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Creativity isn’t a talent, it’s a way of operating.

– John Cleese

1 Introduction

An intriguing and reoccurring question in many branches

of computer science is whether machines can be cre-

ative, like humans. Machines can compute much faster

than humans, thus in the realm of content creation,

they can generate many models much faster than we

can. However, can a well-designed machine reach the

point where a bar is crossed so that the produced con-

tents exhibit true creativity?

This is one of the central questions that motivates

the study of computational creativity . The “computa-

tional creativity” wiki [42] clearly articulates a set of

three-tiered goals of this emerging field. The ultimate

goal is to construct a computer or program capable of

human-level creativity. Certainly, such a goal may prove

to be too elusive. A less ambitious goal is to have a

better understanding of human creativity and to for-

mulate an algorithmic perspective of creative behaviors

in humans. Further down the list, perhaps the “low-

est hanging fruit” of the pursuit, is to design programs

that can enhance human creativity without necessarily

being creative themselves.

In this exploratory paper, we examine the problem

from a computer graphics, and more specifically, geo-

metric modeling, perspective. We focus our discussions
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Fig. 1 An evolution-based, example-driven creative model-
ing tool [45] allows generations of 3D models to be created.
The highlighted models exhibit diversity from the input set.

on the weaker but still intriguing question: “Can ma-

chines assist or inspire humans in a creative endeavor

for the generation of geometric forms?” Similar ques-

tions can also be asked for other creative tasks, e.g.,

to compose arts, music, or narratives, and they have

been [26]. In the field of computer graphics, while the

question is quite new, it is not un-touched. However,

we are not aware of previous efforts to explore answers

to the question in breadth or depth.

Fully answering the above question is highly chal-

lenging since it would require us to first understand

what creativity, as well as inspired modeling, is exactly.

In the following, we refrain from defining and qualifying

these terms in a formal way; instead, we leave them to
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Fig. 2 A design gallery for particle systems (figure taken
from [25] with permission). Design alternatives surround a
depiction of the design space being explored.

be understood in their intuitive meaning. Our coverage

and discussion in this paper will expand from inspired

modeling tools to modeling paradigms that could possi-

bly lead to creative shapes or designs. Generally speak-

ing, inspiring modeling tools or methods are expected

to help a user or modeler to come up with creative ideas

for modeling shapes or other visual products.

We start by discussing explorative modeling which

necessarily involves human user interactions to explore

certain design spaces. A primary example is design gal-

leries [25], where the user explores a parametric design

space with mappings from the design space to concrete

design alternatives for the user to view. In this con-

text, modeling inspirations are drawn from visual ex-

amination of the design alternatives with the machine

facilitating the user’s exploration process (see Fig. 2).

In a modeling paradigm which can be intuitively re-

ferred to as “more of the same” [1], the user starts the

modeling by offering a set of examples, often objects be-

longing to the same category, e.g., cars, chairs, leaves,

etc. Then, inspired by the provided examples, the ma-

chine generates more instances of the same type (e.g.,

see Fig. 3) guided by some rules extracted or learned

from the examples. An alternative name for such a mod-

eling paradigm is example-driven synthesis. A closely

related modeling technique is suggestive modeling [8],

where the system analyzes a given set of models offline

and learn their structure and/or semantics. Then dur-

ing the online, interactive modeling phase, a modeler is

suggested with parts or elements to compose and alter

products arising from these suggestions.

To turn inspired modeling to creative modeling, the

questions of what is creativity and how creativity arises

are unavoidable. There have been numerous studies and

published works on creativity, mainly from the fields

of cognitive sciences and artificial intellegence, e.g., see

Boden [6], Sternberg [37], Jennings [22], as well as Colton

and Wiggins [9], as starting points to explore this vast

and complex topic. A common view is that creativity

is innately linked with unpredictability or the elements

of surprise [5]. Specific to computer graphics, creative

inspirations to modelers are often in the form of new

models that were not envisioned and contain certain

elements of surprise or unexpectedness.

Encouragingly, unpredictability is something that a

machine or program can model, e.g., by simulating a

stochastic process. At the same time however, such a

process must be sufficiently well controlled so that the

presented models remain sensible and follow the ratio-

nale of the modeling task. Realizing this approach is

challenging since it requires an understanding and com-

putational expression of that rationale. Furthermore,

the two goals of unpredictability and controllability con-

flict each other and a balance must be achieved.

We discuss two modeling paradigms which provide

the element of surprise in different ways. The more clas-

sical approach utilizes evolutionary algorithms which

are intrinsically stochastic to mimic the evoluation pro-

cess in nature. Combined with exploratory modeling,

the stochasticity may lead the users to new and unex-

pected modeling results [45]; see Fig. 1. The final option

presented involves co-creation [41], where multiple par-

ties collaborate to create contents. Surprises may arise

when the parties independently perform targeted tasks,

leading to what is referred to as “co-creativity”[10,18].

In both cases, human interaction with the modeling sys-

tem is typically required.

Before going into more details about the various

modeling paradigms outlined above, we emphasize that

our paper is not a survey and we do not thoroughly

cover all, or even most, relevant existing works. Rather,

we intend to write a position paper on the subject

matter, providing a first in-depth look at possible ap-

proaches to inspired and creative modeling.

2 Explorative modeling

A basic means to inspire the user is the well-known De-

sign Galleries of Marks and many other colleagues [25].

A design gallery is simply a visual interface to assist the

user in selecting parameters through a visual display of

random solutions. The design gallery work avoids man-

ual tweaking of parameters, and displays several ran-

dom solutions, where some of them can possibly be un-

expected and liked by the user [39]. Yet, a fair question

is whether sheer random sampling can be considered
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Fig. 3 “More of the same’: two sets of example-driven modeling. The examples are shown on the left, and the generated
instances are on the right. Courtesy of Jiacheng Ren.

creative or truly inspring. We argue that while a ran-

dom result could be inspiring, we would like an inspiring

tool to be smarter to offer more targeted inspirations

and to allow the user a sufficient level of control.

The work of Shapira et al. [32] takes the design gal-

leries to a creative means. Rather than being shown a

static gallery of random parameters, the user navigates

through a whole space of parameters, exploring a large

number of results displayed to him in a gallery (Fig. 4).

The exploration is open-ended, meaning that when the

user starts his journey, he does not know where he is

heading. During navigation, with the display of possible

results, he may learn and move towards regions that he

likes more. The navigation tool is inspiring since many

of the results offered are ones that he probably did not

envision. Inspired by the presented galleries, he narrows

down towards regions that he likes more. The tool offers

him inspiration and some degree of control of what is

presented and offered. Clearly, developing such naviga-

tion tools to explore spaces of variations requires having

a parameterization of the explored space.

Other means for interactively exploring a design space

through galleries or collections of objects have been pre-

sented in [40,24,2,16]. The gallaries should not neces-

sarily present an entire object or a whole solution, but

would suggest relevant object parts or partial solutions

to the artist, to inspire him during an interactive mod-

eling process [15,?,7]. These techniques analyze the cur-

rent evolving model, and aim to suggest relevant parts

using probablistic or other data-driven reasoning. While

effective and inspiring, these techniques model the ex-

pected, in a probabilistic sense, rather than directly

striving for the unexpected or the creative.

3 “More of the same”

Under the example-driven paradigm for inspired model-

ing, the process would start with a moderate number of

examples, either designed or selected by the user. The

tool then generates a gallery of new examples that fol-

low the spirit of the input. Importantly, some of these

novel synthesized new instances are unexpected, which

the user did not envision, yet, they all make sense, and

follow the inner logic of the input examples.

The notion of “more of the same” [1] refers to the

following problem: given a set of examples, how to gen-

erate more of the same, in the positive sense, more in-

stances that clearly appear to belong to the same class

as the input set of examples. The work of Baxter and

Anjy [3] generates more of same vector shapes. The
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Fig. 4 A gallery of possible colorization of an input image.
The artist can be inspired by the choices offered.

user draws few strokes to define few examples and the

system can generate more in-betweens by interpolat-

ing corresponding strokes, creating more and more in-

stances. Similarly, the work of Hun et al. [17] generates

more of the same texture variations, with the geome-

tries of the textured shapes remain intact.

The “more of the same” problem is more challeng-

ing than it may first appear. An effective solution must

analyze the input set of examples, their shapes, tex-

tures, geometries, etc., and capture their essence to the

point that they can be modified to generate more of the

same that belong to the same class or category of data.

This is a data understanding problem, first an under-

standing of the commonality and variation among the

input examples, while the ultimate understanding is of

the data category in question. This is a very hard prob-

lem in general, and all the above works dealt only with

limited types of data. More importantly, the generated

instances were not aimed to include unexpected results

or be truly creative in any sense. Hence, the problem

setting for “more of the same” only addresses one aspect

of the example-driven paradigm for inspired modeling,

it does not address the inspiration aspect.

4 Creativity by evolution

If one believes that nature is creative and evolution is

nature’s most fundamental and prominent “algorithm”,

then it should be easy to accept that evolutionary algo-

rithms [?,12] have played the most dominant role in cre-

ative modeling so far. Evolutionary algorithms (EAs)

are inspired by biological evolution in nature, which

features mutation and cross-over of DNAs, as well as

selection. The element of surprise or unpredictability,

which is central to creative modeling, arises from the

stochasticity embedded in the mutation, recombination

(cross-over), and selection operators of an EA.

Fig. 5 Some virture creatures evolved for swimming by Karl
Sims’ algorithm (figure taken with permission from [35]).

To design an EA for creative modeling, one needs to

properly encode the contents to be created and define

appropriate mutation and cross-over operators to allow

the contents to evolve and produce surprises. Controlla-

bility is defined by the selection process, where a fitness

function determines whether a new creation is allowed

to survive to further produce offsprings.

More than twenty years ago, the pioneering works of

Karl Sims applied EAs to evolve textures [34] and virtue

creatures made up of connected blocks [35], among other

things. The virtue creatures were encoded as graphs

and evolution operators were defined by certain graph

editing and merging operations. The fitness function

depends on the type of tasks at hand, e.g., for swim-

ming, simulated creatures that can swim faster have a

higher chance of survival. Amazing results were pro-

duced showing the creatures gradually “learned”, as

they evolve to walk, jump, and swim (see Fig. 5) better,

or to grab food from competitors.

Many follow-up works have appeared since, e.g., the

creature academy of Pilat and Jacob [28], object assem-

blies such as robots by Pollack et al. [29], and mechan-

ical designs by Jakiela et al. [21]. The application do-

main of creative modeling via evolutionary design has

spanned urban planning [36], architecture [14], visual

arts [13], even music [30], among other things [4].

Most recently, the work by Xu et al. [45] reminds us

the power of evolutionary or genetic algorithms for cre-

ative modeling. Their work combines EA-based stochas-

tic object modeling and a design gallery [25] to allow
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human users to control the evolution. A distinguishing

feature of their problem setup is that they evolve an

entire set , rather than individual entities, simultane-

ously. As well, they focus on the diversity of the set, as

a means to encourage creativity.

Specifically, starting with an initial population of

3D objects belonging to the same category, e.g., chairs,

stochastic mutation (deformation) of object parts and

cross-over between objects (exchanging one or more ob-

ject parts based on a notion of fuzzy correspondence)

drive the evolution and produce generations and gener-

ations of new objects; see Fig. 6.

During evolution, part of the evolving set is pre-

sented to the user as a shape gallery; see Fig. 7. User

preferences define the fitness function for the evolu-

tion as he/she selects shapes from the gallery that are

deemed to be fit (a chair needs to be “chair-like”) and

“liked” to breed the next generation. Over time, the

shape population will mainly consist of fit individu-

als. However, for the creations to potentially inspire

user creativity, the evolving set needs to be kept di-

verse. This is realized by explicitly allowing unfit ob-

jects, those accounting for only a small percentage of

the evolving set, to survive and produce offsprings.

The idea of set evolution guided by the “fit and

diverse” principle is biologically motivated. Nature has

its own reason to keep the species diverse, and not only

fit; it is more than just “survival of the fittest”. Only

maintaining fitness of a population over time tends to

produce an elite population which can hardly survive a

“virus” that attacks the common characteristics of the

population. In the context of creative modeling, an elite

population lacks diversity and creativity potential.

5 Creativitiy from co-creation

Co-creativity originates from co-creation, which has a

generic definition from Wikipedia [41]: co-creation is

Fig. 6 The part crossover and mutation operators in [45]
produce significant shape variations, even topology changes.
The arrows show the evolution paths traced.

Fig. 8 Some results produced from an exquisite corpse game
where a group of people draw a “person” cooperatively (cour-
tesy of Ronit Reitshtein).

a management initiative, or form of economic strategy,

that brings different parties together, in order to jointly

produce a mutually valued outcome.

While multiple parties collaborate to create some-

thing, how could a creativity argument be made? Sim-

ilarly, how does co-creation facilitate creative modeling

for content creation in graphics? Both questions can be

addressed, at least in part, if the element of surprise [6]

can be introduced to the co-creation, while ensuring

controllability of the modeling process.

A straightforward way to introduce surprises is for

each creator to work indepdently from the others. If

the creations were executed in a sequence, then one

creator would not know what previous creators had

produced, increasing the likelihood of unexpectedness

in the current creation. Nevertheless, unexpectability

does not equal total randomness. Each creator must be

generally aware what the overall goal is and what role
his/her creation plays in the full product. Furthermore,

there must be more stringent control to ensure a suffi-

cient level of coherence between the creations. In this

case, while prior creations should be concealed, they

should only be concealed partially, so that each creator

sees a hint to constrain his/her own contribution.

The best example to illustrate the above mechanism

is exquisite corpse [43], a method by which a collection

of words or images is collectively assembled. The most

representative instance of the latter is the well-known

game of picture consequences, where a group of peo-

ple cooperatively draw a person, or more generally, a

human-like creature. Each group member knows which

part of the person, e.g., the head or the torso, is to

be drawn, and was not aware of the other parts that

were drawn or to be draw. The only visual hint given is

through a thin slice from the adjacent drawings to re-

veal their boundaries. With such a small hint, one can

be quite imaginative about how to draw his/her own

part; see Fig. 8 for a few examples.
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Fig. 7 The evolving population (left) consists of a diverse background set (in gray) and a fit foreground set (in gold). A shape
gallery presented to the user is shown on the right, which consists of shapes taken from the foreground set.

Fig. 9 Three possible approaches in the field of computa-
tional creativity (figure taken from [11] with permission).

In the realm of co-creation, we are most interested

in human-computer co-creation, since it is intimately

linked to the fundamental question posed at the begin-

ning of this paper: can computers and humans collab-

orate to improve human creativity? The HCI commu-

nity, in particular researchers specializing in computer-

supported cooperative work, have developed tools to

support creativity [33]. Differences between creativity-

support tools and co-creation tools are highlighted in

Fig. 9. Examples of the former include Picbreeder, a

collaborative image evolution platform [31], and the

work in computer graphics by Talton et al. [38] on ex-

ploratory modeling in collaborative design spaces. In

both cases, the tools play support roles in offering de-

sign alternatives in an exploratory interface; the ma-

chines do not co-create with human users.

Some efforts on co-creativity-driven content creation

have been geared towards the more artistic and open-

ended tasks, e.g., in creating 2D abstract art work [11]

and movement-based performances [20]. How to design

and develop an exquisite-corpse-like tool for realistic yet

creative 3D object design and modeling is certainly an

interesting pursuit. A key difference in this pursuit from

producing purely artistic expressions is the need to cre-

ate usable or functional designs to possibly serve real-

world applications. The challenges are two-fold. First,

functionality-oriented 3D shape analysis and design is

only making a start in the computer graphics commu-

nity [19,23]. Second, a delicate balance has to be struck

between controllability, based on functional as well as

physical design criteria, and creativity arising from the

co-creation paradigm.

6 Concluding remarks

As the field of geometric modeling is fast evolving [27]

and expanding its boundaries, it is natural to ask the

question whether machines can truly inspire and assist

humans in a creative endeavor. On the one hand, the

question is intriguing simply because creativity, like in-

telligence, is such a fundamental and characteritic hu-

man trait. At the same time, the modeling challenge

seems to be taking center stage in computer graphics,

driven by the increasing demand for big visual data

and wide adoption of data-driven techniques [44]. Re-

cent research on geometric modeling is shifting its fo-

cus beyond geometric validity and robustness to serve

emerging applications in design and production. The

new criteria that are key to design applications include

aesthetics, functionality, and inevitably, creativity.

We hope our short paper can help drive the study

of creative modeling forward in the field of computer

graphics. Gaps between graphics and other fields such

as computational creativity, AI, and HCI on the subject

matter need to be narrowed. More artistically appeal-

ing problems should be encouraged in the field and at-

tempted by graphics researchers. We should all believe

that computer graphics is far beyond image synthesis.

It is capable, and should be driven, to supplement hu-
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mans at a much earlier stage in the synthesis pipeline,

as early as creative design and conceptualization.

As a final remark, we woud like to point out that

creativity is sometimes personal: different individuals

exhibit and resonnate with different types of creativity

thinking. As an example, to maximize creative outputs

in the context of explorative modeling, the presented

examples should ideally be personalized to adapt to the

design taste of the individual artist. The tool that gen-

erates the examples may need to learn the preference of

a specific individual. This requirement reflects yet an-

other challenging aspect of operationalizing creativity.
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