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Abstract
Enhancing the self-symmetry of a shape is of fundamental aesthetic virtue. In this paper, we are interested in recov-
ering the aesthetics of intrinsic reflection symmetries, where an asymmetric shape is symmetrized while keeping
its general pose and perceived dynamics. The key challenge to intrinsic symmetrization is that the input shape
has only approximate reflection symmetries, possibly far from perfect. The main premise of our work is that curve
skeletons provide a concise and effective shape abstraction for analyzing approximate intrinsic symmetries as well
as symmetrization. By measuring intrinsic distances over a curve skeleton for symmetry analysis, symmetrizing the
skeleton, and then propagating the symmetrization from skeleton to shape, our approach to shape symmetrization
is skeleton-intrinsic. Specifically, given an input shape and an extracted curve skeleton, we introduce the notion of
a backbone as the path in the skeleton graph about which a self-matching of the input shape is optimal. We define
an objective function for the reflective self-matching and develop an algorithm based on genetic programming to
solve the global search problem for the backbone. The extracted backbone then guides the symmetrization of the
skeleton, which in turn, guides the symmetrization of the whole shape. We show numerous intrinsic symmetrization
results of hand drawn sketches and artist-modeled or reconstructed 3D shapes, as well as several applications of
skeleton-intrinsic symmetrization of shapes.

Beauty is bound up with symmetry - Hermann Weyl [Wey83].

1. Introduction

Symmetry is often considered synonymous to beauty. How-
ever, while symmetric shapes or patterns are attractive, an
excess of symmetry tends to be perceived as predictable
and uninteresting due to a certain sterile rigidity about
it [McM05]. A primary example is demonstrated by shapes
exhibiting extrinsic symmetries. These objects are predom-
inantly man-made artifacts and by design, their symmetries
are meant to be perfect, rigid, and unbreakable. In contrast,
many organic objects do not show up in an extrinsically
symmetric form; they are non-rigid and can articulate freely.
When such objects are captured or depicted artistically, their
images often exhibit a varying degree of (extrinsic) asymme-
try, e.g., due to an asymmetric pose. The symmetries of these
objects are intrinsic to the objects themselves. Such symme-
tries are still beautiful and the presence of extrinsic asymme-
try even adds a certain dynamics or liveliness to them. In this
paper, we use the term “intrinsic” to attribute any measure
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or property associated with a shape representation which re-
mains largely invariant under varying poses.

Figure 1: Asymmetric shapes (left) are intrinsically sym-
metrized (middle) about their backbones (red), which facili-
tates further extrinsic symmetrization (right).
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Symmetrization is a process that enhances the symmetry of a
shape. The most notable such work, by Mitra et al. [MGP07],
reveals and enhances the extrinsic reflection symmetries
present in an intrinsically symmetric shape. For example,
a wiggly figure would be “straightened up” with its corre-
sponding limbs in the same poses. A complementary chal-
lenging objective is to enhance only the intrinsic reflection
symmetry, while leaving the extrinsic asymmetries intact. In
this paper, we introduce such an algorithm which we refer to
as intrinsic symmetrization. Figure 1 contrasts intrinsic and
extrinsic symmetrizations. In fact, starting with an asymmet-
ric figure, intrinsic symmetrization is arguably a first step
before extrinsic symmetrization becomes applicable.

The key challenge to intrinsic symmetrization is that the
input shape is not assumed to be intrinsically symmetric.
Rather than “extrinsicizing” existing intrinsic symmetries
in a shape [MGP07], one must first search for and identify
the target of intrinsic symmetrization. Current methods for
intrinsic symmetry detection [OSG08, XZT∗09, KLCF10]
have all been designed to reveal existing symmetries, typ-
ically relying on strong cues of recurrent features and lo-
cal similarities. In contrast, our algorithm must work with
shapes which only exhibit weak evidences of symmetries.

The main premise of our approach is that curve skeletons
provide a suitable shape abstraction for analyzing approxi-
mate intrinsic symmetries as well as symmetrization. First,
any prominent intrinsic symmetry over a shape must corre-
spond to some symmetry between its skeletal branches. Sec-
ond, the need for intrinsic symmetrization mostly arises for
imperfectly constructed shapes in practice, e.g., free-hand
sketches or roughly modeled or captured 3D objects, which
are often tempered with boundary noise and irregularities.
Symmetry analysis on such boundary representations is ex-
pected to be less robust than on a high-level structural ab-
straction such as a curve skeleton. Finally, with only weak
local symmetry cues, an effective analysis needs to resort
to global search. Working with curve skeletons, a reduced
shape representation, reduces the search cost.

Given an input shape with an extracted curve skeleton, we
introduce the notion of a backbone as a sub-path in the
skeleton graph about which a properly defined self-matching
score of the input shape is maximized. We define an ob-
jective function for the reflective self-matching, which ac-
counts for approximate intrinsic reflection symmetries, as
well as potentially significant deviation from perfect symme-
tries. Since backbone extraction necessitates a global search,
we develop an algorithm based on genetic programming
which operates on the curve skeleton. The extracted back-
bone guides the intrinsic symmetrization of the curve skele-
ton, which in turn, guides the symmetrization of the entire
shape, in a similar manner to linear blend skinning (LBS)
but with non-uniform scaling.

We call our approach skeleton-intrinsic since our symmetry
analysis is primarily based on intrinsic distances measured

over a curve skeleton extracted from the input shape. Sym-
metrization results are propagated from skeletons to shapes
and not obtained by working with intrinsic distances over the
shape surface. As such, we make no claims on symmetriz-
ing any surface metric. We symmetrize a shape via skeleton-
intrinsic analysis and skeletal deformation.

We demonstrate the robustness of our backbone extraction
scheme on numerous examples with varying degrees of
asymmetries, as well as geometric and topological noise.
In contrast, existing symmetry detection schemes are unable
to recover approximate symmetries as effectively. We show
that our technique can be applied to both 2D sketches and
3D models, enhancing them into intrinsic symmetric shapes
to benefit a number of applications.

2. Related work

Symmetry analysis and processing has been extensively
studied in computer vision and graphics [LHOKG10,
MPWC12]. Here we focus on works on intrinsic symmetry
detection. Most methods for symmetry detection explicitly
search for the maximal distance-preserving global or par-
tial self-maps [XZT∗09, RBBK10, LKF12, XZJ∗12]. Other
methods reveal global intrinsic symmetries in a shape by
mapping the shape into an embedding space so as to re-
duce the degrees of freedom of intrinsic transforms [OSG08,
KLCF10]. All of these methods rely on geodesic computa-
tions over well-formed surfaces and can only tolerate slight
deviations from perfect symmetries. In contrast, our method
is designed to deal with rough shape descriptions and to de-
tect and then enhance approximate intrinsic symmetries.

Curve skeleton and matching. Our skeleton-intrinsic
symmetry analysis leverages recent developments on ro-
bust curve skeleton extraction from rough shape descrip-
tions [RvWT08], even incomplete point clouds [TZCO09,
HWCO∗13]. Curve skeletons indeed provide an effec-
tive and compact form for abstracting and analyzing
shapes [CMS07], e.g., for shape matching. Bai and Late-
cki [BL08] propose a skeletal graph matching algorithm by
comparing geodesic paths between skeleton endpoints. Au
et al. [ATCO∗10] rely on elector voting to build correspon-
dences between two curve skeletons and the scheme also
rests on an assumption of low distance distortion.

Symmetry axes. While curve skeletons can be seen as the
axes of local volumetric symmetries [TZCO09], the topo-
logical structure of the skeleton itself does not reflect global
intrinsic shape symmetries. For example, the single branch
left after an aggressive skeletal graph contraction would gen-
erally not be the backbone we seek. Earlier work by Xu et
al. [XZT∗09] develop a voting scheme to reveal prominent
axes of intrinsic reflection symmetries on the surface of a
3D shape. Recently, Jiang et al. [JXCZ13] apply the vot-
ing scheme of Xu et al. [XZT∗09] on curve skeletons for
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symmetry detection on a 3D shape, where only slight devia-
tion from perfect symmetries can be tolerated. In our work, a
backbone roughly corresponds to a intrinsic reflection sym-
metry axis on the curve skeleton, but it must be able to tol-
erate significant devision from perfect symmetries.

Symmetrization. Mitra et al. [MGP07] “extrinsicize” in-
trinsic symmetries present in a shape by a deformation
guided by the symmetric point pairs detected in the trans-
formation space. Transformation-space analysis has proven
to be effective for extrinsic symmetry detection and sym-
metrization, since extrinsic symmetries are captured by sig-
nificant clusters or peaks in the transform space. However,
the continuous nature of intrinsic symmetries implies that no
such clear targets for symmetrization can be reliably identi-
fied. The work of Mitra et al. deals only with shapes that are
close to being intrinsically symmetric. In contrast, we work
on intrinsically asymmetric shapes, extract the approximate
intrinsic symmetries therein, and enhance such symmetries
while keeping the extrinsic asymmetries intact.

Enhancing free-hand drawings. Orbay and Kara [OK11]
rectify a user sketch by stroke clustering and curving fitting.
Lu et al. [LYFD12] collect a set of high-quality strokes from
a trained artist and then transfer the learned styles to the
drawings or writings of novices. Zitnick [Zit13] beautifies
hand-writings using token means, which is based on the ob-
servation that the geometric average between handwritings
of the same word is prettier than most of the individual in-
stances. What is common about all of these methods is that
they work at the stroke level. In contrast, our method aims to
enhance the intrinsic symmetries of a curve skeleton and ul-
timately, of the corresponding sketched shape. Intrinsic sym-
metries provide views of a shape at a more global perspective
beyond the appearance of individual strokes.

3. Overview

A shape representation S possesses a global intrinsic sym-
metry if there is a homeomorphism T : S → S, which is
an isometry [XZT∗09]. The shape representation can be the
boundary or a skeleton of an object. The key is for T to pre-
serve intrinsic distances defined for the shape representation.
The choice of the distance measure depends on the choice
of the shape representation. For surfaces embedded in 3D,
geodesic distances are most often employed. For 2D shapes,
one often resorts to inner distance [LJ07], which measures
the length of the shortest interior path between two points on
the shape boundary. In our work, we focus on intrinsic reflec-
tion symmetries and perform a skeleton-intrinsic analysis,
where intrinsic distances are measured over curve skeletons.

The input to our algorithm is a 2D or 3D shape defined
by its boundaries. The input geometry can be rough, even
a point cloud, as long as we are able to extract a proper
curve skeleton. We employ the curve skeleton extraction
scheme of Au et al. [ATC∗08] for 3D shapes, Reniers et

al. [RvWT08] for 2D shapes, and the `1-medial scheme of
Huang et al. [HWCO∗13] for incomplete shapes or point
clouds. All the results reported in the paper have been ob-
tained by working on automatically extracted skeletons.

By symmetrization, our goal is to enhance the approximate,
yet global intrinsic reflection symmetries in the input shape.
Directly identifying such symmetries for general shapes is
quite challenging. Our symmetry analysis is skeleton-driven
and skeleton-intrinsic. It focuses on the detection of a back-
bone, a path along the extracted curve skeleton of the shape
about which a reflective self-mapping between all skeleton
branches is maximized. Importantly, our symmetry analy-
sis is not exclusively based on comparing intrinsic distances
measured over curve skeletons, we also take into account
matching between corresponding shape geometries.

Backbone extraction. Given a potential candidate for the
backbone, i.e., a path along the curve skeleton, we evalu-
ate it by a self-matching score of the input shape about the
candidate path. The score serves as the objective function
for backbone searching. Specifically, we search for an opti-
mal self-matching between samples on the skeleton graph,
considering not only the local geometric similarity between
the samples, but also pairwise relationships, as defined by
skeleton-intrinsic distances among them; see Figure 2. Both
skeletal connectivity and shape geometry are taken into ac-
count and the candidate’s self-matching score is derived
from its corresponding optimal self-matching. To execute
the global search for the optimal backbone, we develop an
algorithm based on genetic programming; see Section 4.

Intrinsic symmetrization. Having obtained the backbone
and corresponding optimal skeleton self-matching, we offer
two options for intrinsic symmetrization of the input shape:
computing an average between symmetric parts, or copying
parts from one side (of the extracted approximate symme-
try) to the other, where the latter can be carried out branch
by branch. As copying is quite straightforward, we mainly
describe the averaging scheme in Section 5, which alters the
input shape in two steps. First, the skeleton is intrinsically
symmetrized about the backbone. Then, the shape, or the
skin, is symmetrized following the symmetric skeleton. The
procedure is illustrated in Figure 6 using a 2D example. Var-
ious options based on size or shape quality, e.g., roughness
transfer or smoothing, can be easily implemented, allowing
intrinsic symmetrization to become a versatile modeling and
shape enhancement mechanism.

4. Backbone detection

Given a shape S with its skeleton G as input, we define its
backbone as the optimal path P∗ in G about which a self-
matching score of S is maximized. That is,

P∗ = argmax
P∈Π

S(M|P), (1)
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Figure 2: Backbone detection: given a shape with an automatically extracted skeleton (a), red curves in (b) represent some
potential backbone candidates, where green lines denote the established self-matching between end nodes (blue dots) about the
candidate; the red path in (c) is our detected backbone with the optimal self-matching.

where Π is the set of all paths over the skeleton between
any two nodes whose valences are not equal two, i.e., end
or junction nodes. M|P represents the non-identity self-
matching with path P as fixed points, i.e., reflective about
P. Since we consider only reflective maps, we disallow any
point other than those on P to be matched to itself.

In general, computing a non-identity self-matching, even a
coarse one, for a shape with given fixed points is quite chal-
lenging. If S deviates moderately from being perfectly sym-
metric, the correspondence cannot be established by directly
imposing distance preservation constraints. We search for a
self-matching on the skeleton G while taking shape informa-
tion from S into account. To this end, we first sample G into
a point set, and then establish a self-map over the point set
with the sample points in P fixed; see Figure 2.

The key component in the optimization objective func-
tion (1) is the matching score S(M|P), which measures the
quality of mapping M|P. In the following, we first elabo-
rate the computation of M|P and then define the matching
score S(M|P). Finally, we describe how to obtain the opti-
mal backbone by a genetic algorithm.

4.1. Skeleton mapping

Given a backbone candidate P, finding the skeleton self-
mapping is equivalent to establishing non-identity corre-
spondence for two coincident skeletons. This determines a
global intrinsic reflective symmetry about P. Since the self-
map should be pose-invariant and tolerant to non-isometric
distortion, methods like branch matching [BTST12] or elec-
tors voting [ATCO∗10] are unsuitable.

In our implementation, we use end nodes, i.e., the skele-
ton nodes having only one adjacent node, as samples E, and
search for an optimal self-matching M over the end nodes.
Focusing on end nodes instead of the full skeleton has two

advantages. Firstly, the topology of a curve skeleton can
be unreliable while its end nodes, typically representing the
tips of brunches, are generally stable. Secondly, the surface
around an end node is geometrically salient and hence eas-
ier to characterize. Our method is inspired by [BL08], which
utilizes end nodes for matching skeletons of 2D shapes. We
extend this algorithm to deal with 3D shapes.

Graph matching problem. We formulate the end node
mapping as a bipartite graph matching problem. To this end,
we construct a kNN graph G = 〈GV ,GE〉 from the end nodes
through connecting each node to its k nearest neighbors
based on geodesic distance, and then find a non-identity map
M between G and its cloned counterpart G′ = 〈VG′ ,EG′〉.

To measure the quality of a matching, we consider not only
the similarity between end nodes (node affinity), but also that
of pairwise relationships (edge affinity). We search for the
optimal M such that the sum of both node and edge affinity,
denoted by J(M), is maximized:

J(M)= ∑
(i,i′)∈M

Kp(i, i′)+ ∑
{i,i′},{ j, j′}∈M,

(i, j)∈EG, (i′, j′)∈EG′

Ke((i, j),(i′, j′)).

(2)
Here Kp(i, i′) defines node affinity where {i, i′} ∈ M is
a pair of matching end nodes with i ∈ VG and i′ ∈ VG′ ;
Ke((i, j),(i′, j′)) defines edge affinity between edges (i, j) ∈
EG and (i′, j′) ∈ EG′ .

Node affinity. Given two end nodes i and i′, the node affin-
ity Kp(i, i′) is measured in terms of similarity between the
nodes. To avoid a trivial self-mapping and encourage reflec-
tive maps about the candidate backbone, we use the candi-
date backbone to constrain the matching.

End node similarity is defined with three terms (see the
embedded figure below). The first two terms are defined
with respect to the candidate backbone P. Specifically, we

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



Q. Zheng, Z. Hao, H. Huang, K. Xu, H. Zhang, D. Cohen-Or, B. Chen / Skeleton-Intrinsic Symmetrization of Shapes

consider the branch connecting an end node i to P, whose
length is denoted by liP. If a pair of end nodes match each
other, their corresponding branches should match accord-
ingly. Especially, the joining positions of their branches
against P should coincide. Hence, we define the first term
db(i, i

′) as the geodesic distance between their joining po-
sitions along P. Meanwhile, we require their lengths to
be close, so the second term is defined as a difference
between branch lengths: dl(i, i

′) = |liP− li′P|/(liP + li′P).
The third term considers surface geome-
try in the vicinity of the two end nodes.
We first identify for each end node an in-
fluenced surface region by examining the
intrinsic distances between surface ver-
tices and end nodes. For an end node, a
surface vertex is influenced if its intrin-
sic distance to the end node is smaller
than that to any other skeleton node. For each end node,
we compute the average shape diameter function (SDF) val-
ues [SSCO08] over its influenced vertices. The geometric
dissimilarity between two nodes is then defined as the differ-
ence between their average SDF values, denoted by ds(i, i′).

Combining the three terms, end node similarity is defined as:

c(i, i′)=

{
(cb + cl + cs)/3, if db < 2σb,dl < 2σl and ds < 2σs

0, otherwise.

Here cb = g(db,σb), cl = g(dl ,σl), cs = g(ds,σs), and
g(r,h) = e−2r2/h2

is a Gaussian kernel with support radius
h. The parameters σb, σl and σs are used to tune the sensi-
tivity of pair-wise differences. We set σb = 0.04, σl = 0.3
and σs = γ by default (assuming the input shape, and hence
skeleton, has been normalized into a unit cube). The param-
eter γ denotes the average difference between average SDF.
If two end nodes are too different in terms of the measures,
we set their similarity to zero to prevent a matching.

The node affinity Kp(i, i′) is defined with the cases:

A.1. If i 6= i′, i and i′ can be matched (set Kp(i, i′) = c(i, i′))
except for the following two situations (set Kp(i, i′) = 0 ):
A.1.a. i and i′ are on the same sub-tree rooted at a node that
directly connects to P;
A.1.b. In 2D case, i and i′ lie on the same side of P. (End
nodes have sidedness information with respect to P since P
cuts the 2D shape and skeleton into two parts.)
A.2. If i = i′, there are two cases: if i is a node on P, it should
match with itself so we set Kp(i, i′) = 1. Otherwise, we avoid
self-mapping by imposing a low self-affinity: Kp(i, i′) = 0.2.

Edge affinity. The node affinity does not consider the spa-
tial arrangement between skeleton nodes. To account for
this, we consider the pairwise relationship between two end
nodes i and j, and denote their shortest path on skeleton
as p(i, j). The edge affinity Ke((i, j),(i′, j′)) measures the
compatibility of two paths, p(i, j) and p(i′, j′), based on the

statistic property derived from the distance-based symmetry
criterion in [XZJ∗12] which is pose-invariant:

Dd(p(i, j), p(i′, j′)) = max
( |li j− li′ j′ |

li j + li′ j′
,
|li j′ − li′ j|
li j′ + li′ j

)
,

where li j is the length of path p(i, j).

The edge affinity is then defined as:

Ke((i, j),(i′, j′)) =

{
cd/NE , if Kp(i,i′)6=0, Kp( j, j′)6=0,

Dd<2σd

0, otherwise,

where NE is the number of edges, and cd = e−2D2
d/σ

2
d with

σd = 0.2 penalizes the difference between path lengths.

Matching score. Given a candidate backbone P, we apply
the factorized graph matching approach [ZDlT12] to find the
optimal map M|P that maximizes Equation (2). Note that the
edge affinity generally favors one-to-one correspondences
since an involute map would induce better mapping com-
patibility. In rare situations when M|P has one-to-many cor-
respondences, we simply remove the extra correspondences
based on node affinity. From the resulting map, the match-
ing score used in Equation (1) is:

S(M|P) = J(M)− cp, (3)

where cp penalizes the amount of unused skeleton segments.
All segments on P are initialized as used while others are
marked as unused. If end nodes i and j are matched, we
mark the skeleton segments on p(i, j) as used. We define
cp = ∑i∈U (l2

i /(2σ
2
p)), where U denotes the set of unused

segments and li the length of segment i. We use σp = 0.5σb
as the default value.

4.2. Optimization by genetic algorithm

Since the optimization problem (1) is highly non-convex, we
utilize a randomized search approach through enumerating
candidate paths and choosing the one that maximizes the
matching score in (3). The search space of candidate paths
is in general very large, since any path between two skeleton
nodes forms a candidate backbone. To solve this problem
efficiently, we employ a genetic algorithm to evolve and ex-
plore a population of candidate solutions (paths), and use the
matching score to evaluate the fitness of each individual.

To start, we randomly sample s = 20 candidate paths to form
the initial population, and randomly select two nodes to gen-
erate a candidate path. When the first node is selected, a
higher probability is assigned to other nodes, which are fur-
ther away from the first selected one in order to favor the
longer paths. Path crossover is performed between two in-
tersecting paths by switching their end nodes, leading to two
new paths. Figure 3 illustrates the crossover operation. Path
mutation changes the end nodes of a path. Specifically, we
randomly select a node which is not on the path and use it to
replace an end of the path. Here we prefer small changes, so
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Figure 3: The crossover operation of our genetic algorithm.
Given two candidate backbones (left) of a shape, we gener-
ate two descendant backbones through switching their end
nodes. The bars at the right corners represent the fitness
score of the corresponding backbones.

Figure 4: Illustration of backbones we detect on three dif-
ferent 2D shapes.

a higher probability is given to nodes that are closer to end
node to be replaced.

We execute a steady-state genetic algorithm to evolve the
path population for g = 20 generations. In each generation,
the top 50% fittest paths are migrated from the current gen-
eration to the next. The remaining population is formed by
the newly generated paths using mutation and crossover. See
Figure 4 for the backbones and associated end node corre-
spondences we obtain on three different 2D shapes.

5. Backbone-guided symmetrization

Having obtained the backbone and end node correspon-
dences, we perform skeleton-intrinsic symmetrization over
the input shape via two steps based on the skeleton-shape
mapping. We first symmetrize the input skeleton and de-
form the shape accordingly using a modified Linear Blend-
ing Skinning (LBS) method [JS11]; see Figure 6(c). Then
we further adjust the shape to enhance its symmetry; see
Figure 6(f). To obtain the skeleton-shape mapping, we first
down-sample the curve skeleton into a skeleton composed of
bone segments using Ramer-Douglas-Peucker (RDP) algo-
rithm [Ram72]. A surface vertex receives an LBS influence
weight from each bone, and is then associated with the bone
which has the largest weight against it.

In our implementation, we opt to bring the two sides of

the symmetric curve into their average shape. Other sym-
metrization options, such as warping one side to match the
other, can be realized similarly based on this framework.

5.1. Skeleton symmetrization

In order to symmetrize the skeleton, we need to establish
full correspondence for all skeleton nodes. This is achieved
by matching the junction nodes along the branches.

Skeleton correspondence. The cost of matching two junc-
tion nodes is defined according to the backbone and end
node correspondences. If a pair of end nodes matches, their
corresponding branches attaching to the backbone should
also match, and the junction nodes along these branches
should be matched in a consecutive manner. We define the
matching cost of junction nodes based on two factors, i.e.,
the difference between their connectivity degree and the dif-
ference between their position ratios which is the ratio of
the distance from the node to the end node over the branch
length.

The optimal matching between junction nodes should mini-
mize the overall mapping cost of junction nodes on the skele-
ton, under the order constraint mentioned above. We adopt a
greedy method to find the matching. Specifically, we greed-
ily choose a pair of shortest unprocessed branches, with their
end nodes matched, and find matching between the junction
nodes along them using dynamic programming. The purple
lines in Figure 6(b) illustrate the correspondence found for
the junction nodes.

Symmetrization. Skeleton symmetrization strives to make
the topology and geometry of the two sides of the back-
bone as similar as possible. If we view the two sides as two
subgraphs of the input skeleton graph, this can be achieved
by a greedy graph editing process. We define three graph
edit operations, among which two are designed for topolog-
ical symmetrization and one for geometric symmetrization.
The first operation is to remove unused skeleton segments
and their associated vertices on the shape; see Figure 5(b).
The second operation is to move the joining nodes on the
backbone of two corresponding branches to the middle posi-
tion, if they do not coincide with each other; see Figure 5(c).

Figure 5: Given the backbone (a), three operations are de-
fined for topological symmetrization (b, c) and one for geo-
metric symmetrization (d).
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(b) (c) (d) (e)(a) (f )

Figure 6: Backbone-guided symmetrization: having obtained the backbone and the correspondence between end nodes (a), we
first estimate the correspondences between junction nodes (the purple lines in b), and then symmetrize the skeleton about the
backbone while deforming its skin accordingly (c). Note that unmatched skeleton segments and their associated surface (the
dot lines in b) are simply discarded. The skin is then duplicated and reflected (blue dots in d). The two skins are correlated
by matching each point on one skin to the nearest point on the other (e). The final intrinsically symmetric shape is simply the
average between these two skins (f).

To symmetrize the geometry of the skeleton, we uniformly
stretch each pair of matched segments given by two pair
of matched nodes. The shape is stretched accordingly using
LBS; see Figure 5(d) for the finial symmetrized skeleton.

5.2. Shape symmetrization

The output shape after the skeleton symmetrization (de-
noted by MS), e.g., in Figure 6(c), is deformed to its re-
flected version MR, which serves as positional constraint to
drive the symmetrization deformation. For this, we develop
a non-rigid shape registration method based on the detail-
preserving Laplacian shape deformation [SCOL∗04].

Specifically, we first compute the reflection matrix of each
bone, aligning it against its counterpart on the other side. By
applying LBS transformations to the stretched shape MS, we
obtain MR. Figure 6(d) demonstrates the reflected shape with
blue dashed curves. In order to produce a smoother aver-
age shape of MS and MR, we perform Laplacian deformation
over the shape MS, under the positional constraints induced
from MR. That is to solve a least-squares problem:

argmin
VA

(‖∆VA−wLL‖2 +
m

∑
i=0

Wc,i‖vi
A− pi‖2) (4)

where ∆ is the n×n curvature-flow Laplacian operator with
conventional cotangent weights [MDSB03], L is the matrix
encoding Laplacian coordinates and pi is the constrained tar-
get position. The first term ensures the detail preservation
and the second term imposes the positional constraints. The
weight wL ∈ [0,1] is used to control the smoothness of the
resulting shape, and Wc,i is for tuning the importance of po-
sitional constraints. In our experiments, we use wL = 0.6 by
default to balance between the smoothness and geometric
alignment. The reflected shape often exhibits skinning arti-
facts near the junction nodes. The vertices which are influ-
enced by a single bone are more rigid and reliable as com-
pared to those influenced by multiple bones with different

transformations. Therefore, we compute Wc,i ∈ [0,1] based
on the rigidity of the targets [VBMP08].

Vertex correspondence. To compute constrained target po-
sition pi for symmetrization, we build a vertex correspon-
dence between the reflected shape MR and the stretched
shape MS. Then pi is the average position of every two corre-
sponding vertices. Since the two shapes have the same pose
(see the blue and black shapes in Figure 6(d)), we simply
use a closest point matching. For each vertex vi

S on MS, we
find its closest point vi

R on MR, to construct an initial corre-
spondence. Then we iteratively improve the correspondence
for vi

S through looking for a better matched vertex within
the K-nearest neighborhood of vi

R, which minimizes the nor-
mal difference and Euclidean distance against vi

S. We prune
those correspondences which do not preserve the geodesic
distance. This is achieved by a standard spectral match-
ing [Szw05]. Figure 6(e) demonstrates the vertex correspon-
dence obtained by our method.

Scaled Laplacian coordinates. Since Laplacian coordi-
nates are not scale-invariant, we estimate the scaling of each
bone based on the correspondences, and update the stretched
shape MS accordingly using LBS. The Laplacian coordinates
L and the Laplacian operator ∆ are computed on the updated
shape. Specifically for each bone b j, its scaling factor s j is
along the direction perpendicular to the bone. Thus, the scal-
ing transformation of each bone is:

Tj = X j
−1

 1 0 0
0 s j 0
0 0 s j

X j,

where Xi is the matrix which transforms b j to X-axis.

6. Results and applications

In this section, we show results of backbone extraction
and skeleton-intrinsic symmetrization, evaluate their perfor-
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(a) Symmetrization by copying enhances aesthetics of the structure.

(b) Symmetrization by copying enhances Mickey’s left hand.

(c) Symmetrization by averaging smoothes sketch roughness.

Figure 7: Skeleton-intrinsic symmetrization of 2D figures
and sketches for beautification and enhancement. In each
row, input and output are at the two ends. Middle two fig-
ures show skeletons and symmetrized skeletons. Extracted
symmetric endpoint pairs are linked by green lines.

mance, and present possible applications including sketch
enhancement, extrinsic symmetrization, 3D model consoli-
dation, and the extraction of symmetrized characters from
images. Robustness of our algorithm is evaluated via stress
tests and comparisons with existing methods.

Sketch enhancement. Figure 7 shows some results of
skeleton-intrinsic symmetrization of 2D figures. In the top
row, we show how the aesthetics of a garland figure be en-
hanced by symmetrization along the detected backbone. The
remaining three examples show how skeleton-intrinsic sym-
metrization can be applied to enhance a rough 2D sketch.
A rough sketch of Mickey’s left hand causes a topologi-
cal inconsistency between the two sides (near hands) of the
skeleton. Symmetrization by copying replaces the rough por-
tion by an enhanced version from the other side. For the
dancer and the rabbit, symmetrization by averaging effec-
tively smoothes the roughness in the original sketch.

Parameters and statistics. All skeletons of 3D shapes are
extracted with default parameters provided in published
works. For skeleton extraction from 2D shapes, we inter-
actively tune the parameters to remove minor branches.
After choosing the parameters for a 2D shape, we keep

Shape #V #E #P t0 t1
Figure 1(top) 262 5 28 <1s 2s
Figure 2 583 8 91 <1s 3s
Figure 6 620 18 496 5s 3s
Figure 7(a) 975 32 1540 113s 12s
Figure 10 3854 5 28 <1s 31s
Figure 11(top) 7905 8 91 <1s 41s
Figure 12(top) 10002 7 66 <1s 63s
Figure 12(bottom) 5673 11 171 <1s 31s

Table 1: Statistics and timing for skeleton-intrinsic sym-
metrization: #V denotes the number of input shape vertices;
#E denotes the number of skeleton end nodes; #P gives the
total number of backbone candidates; t0 and t1 are the com-
putation times (in seconds) for the backbone detection and
backbone-guided symmetrization, respectively.

them the same during stress tests (see Table 2). For all
the examples shown except for two, we use the follow-
ing default parameter setting: {σb,σl ,σs,σd ,σp,s,g,WL}=
{0.04,0.3,γ,0.2,0.02,20,20,0.6} and the parameter γ is de-
fined in Section 4.1.

The first five parameters are used in graph matching.
The only tuned parameter is σd , which
indicates tolerance on the difference be-
tween skeleton lengths. For the result in
Figure 4(left), a different value σd = 0.3
was chosen. The right embedded figure
shows the inferior result of backbone de-
tection when using the default set of pa-
rameters. Another exception is the result
in Figure 12(bottom), where we set σd =
0.1. The default parameters s and g, for the genetic algo-
rithm, were chosen according to the most complex example
in Figure 4(middle).

Table 1 provides running times and other statistics for in-
trinsic symmetrization of several 2D figures and 3D shapes.
Timing is measured on an Intel Core I7-2600 machine with
8GB memory, NVIDIA GTX 460 GPU. Processing times
are dictated by the number of end points, as we consider
pairwise relationship to solve the fitness of each population.
If the number of end nodes is too large, e.g., greater than
50, we suggest to quickly filter out small branches, detect
the backbone on a simplified skeleton, and then estimate full
end point correspondences on the detected backbone.

Comparison to symmetry detection. We compare our
symmetry extraction scheme with two state-of-the-art meth-
ods for intrinsic global reflectional symmetry detection, first
on asymmetric models and then on our intrinsically sym-
metrized output as a sanity check for our algorithm. The
method of Ovsjanikov et al. [OSG08] operates on surface
representations; we adapt it to 2D shapes using the interior
mesh and apply the ensuing spectral analysis. The method
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(a) (b)

Figure 8: Comparison with Ovsjanikov et al. [OSG08] (a)
and Jiang et al. [JXCZ13] (b) on symmetry extraction. Their
methods were unsuccessful on asymmetric inputs, shown in
the left columns of (a) and (b). However, they both succeeded
on the symmetrized outputs from our algorithm; see right
columns of (a) and (b). Only a subset of the (interior) shape
correspondences is shown in (a) to avoid over-cluttering.
The full skeletal correspondences are shown in (b).

Figure 9: An (intrinsically) asymmetric shape cannot be ex-
trinsically symmetrized directly since the pattern of peaks in
the transformation space do not adequately reveal the ap-
proximate symmetries, as shown on the left. Embedded plots
of transformation spaces, following [MGP07], are shown on
the side. The shape can be first intrinsically symmetrized by
our method (middle) and then straightened to possess extrin-
sic symmetry (right).

of Jiang et al. [JXCZ13] takes curve skeletons as input and
is the most closely related to our method.

Figure 8 evidently shows that these two methods are unable
to infer approximate symmetries in an intrinsically asym-
metric shape. The spectral embeddings employed by Ovs-
janikov et al. are likely to be more distorted away from ap-
proximate symmetry in the lower-dimensional embedding
space. The method of Jiang et al. appears to settle for lo-
cal symmetries that it can find, but not global ones, since
the associated evidence for the latter is too weak. On the
other hand, our method is able to extract the appropriate

Figure 10: A clay model (left inset) was created by a novice.
We scanned it in, reconstructed it (left), and symmetrized it
using our algorithm (right), and then 3D printed the final
project (right inset). Compare the arms and legs highlighted
in the boxes to see restoration of symmetries.

backbones for all six shapes and symmetrize them; see right
columns of (a) and (b). Then we apply the methods of Ovs-
janikov et al. and Jiang et al. to these symmetrized shapes.
With the restored intrinsic symmetries, both methods suc-
ceeded, providing validation and motivation for our work.

Extrinsic symmetrization. Perhaps an obvious application
of skeleton-intrinsic symmetrization is that it provides the
proper input for extrinsic symmetrization [MGP07]. Direct
extrinsic symmetrization on an asymmetric shape, such as
the ones shown in the left column of Figure 9, would likely
not succeed since the symmetry-revealing transforms can be
rather spread out in the transformation space. Our algorithm
is able to detect the right backbone and the ensuing intrin-
sic symmetrization (middle) allows the shape to be extrinsi-
cally symmetrized; see the results in the right column. Both
symmetrizations can be performed on the curve skeleton,
with skeleton deformation followed by shape symmetriza-
tion. Figure 1 shows another similar example.

3D modeling consolidation. When novice users model a
3D shape, either physically or digitally, it is an intricate task
to ensure that the modeling is performed to certain preci-
sion so as to ensure the (expected) symmetry of the final
model. Figure 10 shows a clay model physically created by
a novice, with effort. We scanned it in and it can be seen that
despite the effort, there are subtle imperfections in the form
of asymmetries of the limbs. Applying our symmetrization
to the model fixes these problems so that an enhanced digi-
tal model can be used. The model can also be 3D printed, if
possible in clay, to “enhance a physical creation”.

Figure 11 shows how intrinsic symmetrization can be a valu-
able addition to the 3D modeling toolbox. A human model
is to be endowed with a scorpion’s claws and a dragon’s feet
via composition. As the composition was performed quickly
by an artist, the arm is slightly misplaced and its length does
not match the other side. Automatic intrinsic symmetriza-
tion can be employed to consolidate the result and restore
the symmetry. The modeling process can be further simpli-
fied, thus requiring less effort from the artist, where only
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Figure 11: A human model to be composed with a scor-
pion’s claws or a dragon’s feet. Top row: A rough composi-
tion which violates intrinsic symmetries is corrected by sym-
metrization (right). Bottom row: Compositions only done to
one side (right hand and left foot) with a claw and a dragon’s
foot. Our algorithm detects the backbone and symmetrizes
the 3D model by copying (right).

Figure 12: Symmetrizing 3D reconstructions amid missing
data. Reconstructions (middle) of the dinosaur and the deer
head models from incomplete scans (left) are asymmetric.
Symmetrization restores the missing parts (right).

one claw and foot needs to be composed. Our symmetriza-
tion scheme is still able to detect the correct backbone and
through averaging or copying, synthesize the other side.

Finally, symmetrization can be applied to a reconstructed
model from incomplete point scans. The purpose again is
to restore the symmetry of a model reconstruction which be-
came asymmetric due to missing data; see Figure 12 for two
examples. The dinosaur model also demonstrates our algo-
rithm’s ability to deal with curve skeletons embedded in 3D
that are far from planar.

Figure 13: Symmetrization of 2D shapes under strong per-
spective. In the first two rows, the left two images show input,
one with skeleton and detected backbone. The right two im-
ages show the symmetrized results. Last row shows a series
of gradually symmetrized (both intrinsically and then extrin-
sically) airplanes, providing the illusion of a“rotation”.

Shape symmetrization in image. Figures of characters or
creatures in images under strong perspective offer another
source of intrinsically asymmetric shapes. By applying our
intrinsic symmetrization scheme, the strong perspective can
be weakened or removed; see Figure 13 for a few such re-
sults. This offers two possible utilities. First, when a rough
3D shape needs to be extracted from a 2D contour, e.g., for
model-driven image manipulation [ZFL∗10], a perspective-
corrected 2D input will likely make the task easier. More-
over, perhaps a side effect of our work, a series of gradually
symmetrized 2D shapes, through both intrinsic and extrinsic
symmetrizations, resemble a sequence resulting from rota-
tion, as illustrated in the last row of Figure 13 for an airplane.

Stress tests. To stress test our backbone detection scheme,
we impose perturbations to an input shape or its skeleton
through stretching a skeleton branch, displacing a skeleton
joint (i.e., moving a branch), and adding Gaussian noise to
shape boundaries which may introduce topological noise to
skeleton. We vary the amount of perturbations to a fairly
large degree (see below), to make the shapes deviate signifi-
cantly from its original (approximate) intrinsic symmetries.

Specifically, for stretching perturbation on a skeleton branch,
we set the stretching range to be [1.2−5,1.25] times the orig-
inal branch length. For joint displacement, we take the range
of movement of a skeleton joint to be ±10% of the to-
tal length of the skeleton, about its original position. The
Gaussian noise added to the shape boundary is up to 1%
of the diagonal length of the shape’s bounding box. Within
the range of each perturbation, we uniformly sample 60
shapes/skeletons, over which we run our test. A test succeeds
only when the detected backbone coincides with the one de-
tected for the original shape and skeleton. Figure 14 shows
both successful and failure cases for each type of pertur-
bation. Under significantly high level of perturbations, our
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Figure 14: A few visual results from our stress test of
backbone (in red) detection, with failure cases shown in
blue boxes. (a) Stretching of a skeleton branch (an arm
of the figure) where the stretch factors are 1.2−5, 1.2−3,
1.23, 1.25, from left to right. (b) Movement of a skele-
ton branch (the same arm) where the displacements are
0.06,0.03,−0.07,−0.14. (c) Standard deviations of Gaus-
sian noise on the boundary are 0.01,0.008,0.006,0.004. The
figure on the rightmost shows the original input, its skeleton,
and the backbone detected. We set the perturbation ranges
for Table 2 based on failure cases on this example.

Shape Stretch Displace Noise
Figure 1(top) 78.3% 90% 95%
Figure 1(bottom) 70% 80% 81.3%
Figure 2, 3 86.7% 83.3% 73.3%
Figure 4(left) 80% 78.3% 76.7%
Figure 4(middle) 83.3% 88.3% 55%
Figure 4(right), 5, 14 93.3% 81.6% 90%
Figure 6 83.3% 91.6% 68.3%
Figure 7(a) 63.3% 73.3% 45%
Figure 7(b) 91.7% 88.3% 83.3%
Figure 7(c) 90.0% 91.6% 100%
Figure 9 80% 93.3% 95%
Figure 10 88.3% 85% 100%
Figure 11 93.3% 95% 100%
Figure 12(top) 86.7% 93.3% 100%
Figure 12(bottom) 73.3% 86.7% 100%
Figure 13(top) 91.6% 86.6% 88.3%
Figure 13(middle) 78.3% 75% 100%
Figure 13(bottom) 91.6% 93.3% 100%

Table 2: Success rates from our stress tests on backbone
detection for all examples shown in the paper, under varying
levels of perturbation. The three kinds of perturbations are:
stretching a skeleton branch, displacing a skeleton joint, and
adding Gaussian noise to shape boundaries.

algorithm does break down, however, its robustness is well
demonstrated from the stress test. Table 2 reports the success
rates for all the 2D and 3D examples shown in this paper. The
average success rate for all examples is 85.3%.

7. Conclusion, limitation, and future work

We develop an algorithm for skeleton-driven and skeleton-
intrinsic symmetrization of shapes. The key technical con-
tribution is a scheme for extracting weak reflection symme-
tries from an intrinsically asymmetric shape. Our backbone
extraction algorithm is shown to be robust and more capable
of extracting approximate symmetries than existing meth-
ods, which have been designed to detect apparent symme-
tries. We demonstrate applications of skeleton-intrinsic sym-
metrization to sketch enhancement, 3D model consolidation,
and symmetrized shape extraction from images.

In many of our examples and experiments, we deliberately
present input shapes with moderate to significant intrinsic
asymmetry. This is primarily for showing the robustness
of backbone extraction and symmetrization scheme. Having
said that, in Figures 7 and 10, for example, we also demon-
strate subtle enhancements enabled by our method. While
subtle, executing such transformations by hand is still te-
dious. An automatic scheme such as ours is desirable.

Limitations. Our symmetrization algorithm is designed to
operate on boundary shape presentations in 2D or 3D. How-
ever, the input shape does not need to be watertight, as we
demonstrate in Figure 12, so long as a reasonable curve
skeleton can be extracted using the methods we employ. Like
all skeleton-driven techniques, our skeleton-intrinsic sym-
metrization algorithm is only applicable to shapes that have
appropriate curve skeleton abstractions, e.g., articulated fig-
ures. It does not handle objects such as a baseball hat or tea
cup. Furthermore, our backbone optimization scheme does
not deal with backbones that contain loops or topological
mismatches due to loops in the skeleton graphs.

Our analysis is also restricted to reflectional symmetries,
as it explicitly considers a reflective self-mapping on the
curve skeleton. The symmetrization scheme is driven by the
backbone only, thus the multi-scale nature of shape symme-
tries [XZJ∗12] is not accounted for. Last but not the least, as
a purely geometry based approach, our algorithm is unable
to extract or enhance the expected symmetry if the associ-
ated evidence is too weak.

Future work. We would like to extend our backbone ex-
traction to handle “intrinsic rotational symmetries” over a
skeletal structure, instead of only having a reflection mea-
sure. An extension to multi-scale intrinsic symmetrization,
as well as to co-symmetrization of a set of related shapes,
would both be interesting. Rather than completely depen-
dent upon extracted curve skeletons, a hybrid approach that
considers both boundary representations and perhaps inter-
mediate skeletal representations would allow us to sidestep
certain limitations to existing skeleton extraction schemes.
Finally, a natural question which will likely lead to interest-
ing future work is how to asymmetrize a shape or pattern to
beautify it, where the asymmetrization leads to neither ex-
trinsic nor intrinsic symmetry.
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Articulated mesh animation from multi-view silhouettes. ACM
Trans. on Graphics (Proc. of SIGGRAPH) 28, 3 (2008). 7

[Wey83] WEYL H.: Symmetry. Princeton University Press, 1983.
1

[XZJ∗12] XU K., ZHANG H., JIANG W., DYER R., CHENG Z.,
LIU L., CHEN B.: Multi-scale partial intrinsic symmetry detec-
tion. ACM Trans. on Graphics 31, 6 (2012), 1–10. 2, 5, 11

[XZT∗09] XU K., ZHANG H., TAGLIASACCHI A., LIU L., LI
G., MENG M., XIONG Y.: Partial intrinsic reflectional symmetry
of 3D shapes. ACM Trans. on Graphics (Proc. of SIGGRAPH
Asia) 28, 5 (2009), 138:1–138:10. 2, 3

[ZDlT12] ZHOU F., DE LA TORRE F.: Factorized graph match-
ing. In Proc. IEEE Conf. on Computer Vision & Pattern Recog-
nition (2012), pp. 127–134. 5

[ZFL∗10] ZHOU S., FU H., LIU L., COHEN-OR D., HAN X.:
Parametric reshaping of human bodies in images. ACM Trans.
on Graphics 29, 4 (2010), 126:1–126:10. 10

[Zit13] ZITNICK C. L.: Handwriting beautification using token
means. ACM Trans. on Graphics (Proc. of SIGGRAPH) 32, 4
(2013), 53:1–8. 3

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.


