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Abstract

We develop a new mesh segmentation algorithm
via recursive spectral 2-way cut and Nyström ap-
proximation. The cut is performed on 1-D spectral
embeddings, which are efficiently computed from
appropriately defined distances between the set of
mesh faces and only two sample faces. By using
a novel sampling scheme based on shape context
and a line search over the 1-D embeddings to lo-
cate the most perceptually salient cut, our algorithm
achieves robust and intuitive segmentation results.

1 Introduction
Segmenting a 3D object, typically represented by a
triangle mesh, into visually meaningful parts plays
a key role in object recognition by humans [6].
It is also an important problem in geometry pro-
cessing [17] with such applications as morph-
ing [19], skeleton extraction [10], mesh parameter-
ization [24], and compression [15]. Research on
mesh segmentation seeks to find a computationally
efficient procedure capable of producing results that
are in close agreement with human shape percep-
tion, while requiring little or no user intervention.

We treat mesh segmentation as a clustering prob-
lem on mesh faces, where face distances are defined
to respect theminima rule from cognitive stud-
ies [6]; it stipulates that cut boundaries should con-
sist of surface points at negative minima of prin-
cipal curvatures. We solve the clustering problem
in the spectral embedding spacederived from the
faces distances. Spectral clustering [1, 3, 5, 13,
18, 20, 21] has received a great deal of attention
recently in computer vision and machine learning.
Although recent works on the topic have focused
on using more eigenvectors and computing cluster-
ings in a higher dimensional space, e.g., usingk-
means, we have found this to be non-robust and
time-consuming for mesh segmentation. The non-
robustness is mostly due to typical problems associ-

ated with thek-means approach, e.g.,chaining1 [4],
existence of bad local minima, and the difficulty of
choosing an appropriatek.

We recursively partition a mesh into two parts in
1-D embedding spaces, in the same spirit as normal-
ized cuts [18]. An optimal cut, based on a quantifi-
cation of perceptual part salience [7], can be easily
found by a line search. Whereas fork-way parti-
tions, it is unclear how part salience can be factored
into k-means which would also allow an efficient
search for a desirable clustering. To avoid comput-
ing all pairwise face distances, we apply Nyström
method [5, 22] to approximate the eigenvectors of
a matrix by subsampling only a small subset of its
rows. We speed up our algorithm further by select-
ing the smallest possible number of samples, two.

One key observation [23] about the 1-D embed-
dings derived from Nyström approximation using
two sample faces, sayfs andft, is that in general
when a facefi is closer to one of the samples, e.g.,
fs, on the original mesh, it is also closer tofs in the
1-D embedding. Thus to make line search work ro-
bustly, we would want to have the two sample faces
chosen from perceptually separate parts of a shape;
this is illustrated in Figure 1. We develop a novel
sampling scheme based on shape context [2] that
can efficiently and reliably extract such two sample
faces without segmenting the mesh. The resulting
mesh segmentation algorithm is efficient and pro-
duces robust and meaningful results.

1.1 Previous work

The majority of mesh segmentation works are
geometry-based without the incorporation of prior
knowledge, e.g., see recent survey by Shamir [17].
Li et al. [12] define a meaningful component of

1Chaining is a well known phenomenon arising from single-
linkage based clustering [4], where elements are clustered based
on a single link. In the context of mesh segmentation, chaining of
faces from different parts of a shape typically occurs over a feature-
less region, where the minima rule cannot predict a cut boundary.
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(a) (b)

Figure 1: We show how the placement of sample
faces may influence the result of 2-way cut via line
search. The two sample faces arefs andft and their
Voronoi regions, in terms of face distances (Sec-
tion 3), are shown in different shades of grey. A
rough direction for the line search in the spectral
domain is shown by the arrow. As we can see in
(a), line search may be able to locate the best cut,
marked by a dashed line. But for (b), wherefs and
ft come from the same part, line search will fail.

a mesh to be a volume swept by a shape-varying
closed 2D region along a sweep path, between two
suitably defined critical points. It works fairly
well in practice but can produce counterintuitive re-
sults. Also, it does not conform to the minima rule
and smoothing of the geometry function may miss
meaningful segmentations [10].

Surface-based mesh segmentation algorithms can
be divided into boundary-based [11] and region-
based [14, 16, 13, 19, 10] approaches. Lee et
al. [11] propose a recursive mesh scissoring opera-
tor, honoring the minima rule [6]. At each step, one
of the extracted feature curves is selected for com-
pletion into a cut contour, based on its length and
centricity. Although some contours may be rejected
by a part salience [7] test, there is no global search
for the best cut. The algorithm appears to work the
best in a semi-automatic setting. With an effective
contour completion procedure, snake movements,
and a small amount of user intervention, excellent
segmentation results have been reported.

Watershed was first proposed for mesh segmenta-
tion by Mangan and Whitaker [14]. Page [16] later
uses fast marching watershed and hill-climbing that
respects the minima rule. Although watershed is
fast and there is no need to specify the number of
segments, it is prone to over-segmentation. This
may be corrected by region merging using a part
salience measure [16], but it still does not resolve
the “flooding” problem across featureless regions
that should have been identified as cut boundaries.

Other region-based segmentation algorithms uti-
lize k-means clustering. Shlafman et al. [19] ap-
ply original k-means in the spatial domain where
both geodesic and angle distances between mesh
faces are considered. Liu and Zhang [13] apply
k-means in the spectral domain, where better seg-
mentation results are predicted by the Polarization
Theorem [3]. Katz and Tal [10] use a probabilistic
k-means approach called fuzzy clustering. To opti-
mize cut boundaries, a graph min-cut is computed
over a fuzzy region of faces whose membership to
the two patches is inconclusive. An important step
is to iteratively find patch representatives that act
as statistical cluster centers. Preferably, these rep-
resentatives would reside on perceptually separate
parts of a shape. Their locations determine the size
and location of the fuzzy region, which in turn in-
fluences the segmentation result. Typical problems
associated withk-means exist in all the above three
algorithms. Meanwhile they all require distances
between all face pairs, which are expensive to com-
pute and store.

1.2 Our contributions

Our segmentation algorithm can be seen as an ex-
tension to the normalized cuts approach [18], where
we utilize a novel sampling scheme to make ef-
fective use of Nyström approximation at a very
low sample size, two in fact. Our algorithm also
adopts a different optimization criterion, based on
part salience [7], that is specific for mesh segmen-
tation. The key features of our algorithm are:
• Efficiency: Our algorithm can handle highly

dense meshes directly. It runs inO(pn log n)
time, compared toΘ(n2 log n) by [10, 13],
wheren is the number of mesh faces andp
is the number of recursions. Note thatp ¿ n,
as it is no greater than the number of parts.

• Visually meaningful segmentation: Our al-
gorithm quantifies the minima rule [6] and the
part salience measures [7] resulting from cog-
nitive studies. This appeals to human percep-
tion and ensures the segmentation quality.

• Robustness:This is achieved through a com-
bination of recursive 2-way cut, salience-based
global line search, and our sampling scheme
based on shape context, which should also be
useful for other shape analysis tasks.

The effectiveness of our approach can be demon-
strated using several formal arguments and numer-
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ous examples. We believe our algorithm offers the
best combination of speed, quality, and robustness
among mesh segmentation algorithms to date.

1.3 Paper organization

The rest of the paper is organized as follows. Sec-
tion 2 gives an algorithm overview and Section 3
defines the distance measure. The sampling scheme
based on shape context is developed in Section 4.
In Section 5, we describe normalized cuts, Nyström
method, and line search. Section 6 quantifies part
salience. Experimental results are given in Sec-
tion 7 to demonstrate the effectiveness of our ap-
proach. Finally, we conclude in Section 8 and sug-
gest possible future work.

2 Algorithm overview
Input and preprocessing: Input to our algorithm
is a manifold triangle mesh with arbitrary topology
and possibly boundary. Distances between adjacent
mesh faces are calculated and serve as edge weights
in the dual graph of the mesh. When the input mesh
is noisy, it is first smoothed slightly using a few
steps of Laplacian smoothing so that the face dis-
tances can capture more truthfully the surface vari-
ations, e.g., bending. Alternatively, we could use
best fit polynomials [8] to measure bending without
smoothing, but it is more time-consuming.
Recursive 2-way cut:We place all candidate parts,
starting with the original mesh, in a priority queue
ordered by their surface areas. At each step, the
largest part is selected and the most salient cut is
found usingBESTCUT, given in Figure 2, where
salience is measured relative to the candidate part.
If the resulting salience is below a user-set thresh-
old, then the cut is rejected and the part will no
longer be considered. Otherwise, the resulting two
subparts are inserted back into the priority queue.
Post-smoothing:Most of the segmentation results
we report are obtained without explicit boundary
smoothing, since the cuts are obtained through fine-
grained line search using part salience and it prefers
shorter cuts. We consider this an advantage of our
algorithm. In the few cases where small jaggies per-
sist, it is sufficient to use a simple smoothing pro-
cedure based on morphological processing, with a
structuring element of size two, on mesh connectiv-
ity to remove any local artifacts in negligible time.
Termination: The user can specify a maximum
number of segments to compute. The recursive al-

Spectral clustering takes as input anaffinity ma-
trix A and typically acts on thenormalizedaffinity
matrix N = D−1/2AD−1/2 instead [21]. Here
Aij models the probability of data pointsi, j be-
longing to the same cluster andD is the diagonal
matrix of A’s row sums. In the procedure below,
we only need partial blocks ofA andN .

BESTCUT (M : a sub-mesh withn faces)
1. Select two sample facesfs andft from M .

— Θ(n log n)
2. ComputeŴ ∈ R2×n, a partial distance ma-

trix whereŴ1j (resp.Ŵ2j) encodes the dis-
tance between facefs (resp.ft) and facefj ,
j = 1, . . . , n. — Θ(n log n)

3. ConvertŴ into an partial affinity matrixÂ
using an exponential kernel. —Θ(n)

4. Use Nyström method and̂A to obtain~e(1)

and~e(2), the approximate first two eigenvec-
tors of the full matrixN . — Θ(n)

5. Construct the linear arrangement~z, where
zi = e

(2)
i /e

(1)
i , i = 1, . . . , n. — Θ(n log n)

6. Line search along~z to locate the most salient
cut using our part salience measure, which
can be updated in constant time along the
search. —Θ(n)

7. Insert the resulting two sub-meshes into the
priority queue if the resulting salience is
above a threshold. —Θ(log p), wherep is
the number of candidate parts so far.

Figure 2: BESTCUT(): Salience-based spectral 2-
way cut. Also shown are the asymptotic time com-
plexities of each step, wheren is the face count.

gorithm stops when this number is reached or when
no candidate part has a cut salience, computed via
BESTCUT, above the given threshold.

3 Face distance computations
As in Shlafman et al. [19] and Katz and Tal [10], we
consider both angle and geodesic distances between
mesh faces, but with angle distanceshistogram-
equalized. Specifically, the distance between a pair
of adjacentfacesfi andfj is defined as

d(fi, fj) = (1−δ) ·H(fi, fj)+δ ·G(fi, fj), (1)

whereG(fi, fj) is the geodesic distance between
the centroids of facesfi andfj , normalized by the
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average geodesic distance, andH(fi, fj) is the his-
togram equalized angle distance.

Let θ be the angle formed by the normals offi

andfj , then one may define the angle distance be-
tweenfi andfj ash(fi, fj) = η(1− cos θ), where
η is a free parameter andh is subsequently normal-
ized by its average over the whole mesh. However,
for a smooth mesh, the values ofh would typically
be highly concentrated near zero. To increase the
geometry contrast, we apply histogram equaliza-
tion [9] to h to obtainH, i.e., we sort theh’s and
map them to a set of equally spaced values in [0,
1]. To emphasize the minima rule, we setδ = 0.01,
η = 1 for concave angleθ, andη = 0.1 for con-
vexθ. Thus faces separated by concave regions over
the mesh surface are more likely to be clustered into
different parts than those just geodesically far away.

Distances between non-adjacent faces are com-
puted as shortest graph distances using Dijkstra’s
algorithm inO(n log n), where the graph is the dual
of the mesh graph. We distinguish three cases for
the edge weights:δ = 1, δ = 0, and0 < δ < 1, re-
ferring to (1). In the rest of the paper, we refer to the
resulting graph distances (respectively, the corre-
sponding shortest paths) as geodesic, angle, orcom-
bineddistances (paths). They will be used for sam-
pling and face clustering, respectively. Note that
we have chosen not to compute true geodesics since
the graph distances given above are much simpler to
compute and they provide sufficiently good approx-
imations for our work. Finally, note that computing
all-pair shortest distances is at leastΘ(n2 log n),
which would be too expensive for large meshes. We
deal with this problem by carefully selecting two
sample faces and using only distances originating
from these two faces to construct the spectral em-
bedding, relying on Nyström method. We describe
our sampling scheme next.

4 Sampling based on shape context

The ability to select sample faces from perceptually
separate parts of a shape without explicit segmen-
tation is desirable for many tasks, e.g., in finding
patch representatives for fuzzy clustering [10]. In
our setting, as explained in Section 1 and Figure 1,
we wish to locate samples from perceptually sepa-
rate parts in order for line search to work robustly.

The simple strategy of choosing two faces fur-
thest apart, e.g., geodesically, would not work in
general, since these two faces may not lie on dif-

Figure 3: Facesfp andfq are samples furthest apart
in terms of combined distanced, given in (1). fs

andft are chosen by our sampling scheme.

ferent parts of a sufficiently elongated shape. Be-
sides, one cannot find such two faces precisely in
sub-quadratic time. Even if we replace geodesic
distance by the combined distance (geodesic plus
angle), the chaining phenomenon [4] reveals that it
is unreliable to judge whether two faces belong to
different parts simply by measuring a single shortest
path between them. This is illustrated in Figure 3,
where faces from the fin are “chained” together with
faces from the body through the marked flat region;
fp andfq are the two faces furthest apart but belong
to the same body part. Next, we propose a more
robust sampling scheme based on shape context to
alleviate this problem; the two trianglesfs andft

are properly selected as samples by this scheme.

4.1 Shape context of a mesh face

One of the basic premises of shape context [2] is
that similarity between data points should not be
measured by distances between the absolute point
coordinates in the original space. Rather, we should
parameterize each point by how it is related to the
rest of the points and measure distances in a new
feature space. The relationship between a point and
the rest of the points defines acontextfor the point.

The notion of shape context forms the basis of
our sampling scheme. To save storage and process-
ing times, we define the context of a faceg with
respect tok (k is small; we choosek = 10 in all
our experiments)reference faces. Specifically, the
context vector~c(g) = [c1 . . . ck] of g is given by

cj =

m−1X
i=1

H(fi, fi+1), j = 1, . . . , k

where the angle distanceH is as defined in (1),
f1 = g, fm = h is one of thek reference faces,
and f1, f2, . . . , fm form a shortest geodesic path
between facesg and h. In other words, the con-
text of faceg is defined by angle distances accu-
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mulated along geodesic paths fromg to k reference
faces. The reference faces can be chosen randomly.
But for more robust results, we uniformly sample in
terms of geodesic distances, across the mesh. Once
chosen, thek reference faces are used to compute
context vectors for all the faces.

4.2 Our sampling scheme

To selectk approximately uniformly distributed ref-
erence faces, we start by choosing one face at ran-
dom and iteratively select a total ofk faces that
are mutually furthest apart with respect to geodesic
distances. This would take timeO(kn log n) us-
ing Dijkstra’s algorithm. During this process, the
context vector for each face with respect to the ref-
erence faces can be computed simultaneously; we
simply need to accumulate the angle distances as
the geodesic paths are being formed.

Let ~c(1),~c(2), . . . ,~c(n) be the context vectors of
faces on a part to segment, then the first samplefs

and second sampleft are found in linear time by

fs = argmax
i

||~c(i)||, ft = argmax
i

||~c(i) − ~c(s)||.

Our sampling strategy implies that the first sam-
ple fs is most “isolated”, through angle accumu-
lation, from the reference faces. Such a sample is
most likely on a peripheral part, e.g., the sample
face on the fin part in Figure 3. The second sample
ft is least similar to the first sample in terms of their
contexts. The success of our sampling scheme re-
lies on the premise that if the contexts of two faces
differ significantly, then they do not belong to the
same part of an object.

5 Spectral 2-way cut and line search
We now describe our spectral 2-way cut and line
search procedure. This is inspired by previous work
on normalized cut [18] and Nyström method [5, 22].
We first give a brief introduction to these topics.

5.1 Normalized cuts

Normalized cut was first introduced for image seg-
mentation by Shi and Malik [18], where one seeks a
graph cut minimizing the normalized cut criterion;
the tendency is to locate a small edge cut that sep-
arates the graph into subgraphs of similar “strength
of connectivity” to the whole graph. The algorithm
recursively cuts a graph into two parts and at each

step uses the second smallest eigenvector of thenor-
malized Laplacian matrixL = I−D−1A to derive
a 1-D embedding of the image pixels, whereA and
D are as defined in Figure 2 and one should viewA
as the weighted graph adjacency matrix. The orig-
inal normalized cut relies on thresholding and line
search along the embedding has also been suggested
in [20] to locate the best cut.

It is known that [21] the second smallest eigen-
vector of the Laplacian matrixL is identical to the
component-wise ratiobetween the second and first
largest eigenvectors of the normalized affinity ma-
trix N = D−1/2AD−1/2. We use component-wise
ratio in this paper as it facilitates the use of Nyström
method, as we explain in Section 5.3.

5.2 Nyström approximation

To avoid computing the full affinity matrixA,
which is at least anO(n2) step, Fowlkes et al. [5]
derive a matrix version of Nyström method that
only requires values in a small sub-block ofA. It
approximates thek leading eigenvectors ofA by us-
ingk randomly chosen data samples and extrapolat-
ing results from the eigenvectors of ak × k matrix.
Specifically, let

A =

»
X Y
Y T Z

–
(2)

with X ∈ Rk×k andY ∈ Rk×(n−k). Let X =
UΛUT be an eigenvalue decomposition ofX. Then
the approximate eigenvectors,Ũ of A are given by

Ũ =

»
U

Y T UΛ−1

–
.

Thus onlyΘ(kn) pairs of affinities are needed and
the complexity of computingk approximated eigen-
vectors ofA is reduced toO(k3 + kn). In practice,
k ¿ n, and good image segmentation results using
spectral embeddings have been reported [5].

5.3 Spectral embedding and line search
Given distanced(fi, fj) between two facesfi and
fj , defined in (1), we use anexponential kernelto

define the affinity matrixA, Aij = e−d(fi,fj)/σ2
.

The kernel widthσ does not appear to have a great
influence on the partition results, as long as it is not
too small. Otherwise, small clusters can be formed
that can clutter the spectral embedding. We simply
chooseσ to be the average of all distances available.
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With only two samplesfs and ft, Nyström
method reduces to solving a2× 2 eigenvalue prob-
lem followed byΘ(n)-time eigenvector extrapola-
tion. Specifically, the sampled block ofA is

Â =

»
x1 . . . xn

y1 . . . yn

–
=

»
1 u . . . xj . . .
u 1 . . . yj . . .

–
,

where0 ≤ u, xi, yi ≤ 1 are affinity values defined
by the exponential kernel,u being the affinity be-
tweenfs andft. Since we use normalized affinity
matrixN = D−1/2AD−1/2 rather thanA, the cor-
responding block̂N has to be approximated without
knowing all the rows ofA. This can be done via an
approximation to blockZ of A [5], referring to (2).
But with the use of component-wise ratios between
the second and first eigenvectors ofN as our 1-D
embedding, we can avoid any errors resulting from
this approximation since it can be shown that the
unknown row sums ofA cancel out [23].

Line search starts at one end of the 1-D embed-
ding and visits one face at a time sequentially. Dur-
ing the search, we maintain a dynamicconnected
meta patchQ formed by faces visited so far. If a
facea is encountered but it is disjoint fromQ, then
we give a special label toa but do not updateQ.
Later on in the line search, some faces with these
special labels may be joined toQ via a newly en-
countered faceb, at which time their labels are re-
moved andQ is updated. The meta patch can be
updated inO(1) time after each face is added.

Our algorithm maintains the set of cut bound-
ary edges and vertices of the meta patchQ, where
any exterior edge of the original patch being seg-
mented is excluded. Using a simple valence count-
ing scheme, we can perform these updates inO(1)
time as well. Information aboutQ is used to com-
pute a part salience measure. Our line search locates
the best cut based on this measure and divides the
mesh into two parts, the meta patchQ and the rest.
In rare cases,Q might become a closed region with
holes. This can be detected by our algorithm and
the corresponding cut will be disregarded.

6 Part salience
We judge the “goodness” of a 2-way section by a
visual salience measure of the resulting part that has
a smaller size; this is often a peripheral part that we
wish to cut away from the core body of a shape.
Hoffman and Singh [7] have conducted a variety of
cognitive studies about the salience of a visual part.

They conclude that part salience should depend on
(at least) three factors: itssize(Vs) relative to the
whole object, thestrength(Vc) of its cut boundary,
and itsprotrusiveness(Vp), estimated by the ratio
of the surface area of the part to its base area.

For a given 2-way section of a sub-meshM , de-
note byQ the part with a smaller surface area and
∂Q its boundary. We define the visual salience of
Q as a convex combination, similar to [16],

V(Q) = αVs(Q) + βVc(Q) + γVp(Q), (3)

whereVs(Q) = Area(Q)/Area(M), a ratio of
surface areas.Vc(Q) measures the cut strength, ac-
cumulated over them edges of∂Q,

Vc(Q) =
1

m

X

e∈∂Q

H̃(e)

Hmax(M)
,

whereHmax(M) = maxe∈MH(e), H̃(e) = 0 if
the dihedral angle at edgee is convex, and other-
wise H̃(e) = H(e), the histogram equalized an-
gle distance between two faces incident at edgee.
Note thatH̃ is only defined for edges interior to the
current patch being segmented. Finally, the protru-
sivenessVp(Q) = 1 − 4

√
λ1λ2/Area(Q), where

λ1 andλ2 are the leading eigenvalues of the covari-
ance matrix for the mesh vertices along∂Q. Note
that bothVs andVc can clearly be updated inO(1).
Constant time update forVp is also possible since
both the mean and the covariance matrix of a ran-
dom sequence can be updated inO(1) time after
insertion or deletion of a variable (data point).

Part salience is used in several components of
our algorithm. When selecting a candidate part to
segment, we only use size salience, relative to the
original mesh. When finding the best cut, appro-
priate values ofα, β, andγ need to be chosen. In
our current work, we do not develop an automatic
mechanism for their selection. We have found set-
ting α = 0.1, β = 0.6, and γ = 0.3 to work
generally well. To determine whether a part should
be segmented further, the part salience returned is
tested against a user-set threshold. The choice of
the threshold and weightsα, β, and γ is model-
dependent and would require further study.

7 Experimental results
In this section, we first evaluate several components
of our segmentation algorithm using isolated tests.
We then show our segmentation results.
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7.1 2-way cut and line search vs.k-means

Mostk-way partitioning schemes use a variant ofk-
means clustering [1, 10, 13, 19, 21]. The common
pitfalls of k-means, e.g., bad local minima, link-
age, and the difficulty of choosingk, have also been
well-documented [4]. Our algorithm relieves the
burden of having to choose a properk by relying on
recursive 2-way cut. The robust sampling scheme
and line search illuminated by part salience neutral-
ize the chaining problem. Here we compare our al-
gorithm to spectral clustering usingk-means [13],
where full affinity matrix is used and the dimen-
sionality of the embedding space is the same as the
number of desirable segments set by user. The re-
sults are shown in Figure 4, wherek-way, (a), which
partitions a mesh into a desirable number of parts
all at once, and recursive 2-means, (b)-(c), are com-
pared with recursive 2-way cut via line search, (d).
The advantage of our approach is quite evident.

7.2 Two samples vs. more samples

We have also experimented with using more sam-
ples in Nyström approximation for computing the
1-D embedding. Although lessL2 error is intro-
duced with the use of more samples, where we com-
pare the approximate eigenvectors with the eigen-
vectors of the full normalized affinity matrixN , the
resulting segmentation is no better and can some-
times be even worse. Note that we have conducted
this test using several sampling schemes, including
random and uniform sampling based on geodesic,
angle, combined, and shape context distances; the
outcomes are consistent. Apparently, the clustering
structure in the 1-D embedding resulting from using
two sample faces only is more favorable, but this is-
sue requires further study.

7.3 Mesh segmentation results

Our segmentation algorithm has been tested on var-
ious mesh models having varying size (see Table 1),
genus, boundary type, and geometric complexity in
terms of part count, size and shape. In Table 1, we
report timing statistics recorded on a Xeon 2.2 GHz
machine with 1GB RAM. Due to sub-sampling, our
algorithm is much more efficient than those requir-
ing all-pair face distances [10, 13].

Figure 5 displays the segmentation results us-
ing different colors for different segments. Note
that our algorithm only requires a mesh to be a 2-

manifold; it applies to open meshes, (a) and (i), and
meshes with genus greater than zero, (g). It can be
seen that parts of various sizes and shapes are ob-
tained as long as they pass our part salient test and
the results generally appeal to our intuition. For
most cut boundaries, post-smoothing are not neces-
sary at all and only few of them are smoothed using
morphological processing to remove local artifacts.

The quality of our segmentation results attests to
the robustness of our sampling scheme and the ef-
fectiveness of salience-based line search. Chaining,
for example, which would have been a problem for
single-linkage based clustering on several models,
e.g., the bird tail in (c), the “snake” in (e), and the
fin on the back of the dolphin in (b), has been grace-
fully handled by our algorithm.

Finally, note that the search space we use at each
recursion is restricted by a linear ordering, thus the
cut returned is not guaranteed to be the most salient
among all possible 2-way sections (there are expo-
nentially many of them). However, our experimen-
tal results demonstrate remarkable robustness of the
line search approach for mesh segmentation.

8 Conclusion and future work

We present a mesh segmentation algorithm based
on recursive spectral 2-way section and Nyström
approximation. A novel sampling scheme inspired
by shape context is designed to place two sample
faces on perceptually different parts of a shape. Our
study of the effect of Nyström approximation on
spectral embeddings using only two sample faces
suggests that the negative impact of distance distor-
tion in low dimensional embeddings can be coun-
tered by an appropriate sampling scheme. This al-
lows the combination of Nyström method and a
line search based on part salience to produce high-
quality mesh segmentations efficiently and robustly.

A number of ways to automate the segmentation
process have been experimented with. In our cur-
rent implementation, recursion order is determined
by part size, which is one of the three factors of part
salience [7]. Our stopping criterion is still rather
primitive however. Indeed, the question of whether
a segmentation is sufficiently salient is a difficult
one. We believe this is model-dependent and plan
to investigate this issue further. At the same time,
a study of the relative importance between the three
part salience factors would also be interesting.
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Table 1: Execution times (in seconds) for our mesh segmentation algorithm.

Model (# faces) Initialization Sampling Embedding Line Search Total # parts
Heart (1.6K) 0.04 0.03 0.01 0.09 0.17 5

Dolphin (2K) 0.03 0.14 0.03 0.25 0.45 8
Bird (3K) 0.07 0.15 0.02 0.24 0.48 5

Dino-pet (4K) 0.08 0.45 0.15 0.79 1.47 29
“Snake” (12K) 0.24 0.40 0.12 0.61 1.37 4

Bowl (13K) 0.25 0.30 0.07 0.32 0.94 3
Machine part (20K) 0.46 1.82 0.47 2.1 4.85 6

Horse (40K) 0.54 5.3 1.79 5.13 12.76 19
Bunny (70K) 1.02 7.2 1.86 7.29 17.37 14

Isis (200K) 2.92 19.7 4.54 13.48 40.64 5

There is still room to improve the efficiency of
our algorithm, e.g., through reuse of the reference
faces. We would also like to extend our current sam-
pling scheme to include more parts. From a theoret-
ical perspective, we would like to study the polar-
ization phenomenon on the samples used by Nys-
tröm approximation further, especially in a higher
dimensional embedding space. Finally, we believe
that to obtain truly intuitive shape segmentation, the
incorporation of prior human knowledge is neces-
sary. Thus we plan to look into that issue as well.
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(a) (b) (c) (d)

Figure 4: Comparison betweenk-means spectral clustering [13], (a)-(c), and our algorithm, (d), on a hand
model with 4000 faces. (a) Result of spectral clustering usingk-means,k = 6. (b) Result of recursive
k-means,k = 2. The first recursion groups the forefinger and the middle finger together and the third
recursion gives the red and green parts. (c) Embedding of the faces, at the third recursion, that are separated
into the red and green parts in (b), by 2-means;x andy axes represent spectral embedding coordinates
given by the first and second eigenvectors. We see that althoughk-means (k = 2) finds the global minima
in embedding space, the segmentation is still counterintuitive. This is due to the concavities present on the
palm and at the back, which do not give rise to salient parts, but provide a separation between the red and
green parts. (d) Result of our algorithm, which solves the problem shown in (c). The jagged boundaries are
tessellation artifacts, as our segmentation boundary does not cut across faces.

(a) Heart. (b) Dolphin. (c) Bird. (d) Dino-pet. (e) “Snake”.

(f) Bowl. (g) Machine part. (h) Horse. (i) Bunny. (j) Isis.

Figure 5: Some of our segmentation results with running times shown in Table 1.
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