method are comparable to those
produced by humans. Note that the human creators in our study
generally possess above-average artistic skills and we selected the
best of their creations when comparing to our results.

Even though we were seeking a fully automatic method originally,
our current pipeline can easily incorporate user assistance, e.g.,
stroke hints for layout paths, as shown in Figure 17. Our ultimate
goal is certainly not to replace or supercede professional artists for
calligram design, a highly creative and artistic endeavor. The best
way to utilize our method is for it to automatically generate design
suggestions which may inspire an artist or novice user.

“Calligramification”. Not all shapes of a monkey can result in an
elegant word animal; probably most monkey poses cannot. From a
calligram design point of view, the major limitation to our current
solution arises from the fixed input shape. A professional calligram
design typically involves the design of the boundary shape as well.
An interesting extension to our method would be to allow the input
shape to deform to improve the quality of the generated calligram.
That is, the input shape is “calligramified”. To achieve this, one
needs to constrain the shape deformation to ensure its semantic va-
lidity while striking a balance with letter shape deformation.

Potential use of legibility. Data and results from our letter leg-
ibility study may serve other applications beyond calligram gen-
eration. In connection with the recent work by Campbell and
Kautz [2014], a legibility measure may be factored into the gen-
erative model they have developed for fonts. In the work by Zit-
nick [2013], a user’s handwriting can be beautified in real time
by applying an averaging operation to letter instances appearing in
other sample writings by the same user. To improve the legibility
of a piece of handwriting, without other writing samples, a model
of letter legibility would be necessary.

Co-constrained deformation. In addition to contributions by
the legibility study, we believe that the notion of “co-constrained
deformation” arising from our letter deformation problem is of in-
terest beyond calligram construction. It adds a new dimension to
classical shape deformation and represents a general problem set-
ting: how to deform multiple entities in a confined space where
the deformations constrain each other. Our solution is admittedly
preliminary but can potentially stimulate future work.

Limited training data. In terms of data, currently, we believe that
the letter samples used for training still only cover a limited space
of letter deformations. Preparing for extensive and quality training
data can be non-trivial and costly, e.g., to generate suitable word
variations with letter rotations or to allow disconnections in letter
shapes. With much more training data gathered, more advanced

Figure 18: Two “failure” cases due to inadequate automatic lay-
out path generation. Automatic result for the penguin (purple) is
less revealing than an artist’s creation (Figure 2). User strokes
(green and red) allow multi-line calligrams to be generated, bring-
ing closer resemblance to the artist’s result. Automatically gener-
ated layout path for the snail does not lead to a satisfactory cal-
ligram; this can also be fixed with a user hint (green).

schemes, e.g., via the use of deep convolutional neural networks,
are possible. We leave these possibilities for future work.

Technical limitations. As discussed before, one limitation is in
terms of the alphabet and fonts our method adopts. Extensions to
other alphabets and fonts should be straightforward under the same
framework. That said, an alphabet- and font-specific method for
calligram generation is not unexpected since an aesthetic calligram
is unlikely formed by mixing letters from different alphabets or
drastically different fonts. On a more technical front, a main limita-
tion is our assumption that the layout path is a single low-curvature
line. In Figure 18, we show an automatically generated penguin
calligram that may not be as elegant as the artist’s design, which
encompasses three or four low-curvature layout paths. Multi-line
calligrams can be generated with the aid of user strokes.

Our method may also fail to produce an elegant result, e.g., for the
snail, when the automatically computed layout path is inadequate.
Again, a user stroke can help, as shown in Figure 18. Also, our cur-
rent method does not account for symmetry of the letters, e.g., the
symmetry between the two stems of the letter ‘n’. A consideration
of symmetry may prevent the letter ‘n’ from being assigned to the
leg of the flamingo (Figure 14). Finally, our method currently does
not handle input shapes with high genuses.

Future works. Aside from addressing the limitations and speed-
ing up the search, we could also explore a few other future direc-
tions. Instead of providing both a word and an image as input to
calligram generation, a user may only provide a textual descrip-
tion, e.g., “a jumping tiger”, for the image. It is also interesting
to compute reusable letter shapes or segments thereof which can
contribute to several input shapes. Finally, a fun future problem
is to develop a technique to morph between two word calligrams,
shape-to-shape and letter-to-letter, in a visually pleasing way.



Acknowledgements

We first thank all the reviewers for their valuable comments and
feedback. We owe our gratitude to Mr. Dan Fleming for his cre-
ative work which inspired our research and for his generosity in
allowing us to use images of his works in this paper. Thanks also
go to Daniel Cohen-Or and Nicholas Vining for proofreading, as
well as to students from Hengyang Normal University and Dalian
University of Technology for their hard work on data collection and
labeling. This work is supported in part by grants from NSERC
Canada, the Young Scientists Fund of the National Natural Science
Foundation of China (Grant No. 61502153), the National Natural
Science Foundation of China (Grant No. 61363048), and the Pro-
gram of Key Disciplines in Hunan Province.

References

ADOBE, 2010. Illustrator CS5 adobe.com/products/illustrator.

ANDREWS, T. 2012. Computation time comparison between mat-
lab and C++ using launch windows. Research report submitted
to American Institute of Aeronautics and Astronautics, Califor-
nia Polytechnic State University San Luis Obispo.

ARUOBA, S. B., AND FERNANDEZ-VILLAVERDE, J. 2014. A
comparison of programming languages in economics. National
Bureau of Economic Research, Working Paper 20263.

CAI, D., CHI, C.-F., AND YOU, M. 2008. Assessment of english
letters’ legibility using image descriptors. Perceptual and motor
skills 107, 2, 618–628.

CAMPBELL, N. D., AND KAUTZ, J. 2014. Learning a manifold of
fonts. ACM Transactions on Graphics (TOG) 33, 4, 91.

CHELLAPILLA, K., LARSON, K., SIMARD, P., AND CZERWIN-
SKI, M. 2005. Designing human friendly human interaction
proofs (HIPs). In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI’05, 711–720.

DEROSE, T., AND BARSKY, B. A. 1988. Geometric continuity,
shape parameters, and geometric constructions for catmullrom
splines. ACM Trans. Graph. 7, 1, 1–41.

GAL, R., SORKINE, O., POPA, T., SHEFFER, A., AND COHEN-
OR, D. 2007. 3d collage: expressive non-realistic model-
ing. In Proceedings of the 5th international symposium on Non-
photorealistic animation and rendering, ACM, 7–14.

GOFERMAN, S., TAL, A., AND ZELNIK-MANOR, L. 2010.
Puzzle-like collage. In Computer Graphics Forum, vol. 29, Wi-
ley Online Library, 459–468.

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detector. In In Proc. of Fourth Alvey Vision Conference,
147–151.

HELMOND, A., 2010. Textaizer mosaizer.com/Textaizer.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3,
1134–1141.

JACOBSON, A., BARAN, I., POPOVIC, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4, 78.

JIN, C., AND WANG, L. 2012. Dimensionality dependent pac-
bayes margin bound. In NIPS, 1043–1051.

JOACHIMS, T. 2002. Optimizing search engines using clickthrough
data. In KDD, 133–142.

KENDALL, M. G. 1938. A new measure of rank correlation.
Biometrika 30, 1/2, 81–93.

KIM, J., AND PELLACINI, F. 2002. Jigsaw image mosaics. ACM
Transactions on Graphics 21, 3, 657–664.

KOVESI, P., 2006. Matlab and octave functions for computer vi-
sion and image processing. http://people.csse.uwa.edu.au/pk/
Research/MatlabFns/index.html.

LIANG, L., AND GRAUMAN, K. 2014. Beyond comparing image
pairs: Setwise active learning for relative attributes. In 2014,
208–215.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coor-
dinates. ACM Trans. Graph. 27, 3.

LOOMIS, J. M. 1990. A model of character recognition and legi-
bility. Journal of Experimental Psychology: Human Perception
and Performance 16, 1, 106–120.

LUO, L., SHEN, C., LIU, X., AND ZHANG, C. 2015. A compu-
tational model of the short-cut rule for 2d shape decomposition.
IEEE Transactions on Image Processing 24, 1, 273–283.

MAHARIK, R., BESSMELTSEV, M., SHEFFER, A., SHAMIR, A.,
AND CARR, N. 2011. Digital micrography. ACM Trans. on
Graph 30, 4, 100:1–100:12.

O’DONOVAN, P., LIBEKS, J., AGARWALA, A., AND HERTZ-
MANN, A. 2014. Exploratory Font Selection Using Crowd-
sourced Attributes. ACM Transactions on Graphics (Proc. SIG-
GRAPH) 33, 4.

PARIKH, D., AND GRAUMAN, K. 2011. Relative attributes. In
ICCV, 503–510.

PHAN, H. Q., FU, H., AND CHAN, A. B. 2015. Flexyfont: Learn-
ing transferring rules for flexible typeface synthesis. Computer
Graphics Forum 34, 7, 245–256.

RUSSELL, S. J., AND NORVIG, P. 2010. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education.

SHEEDY, J. E., SUBBARAM, M. V., ZIMMERMAN, A. B., AND
HAYES, J. R. 2005. Text legibility and the letter superiority
effect. Human Factors 47, 4, 797–815.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Complex
barycentric coordinates with applications to planar shape defor-
mation. In Computer Graphics Forum, vol. 28, Wiley Online
Library, 587–597.

WIKIPEDIA, 2014. Calligram — wikipedia, the free encyclopedia.
[Online; accessed 9-October-2014].

XU, J., AND KAPLAN, C. S. 2007. Calligraphic packing. In
Proceedings of Graphics Interface 2007, ACM, 43–50.

XU, X., ZHANG, L., AND WONG, T.-T. 2010. Structure-based
ascii art. ACM Trans. Graph. 29 (July), 52:1–52:10.

ZHU, J.-Y., AGARWALA, A., EFROS, A. A., SHECHTMAN, E.,
AND WANG, J. 2014. Mirror mirror: Crowdsourcing better
portraits. ACM Trans. on Graph 33, 6.

ZITNICK, C. L. 2013. Handwriting beautification using token
means. ACM Trans. on Graph 32, 4, 53:1–53:8.

adobe.com/products/illustrator
mosaizer.com/Textaizer
http://people.csse.uwa.edu.au/pk/ Research/MatlabFns/index.html
http://people.csse.uwa.edu.au/pk/ Research/MatlabFns/index.html

