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Abstract

Non-rigid 3D shape correspondence is a fundamental and difficult problem. Most applications which require a cor-

respondence rely on manually selected markers. Without user assistance, the performances of existing automatic

correspondence methods depend strongly on a good initial shape alignment or shape prior, and they generally do

not tolerate large shape variations. We present an automatic feature correspondence algorithm capable of han-

dling large, non-rigid shape variations, as well as partial matching. This is made possible by leveraging the power

of state-of-the-art mesh deformation techniques and relying on a combinatorial tree traversal for correspondence

search. The search is deformation-driven, prioritized by a self-distortion energy measured on meshes deformed

according to a given correspondence. We demonstrate the ability of our approach to naturally match shapes which

differ in pose, local scale, part decomposition, and geometric detail through numerous examples.

1. Introduction

Establishing a meaningful shape correspondence is a funda-
mental task in geometry processing. In applications such as
object recognition, statistical shape modeling, shape morph-
ing, and deformation transfer, shape correspondence is often
the first step. However, the problem is essentially ill-posed
as one generally needs to understand the shape semantics to
truly infer what a meaningful correspondence is.

In this paper, we develop an automatic, feature-based cor-
respondence algorithm for shapes represented by triangle
meshes. It is aimed at handling large, non-rigid shape vari-
ations, as well as partial matching. Removing the rigidity
constraint complicates the problem significantly; see Figure
1. Recognizing that the models are both dinosaurs, a human
can easily find a correspondence. However, the large vari-
ations in the models’ pose, local scale, and geometric de-
tail, e.g., those around the hands, feet, and belly areas, would
challenge an automatic algorithm. There is no longer a low-
dimensional pose space, as in the rigid case. Also, a higher
tolerance for local feature dissimilarity and shape distortion
must be allowed, which not only enlarges the solution search
space but also increases the likelihood of a false match.

Several well-known problems in graphics which require
feature correspondence, e.g., cross-parameterization, have
mostly relied on user input. When dealing with a large model
set, such user assistance may become tedious and impracti-

Figure 1: The dino-skeleton is deformed to match the rap-

tor (red markers indicate features). Top two candidate corre-

spondences are shown. Switching between symmetric parts,

highlighted in circle, is detected by the distortion cost.

cal. The majority of existing approaches for automatic cor-
respondence either adopt greedy local search, making them
sensitive to initial alignment and prone to local minima, or
handle only rigid or affine transforms. Non-rigid schemes
have been proposed in the context of statistical shape mod-
eling. They often benefit from given shape priors, e.g., op-
erating only on human faces, bodies, brain surfaces, corpus
callosi shapes, or other medical data. Many works in com-
puter vision and medical image analysis are in this category,
where the considered shapes do not significantly differ.

To deal with large shape variations, we rely on non-rigid
mesh deformation to drive a combinatorial search for the
best correspondence. Our notion of a good feature corre-
spondence requires that each corresponding feature pair is

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



H. Zhang & A. Sheffer & D. Cohen-Or & Q. Zhou & O. van Kaick & A. Tagliasacchi / Deformation-Driven Shape Correspondence

sufficiently similar — a local criterion — and that deforming
the shapes into each other while respecting the feature pair-
ing incurs a small self-distortion cost — a global criterion. It
is important to note that the cost we use is only measured on
the deformed mesh and not between two meshes. This not
only gives us efficiency but also facilitates partial matching.

We further stipulate that effective shape correspondence
should be carried out in a coarse-to-fine manner. A small
number of features, perhaps up to 10-12, are sufficient to
represent the prominent parts of most objects. A corre-
spondence between them can significantly narrow down the
search space for a more refined mapping, e.g., a dense cross-
parameterization, which is a more local problem. The main
challenge is to find the initial correspondence automatically;
this typically involves an expensive global search.

Our algorithm returns a coarse correspondence by operating
on a small number of automatically selected, well-spread,
and prominent features on two meshes. The local criterion
serves as constraints for a search which is is deformation-

driven, i.e., it is completely prioritized by a distortion en-
ergy associated with mesh deformation. Figure 1 highlights
the utility of the deformation-based approach. Since the two
dinosaurs differ rather significantly in their geometric detail,
local feature-to-feature similarities become less reliable in
correspondence search. Without any thresholding by feature
similarity, the deformation-driven search still correctly finds
the most natural correspondence. It also properly differenti-
ates symmetry switchings in a shape, such as the crossed legs
and arms shown in Figure 1; these are generally difficult to
detect by any approach that is completely intrinsic.

The main contributions of our work are:

• A deformation-driven approach to correspondence which
can handle shapes that vary in pose, local scale, part de-
composition, and geometric detail effectively.

– Our distortion cost is intrinsic to the shape and suitable
to use for non-rigid correspondence.

– Measuring the distortion on deformed meshes allows
us to detect switching between symmetric parts.

– The deformation-based criterion for correspondence is
global and can tolerate local shape variations.

– Use of self-distortion cost facilitates partial matching
since spurious parts do not constrain cost estimates.

• Correspondence search via combinatorial tree traversal to
enable partial matching and exploration of a large solution
space so as to avoid reliance on initial shape alignment
and erroneous local minima reached by greedy search.

With a few initial parameters set, our algorithm runs fully
automatic feature selection and correspondence. We show
that various models can be matched correctly with fixed pa-
rameters and demonstrate the use of the computed matches
as initial correspondences for dense cross-parameterization.

2. Related work

A good example where feature correspondence is needed
is cross-parameterization, where a continuous mapping
between two surfaces is sought. Existing methods, e.g.,
[SAPH04, KS04], require a sparse initial correspondence
given by the user. Although such a correspondence may
be removed eventually [SAPH04], the guidance it pro-
vides is indispensable as it immediately brings the start-
ing point of the solution search near the global optimum
to facilitate gradient descent. In related applications such
as shape morphing [COSL98,GSL∗98,ACOL00], statistical
shape modeling [ACP03, ASK∗05], and deformation trans-
fer [SP04,ZRKS05], user assistance is similarly required. In
practice, it is desirable to minimize user interaction as manu-
ally specifying markers is an iterative process, often includ-
ing a corrective loop that can be tedious [ZRKS05]. User
involvement is especially burdensome when dealing with a
large set of models, i.e., during preparation of training data.

Existing methods for automatic feature correspondence
work on salient features extracted based on some local shape
signature [GCO06, GMGP05, LG05]. A proper feature-to-
feature similarity provides a means for local feature fitting,
followed by a more expensive global search for the top corre-
spondences. Our review focuses on correspondence search.

Correspondence search: Branch-and-bound-based combi-
natorial search [GMGP05], graph optimization [HH03],
voting in pose space [GCO06, LG05], and forward
search [HFG∗06], have been proposed for rigid registration.
These schemes all benefit from the rigidity constraint, as it
implies a low-dimensional pose space, more reliable feature
picking, and more stringent global consistency thresholds
which lead to more aggressive pruning in branch-and-bound.
Iterated closest point (ICP) [BM92] is applicable in both the
rigid and non-rigid [CR03] settings, but as a greedy approach
ICP is sensitive to initial alignment.

Matching of articulated shapes is naturally supported by
skeletal [SSGD03] or Reeb graph [TS04, BMSF06] repre-
sentations, whose nodes describe geometric features over
a shape by a signature. Also, spectral embeddings [EK03]
based on intrinsic shape information such as geodesics can
provide pose normalization. However, these structural de-
scriptions are expensive to compute accurately. They are also
sensitive to topological changes while being oblivious to ex-
trinsic information which should be accounted for in corre-
spondence, e.g., a switching between the symmetric parts of
an animal. User assistance is typically required to break such
symmetries [ASK∗05]. Our deformation-based approach re-
lies on intrinsic representations to factor out rigid trans-
forms. It also addresses the above issues with the structural
descriptions as our distortion cost is measured on deformed
meshes, which accounts for extrinsic geometric quantities.

Partial matching: Partial matching allows shapes to corre-
spond based only on their sub-parts or sub-regions, offering
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a powerful and versatile option for object recognition and
retrieval [GCO06,FS06]. Techniques have been proposed to
relax the combinatorial search for partial matchings into a
continuous one, so that constrained non-linear optimization
can be applied. Relaxation labeling [RHZ76] and graduated
assignments [GR96] fall into this category. Other methods
for partial matching include geometric hashing [GCO06]
and combinatorial searches which rely on upper-bounding k,
the number of unmatched features, e.g., [SH81], fixing k in
advance, e.g., [FS06], or heuristically searching for k. For
example, Gelfand et al. [GMGP05] run their branch-and-
bound search of global registrations for each k and choose
one which causes a sharp increase in the minimum regis-
tration error returned. The above approaches have all been
applied to rigid or affine shape registration.

Deformation-based approaches: Early work of Sederberg
and Greenwood [SG92] defines a good 2D shape blending
as one which minimizes “work,” combining bending and
stretching. Finding an optimal 2D contour correspondence is
greatly simplified by the order preservation constraint (along
the contours). Blanz and Vetter [BV99] develop morphable
models for 3D faces and rely on planar parameterizations to
reduce the problem to image registration. Sheldon [She00]
extends morphable models to surfaces, but the model-fitting
term of the deformation energy is based on Euclidean closest
points and the energy is minimized via gradient decent. Also,
all the test models are already quite similar and roughly
aligned. Much the same can be said about other deformation-
based works in computer vision and medical imaging, e.g.,
[VG05], where the corresponded shapes, e.g., corpus callo-
sum data or human faces, do not possess the kind of large
shape variabilities as the type of models we consider.

3. Overview

The uncanny ability of humans to match complex shapes
can be attributed to the initial shape recognition process,
which heavily draws upon prior knowledge [Heb49]. One
can hardly expect a machine to perform recognition ade-
quately, which makes automatic correspondence difficult.

3.1. Difficulty of non-rigid shape correspondence

In the case of rigid or affine shape registration, the space
of allowable transformations is low-dimensional and can be
characterized analytically. One can then define an optimiza-
tion criterion accordingly. Although loss of precision can oc-
cur in the presence of noise or sampling artifacts, such errors
are relatively predictable and easy to bound. Non-rigid cor-
respondence, on the other hand, is an ill-posed problem as
we do not have a definition of what a meaningful matching
is. The amount of shape variations that should be tolerated is
model-dependent and can take on arbitrary values.

Consider the two features on the belly of the dino-skeleton
and the raptor, as shown in Figure 1. Geometrically, their

local neighborhoods are not similar at all, yet semantically
speaking, they should correspond. Similar claims can also be
made for the fingers or mouths of the two models. Resort-
ing to scale-space theory [Lin94], one may detect a higher
degree of similarity between these features after sufficient
smoothing. However, too much smoothing hinders our abil-
ity to differentiate. Indeed, if our non-rigid correspondence
algorithm is to tolerate rather large shape variations, finding
a high-quality local shape signature becomes quite difficult,
as there is always a conflict between shape discrimination
and tolerance of shape variations.

Consequently, our approach is to rely more on global crite-
ria, as local shape similarity may become less reliable. Our
deformation-driven algorithm offers a number of advantages
for non-rigid shape correspondence (see Section 1).

3.2. Overview of deformation-driven correspondence

Due to correlation between object recognition and shape cor-
respondence, as well as the general consensus that our vi-
sual object recognition is likely guided by the the objects’
part structures [Heb49], we approach the non-rigid corre-
spondence problem by considering a coarse set of features
residing on the prominent parts of a shape. The features are
detected shape extremities, as described in Section 4.

We define a correspondence or (partial) matching between
the features extracted from two meshes as a set of one-to-one

feature pairs. The correspondence search is carried out by a
combinatorial tree traversal, which we cover in Section 5.
The search is prioritized by a symmetric self-distortion en-
ergy (Section 5.1), serving as the correspondence cost. The
distortion energies are evaluated on deformed meshes with
deformation anchored by the given correspondence. For this
task, we adopt the linear, rotation-invariant differential mesh
deformation scheme of Lipman et al. [LSLCO05].

Figure 2 shows an example of our correspondence cost at
work. The correct matching (b), between 9 features on the
wolves, has the lowest cost. Leg or ear switches lead to
higher distortion on the deformed meshes, which is captured
by our cost. Note that the same does not hold for the purely
intrinsic geodesic distortion measure β , which accounts for
the total differences between pairwise geodesic distances
(see Section 5.2) measured on the original meshes. We reit-
erate that a key point of our deformation-driven approach is
to measure distortion on the deformed meshes.

To search through the partial matchings between features,
we organize them into a search tree. Each path from the root
of the tree encodes a candidate solution to the correspon-
dence problem, where each node along the path adds a new
feature pair. We offer the option of early termination when
a desired set of solutions has been obtained. To return a sin-
gle best solution automatically, we again rely on a distor-
tion cost driven approach to choose a matching size (Sec-
tion 5.3). To narrow the search space, we employ several
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(a) Two wolves with 10 features (red markers).

(b) β = 0.308. (c) β = 0.330. (d) β = 0.349.

(e) β = 0.348. (f) β = 0.345. (g) β = 0.327.

Figure 2: Top six matchings sorted by distortion cost η: (b)

- (g). The left wolf in (a) is deformed into the other, based

on 9 matched features. Deformation is anchored by extrin-

sic geometry and properly sorts out switches (highlighted in

circle) between the legs or ears. Total geodesic distortion β ,

fails to accomplish that; observe (g) vs. (c) and (e) vs. (d).

pruning techniques, e.g., those based on pairwise geodesic
distances and feature-to-feature similarity defined by curva-
ture maps [GGGZ05]; this is covered in Section 5.2.

4. Automatic feature selection for correspondence

Geometric features on a shape can be defined in differ-
ent ways, e.g., ridge and valley lines [OBS04], prominent
tip points [ZMT05], or points with most unusual signa-
tures [GMGP05]. Line-type features are generally not sta-
ble under shape articulation. The most prominent features
of a model part are arguably near its extremity. Extremi-
ties are stable under bending and stretching, making them
suitable to use for feature correspondence. Using shape ex-
tremities as features also reinforces the correlation between
correspondence analysis and object recognition by parts. Ex-
tremity features have been utilized for mesh parameteriza-
tion [ZMT05] and segmentation [KLT05].

We rely on critical point detection over the average squared

geodesic distance field [HSKK01, ZMT05] defined over
a mesh to extract extremities. On each mesh, we find a
small number of uniformly distributed samples s1, . . . ,sk via
geodesic farthest point sampling. The geodesic distance field
G (v) = 1

k ∑k
i=1 g(v,si)

2 approximates the average squared
geodesic distances from vertex v to all other vertices. The
local maxima of G correspond to shape extremities (either
convex or concave) while the local minima lie near the cen-
ter of the shape. We extract the latter as well, since they tend

Figure 3: Features extracted from the T-rex. Left: a coarse

set of 8 features, where σ = 0.05 and γ = 0.2. Right: with

γ = 0.1, additional features (shown in yellow) are selected.

to be stable representatives of the central part of an object
and make the features well-spread.

To keep the feature set small, we smooth G via a polyno-
mial, 2t3

σ3 −
3t2

σ2 +1, having kernel size σ , where t is geodesic
distance to the center of the smoothing kernel, and apply
geodesic Poisson disk sampling with radius γ to the critical
points returned. The σ and γ are constrained to [0,1] and
multiplied by the largest pairwise geodesic distance over the
mesh. Whenever two critical points are found in the same
Poisson disk, we throw away the one that is less prominent,
i.e., one having a smaller G value. The remaining critical
points are sorted by G and selected from atop the sorted list.

We observe that the most prominent extremities can always
be reliably selected. While different choices γ , σ , and feature
count can induce spurious features, the ability of our algo-
rithm to perform partial matching ensures that such features
would be excluded in the result. Figure 3 shows features au-
tomatically extracted from a T-rex. With γ to 0.1, we ob-
tain a more refined set of features. For coarse feature corre-
spondence however, we do not attempt to match up the fine-
detail features, e.g., all the individual fingers of the T-rex and
the raptor (see Figure 1). Instead, our correspondence search
only considers results with a small number of feature pairs.

5. Correspondence search

Let M and M′ be two input meshes with extracted features.
We wish to search for the best correspondences between (a
subset of) these features in an exponentially large search
space. Our algorithm traverses a search tree, whose root is
the empty set. Any other node is marked by a feature pair and
a path from the root specifies a correspondence. A node (i, i′)
can be expanded by a feature pair ( j, j′), yielding a child
node, if the pairs satisfy the pruning constraints and feature
j is after feature i according to some arbitrary feature or-
dering. This way, all possible (partial) correspondences that
satisfy the constraints are uniquely represented in the tree.
Our correspondence search is based on a best-first strategy
and is implemented by a priority queue. At each iteration, the
lowest-cost node is extracted from the queue and expanded.
The cost of a correspondence is defined by a distortion en-
ergy. We seek correspondences which lead to low-distortion
deformations anchored by the corresponding features.
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Figure 4: Importance of symmetric cost. The dino-skeleton

from Figure 1 (7 features) is matched with the T-rex from Fig-

ure 3 (8 features). There is no feature selected on the back

of the dino-skeleton. Blue markers indicate unmatched fea-

tures. Left: optimal correspondence based on a one-sided

cost, i.e., cost of deforming the T-rex into the dino-skeleton

is unaccounted for. We see a mismatch. Right: with a sym-

metric cost, the optimal correspondence is the natural one.

5.1. Mesh deformation and correspondence cost

Given a correspondence π , we deform mesh M into mesh
M′ using the differential deformation scheme of Lipman
et al. [LSLCO05]. As we compute deformations multiple
times during our tree search, we require a method which
is both efficient and reasonably robust; the differential de-
formation scheme addresses both our concerns. The input
to the method consists of anchor points with their associ-
ated coordinate frames after the deformation. In our case,
the anchor points are the matched feature vertices in π . The
anchors are associated with the corresponded feature vertex
normals, smoothed via polynomial filtering. Given the new
anchor positions and normals, the new frames are estimated
using a rigid transformation mapping the original positions
of the anchors to the new ones.

We use the deformation result to establish a deformation-
based cost for the correspondence π . We observe that an er-
ror metric based on rotated input normals [LSLCO05] is less
accurate than a metric using the actual normals after defor-
mation, as the accuracy of the former depends on the accu-
racy of the normal rotation. Thus we use the error functional
defined in [KS06] to measure distortion. It uses the deformed
mesh to estimate the normals, providing a more accurate er-
ror lower bound. We note that the actual deformation method
described in [KS06] is not suitable for our needs as it solves
a non-linear optimization and is fairly slow.

Denote the resulting distortion error by η1(π). We sym-

metrize the cost by also deforming M′ into M, resulting in
an error η2(π). The final correspondence cost is η(π) =
max{η1(π),η2(π)}. Figure 4 gives an example illustrating
the importance of a symmetric cost measure.

Note that we do not combine distortion energy with feature
similarity or other terms into the cost as that would require
weighting between different terms. Also, the distortion is
measured between the deformed mesh M and its original,
i.e., a self-distortion, and not between M and M′ since:

1. π is only a sparse feature correspondence. Estimating a
distortion between the two meshes M and M′ via a dense
correspondence is non-trivial and expensive; it requires
solving the cross-parameterization problem [KS04].

2. Using a global shape descriptor to compare the deformed
and target meshes is not suitable in the presence of spu-
rious object parts. The same can be said about the Haus-
dorff distance, which is also more expensive to compute.

5.2. Tree pruning

Tree pruning is implemented by enforcing constraints when-
ever a node is expanded. A key requirement is that if a node
fails a constraint check then so will all of its descendants.

Local feature similarity: Let (i, i′) be the feature pair defin-
ing a new node and denote by s∗ the maximum pairwise
feature dissimilarity. If the dissimilarity distance between i

and i′ exceeds εsims∗, then the node is pruned. Here εsim ∈
[0,1] is a tolerance on feature dissimilarity. To compute fea-
ture dissimilarity in the non-rigid setting, we use a slight
modification of the curvature map signature of Gatzke et
al. [GGGZ05]. For a mesh vertex p, we construct b equally
spaced geodesic rings around p — two adjacent rings bound
a geodesic bin. We compute curvature averages in each bin,
resulting in a b-dimensional signature. The dissimilarity be-
tween two signatures is given by the L2 norm.

Geodesic distortion: Given a new node which extends a
correspondence π , we check whether the new pair incurs a
geodesic distortion with some feature pair in π that exceeds
εgeod , where εgeod ∈ [0,1] is a tolerance value to control the
level of tolerable stretching. If this is the case, the new node
is pruned. We define the geodesic distortion for two feature
pairs (i, i′) and ( j, j′) by max{||Gi j −G′

i′ j′ ||, ||G ji −G′
j′i′ ||},

where G and G′ are the normalized pairwise geodesic dis-
tance matrices for features on M and M′, respectively. To
reduce possible influence of outlier features, we normalize
the original geodesic distances into [0,1] on a per-row basis.
As a result, G and G′ are not symmetric in general.

Tolerance values: For non-rigid correspondence, one can-
not possibly predict, under all circumstances, the level of
shape variations that should be tolerated to produce a rea-
sonable matching. In our current work, we determine the
tolerances εsim and εgeod empirically and leave fully auto-
matic determination of their values for future work. Experi-
mentally, we have found that setting the tolerances conserva-
tively allows us to correctly match a wide variety of shapes,
due to the effectiveness of the distortion energy.

5.3. Optimal matching size

Each node in the search tree represents a candidate solu-
tion: a partial matching between subsets of features from two
input shapes. All solution candidates of the same size are
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(a) Cost curve. (b) Mismatched wolf.

Figure 5: Finding the right matching size. (a) Plot of low-

est correspondence costs against matching size, for the wolf

pair in Figure 2. (b) Deformed wolf based on 10 feature

pairs. There is a mismatch between a feature on the belly

and a feature on a leg, causing a large jump in the curve.

ordered by their correspondence costs. For automatic cor-
respondence, we determine the optimal matching size by a
fairly standard scheme. We plot the lowest correspondence
costs, denoted by ci, as more features are included, where i

runs from 5 (the smallest matching size we request) to the
size of the largest candidate solution found. We look for a
point i∗ that is the first peak in the difference curve defined
by di = ci+1 − ci; this represents the first significant jump
in the correspondence cost. Indeed, we expect a pair of un-
matchable features to incur such a jump in distortion.

Figure 5(a) shows the cost curve for the wolf pair from Fig-
ure 2. The optimal matching size detected is 9 and the corre-
spondence is shown in Figure 2(c). The lowest-cost match-
ing of size 10 is shown in Figure 5(b), where we see a pair
of mismatched features; they cause a large distortion and a
jump in the cost curve. To obtain a meaningful cost curve,
we require at least three cost values.

5.4. Implementation issues

While the original input meshes can be dense, we find
that performing mesh deformation and measuring costs on
reduced models to be sufficient; this can greatly reduce
search time. In our implementation, we decimate a high-
resolution input mesh down to having between 2,500 and
5,000 vertices. Note that estimation of normals, curvatures,
and geodesics, as well as smoothing and curvature map com-
putations, are performed on higher-resolution models.

To reduce search time further, we can trade deformation calls
for node expansion and pruning checks, as the latter opera-
tions are less costly. Specifically, we use a parameter Lde f to
indicate the first tree level at which mesh deformation is en-
abled. Before this level, all nodes are assigned zero cost and
only tree pruning applies. Table 1 shows how different val-
ues of Lde f can affect the number of deformation calls. With
a small Lde f , many deformation calls were made for corre-
spondences which would end up being pruned. It is much
more efficient to prune them without computing a deforma-
tion, as is done by setting a higher Lde f . It is important to
note however that any solution returned by the search must

Table 1: Benefit of deferred deformation calls. Result is from

matching the wolves in Figure 2, with matching size N = 9.

Lde f = 6 Lde f = 7 Lde f = 8
# Nodes expanded 2,803 4,332 4,926
# Deformations 1,600 602 73

have an actual cost computed via mesh deformation. After
all, tree pruning does not rate the correspondences. There-
fore, if we seek matchings of size at least N, then we must
have Lde f < N. This ensures that all the returned solutions
are evaluated by our correspondence cost.

6. Results

We have tested our deformation-driven correspondence al-
gorithm on various models with pronounced features. These
consist mainly of animals and human-like figures, which can
vary significantly in pose, relative scale, part composition,
and geometric detail. In the following experiments, we use
10 geodesic bins and a neighborhood size that is 0.3 of the
maximum pairwise geodesic distance to construct the curva-
ture maps. As we are interested in coarse feature correspon-
dence, we fix the feature count at 10. For automatic feature
selection, we first set σ = 0.05 and γ = 0.2. If at least 10 fea-
tures are found, we select the 10 most prominent ones (refer
to Section 4). Otherwise, we relax γ to 0.1 and repeat. This
enables us to automatically select 10 features from each test
model. Both tolerance values εsim and εgeod are set conserva-
tively at 0.4. The matching size is determined automatically
by examining the cost curve, as described in Section 5.3. For
a given matching size N, we set Lde f = N − 1 to minimize
the number of deformation calls.

We first take the five wolf models from the ISDB database
and match one of them, shown in Figure 6(a), to the other
four. No initial alignment is applied to any model pairs in
our experiments, except for a uniform scale normalization.
The final correspondence results are shown in Figure 6. They
demonstrate the ability of our algorithm to handle pose; there
is only minor stretching and little change in the local ge-
ometry of the models. In each case, 9 out of 10 features
are properly matched and the one spurious feature is ig-
nored by partial matching. We use the matching results to
smoothly morph between wolves in different poses (Fig-
ure 7) by first utilizing the feature correspondences as in-
put for dense cross-parameterization [KS04] and then inter-
polate the corresponding Laplacian coordinates between the
models to obtain the intermediate geometries.

Moving on to more challenging examples, we match the
triceratops (top-left model in Figure 8) to a rhino, two pigs
which differ a great deal in the scale of their parts, and fi-
nally the feline with wings to exemplify partial matching in
the presence of spurious parts. Figure 8 shows the automat-
ically picked features on each model, the cost curves used
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Figure 6: Correspondence results between the wolf given

in the box and four other wolves from the ISDB database,

each with 10 automatically extracted features. Again, blue

markers indicate unmatched features.

Figure 7: Morphing result on a pair of wolves, based on

dense cross-parameterization driven by initial correspon-

dences (Figure 6) computed by our algorithm.

to find the matching size, and the final correspondences re-
turned. The cost curve starts at matching size 5 and stops
when no solution is returned, as dictated by tree prunning
based on the threshold parameters chosen. As we can see,
results from automatic correspondence may miss some fea-
ture pairings which would have been detected by a human,
e.g., all the tails of the animals. Nevertheless, these results
are all correct partial matchings, which can be further re-
fined by matching more features. This latter process would
be a more localized and thus efficient search.

To showcase another dense cross-parameterization example
using the computed feature correspondences as input, we
cross-parameterized the triceratops and one of the pigs and
use the result to obtian a blended model, shown in Figure 9,
where the front of the body is taken from the pig and the back
from the triceratops. The same procedure was also applied to
the dino-skeleton and the raptor from Figure 1.

The ability of our algorithm to perform partial matching is
evident in many of the visual examples shown so far: spuri-
ous features or parts (e.g., see the triceratops vs. the feline),
on one or both input models, are appropriately ignored in
the correspondence. Figure 10 gives another such example,
where we note that if we switch the order of the two in-
put meshes, the same correspondence is returned, since the
pruning process and the correspondence cost are both sym-
metric. Also, observe that the models we match all exhibit
symmetry. In no case has our algorithm produced a wrong
correspondence resulting from symmetry switching.

The search for the best matching size is quite expensive com-
putationally, since we maintain the same feature count, 10 in
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Figure 8: Automatic feature correspondence between the

triceratops (top left) and four different animals, as well as

itself. First column shows the animals with selected features.

Second column shows the correspondences (red markers are

matched features and blue markers are unmatched ones).

Cost curves shown in the last column are used to determine

the matching sizes (circled in the plots).

Figure 9: Blending the front of one animal with the back

of another created via dense cross-parameterization. Left: a

“prehistoric pig” (triceratops and pig in the second row of

Figure 8). Right: dino-skeleton and raptor from Figure 1.

our case, and need to perform tree search for small values
of Lde f . The vertex counts for this series of models range
between 606 and 3,552; the triceratops has 2,832 vertices.
It took from 20 minutes to more than one hour to perform
these fully automatic correspondences. We observe that ma-
jority of the search time was spent when Lde f ≤ 5. Therefore,
it should be more efficient to construct the cost curve in re-
verse order, i.e., computing matchings of larger sizes first.
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Figure 10: Partial matching with spurious object parts. A

woman with wings is matched with a dino-bird model.

Improving the speed of the solver, e.g., by setting a higher
tolerance for convergence, should also help. Another factor
behind the high search cost is the conservative tolerance val-
ues we chose. A more stringent set of tolerances can provide
many-fold speed-ups, but they are not always easy to find
automatically. One possible approach worth investigating is
to start with low tolerances and then gradually increase them
while observing the correspondence costs.

7. Discussions and limitations

Refinement: A number of factors influence the performance
of a correspondence algorithm. We first need a sufficient set
of features to make the shapes matchable. However, the high
cost of global search requires the feature count to be low,
at least for the initial coarse correspondence. A low feature
count may lead to locally inaccurate results, e.g., when some
features are close to each other. We can then examine sev-
eral candidate solutions (e.g., the top few from the our tree
search based on correspondence cost) and use refinement
to provide a final ranking. The refinement procedure inserts
more features on two shapes and can simply match them up
based on geodesic distances to the initial correspondences.
Meshes are deformed based on the refined correspondence
and the resulting costs provide the final ranking. Taking
this to the limit, we would arrive at cross-parameterization,
e.g., [SAPH04].

Dependent feature picking: Shape extremities are not al-
ways reliable as features for correspondence, e.g., consider
the unlikely case of matching to a part embedded in a larger
model where none of the model’s extremities lie on that part.
A possible remedy is to make use of local shape signatures.
For example, Gelfand et al. [GMGP05] extract feature points
from one shape that have the most unusual signatures. Each
feature is matched against all points on the second shape,
where features are identified via thresholding the similarity
between shape signatures. For this to work well, we need
high-quality local shape signatures and as discussed in Sec-
tion 3.1, this is a difficult problem in the non-rigid setting.

Figure 11: Matching the dino-skeleton with a brontosaurus.

The least-cost solution, shown on the right, is a wrong one.

Choosing tolerance values: It is generally difficult to se-
lect the tolerance values automatically and conservative set-
tings lead to high search cost. In practice, there are applica-
tions, e.g., statistical modeling [ASK∗05], where feature cor-
respondences are needed for a large set of models belonging
to the same class. As the shape variations are not expected
to be too large, our algorithm should work efficiently under
a relatively stringent tolerance setting.

Limitation of the deformation approach: While the de-
formation view of shape correspondence is shown to be ef-
fective in many cases, as demonstrated by the results so far,
it cannot be expected to replicate the way humans perform
correspondence. Figure 11 shows the result of matching the
dino-skeleton with a brontosaurus model via deformation.
Indeed, it is the least-distorting way to correspond them, yet
it is wrong. We argue that the reason we are able to match
these two models correctly is that we can recognize them.
Based purely on geometry, it can be an impossible task.

8. Conclusion and future work

It is generally believed that shape correspondence by human
involves an object recognition phase. That is, two shapes
are first recognized as belonging to certain classes before
identifying feature correspondences. Without relying on this
phase, we develop a purely geometric approach which em-
phasizes the global characteristics of shape correspondence.
When large shape variations are tolerated, local shape de-
scriptors can become unreliable. We take a deformation view
of shape correspondence and compute partial matchings be-
tween two meshes which lead to low-distortion deformation.
The ability of our algorithm to handle shape symmetry and
shape variations in pose, local scale, part composition, and
geometric detail is demonstrated through various examples.

In future work, we would first like to improve the speed of
tree search, while retaining an automatic algorithm. There-
fore, we need effective means to find proper tolerance val-
ues and techniques to prune the tree search more aggres-
sively. Pruning and feature selection can both benefit from
having a high-quality local shape descriptor. The key ques-
tion appears to be how to deal with local stretching or scale
changes near a feature point. We would like to look into the
use of feature-sensitive neighborhood traversals [LZH∗07]
when constructing local shape descriptors.
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