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Abstract ated with thek-means approach, e.ghaining [4],
existence of bad local minima, and the difficulty of
We develop a new mesh segmentation algorithnghoosing an appropriafe
via recursive spectral 2-way cut and Nystrom ap- \we recursively partition a mesh into two parts in
proximation. The cut is performed on 1-D spectralj-p embedding spaces, in the same spirit as normal-
embeddings, which are efficiently computed fromjzed cuts [18]. An optimal cut, based on a quantifi-
appropriately defined distances between the set @fation of perceptual part salience [7], can be easily
mesh faces and only two sample faces. By usingound by a line search. Whereas feiway parti-
a novel sampling scheme based on shape contefpns, it is unclear how part salience can be factored
and a line search over the 1-D embeddings to lointo k-means which would also allow an efficient
cate the most perceptually salient cut, our algorithmsearch for a desirable clustering. To avoid comput-
achieves robust and intuitive segmentation results.ing all pairwise face distances, we apply Nystrom
. method [5, 22] to approximate the eigenvectors of
1 Introduction a matrix by subsampling only a small subset of its

Segmenting a 3D object, typically represented by &0WS- We speed up our algorithm further by select-
triangle mesh, into visually meaningful parts playsind the smallest possible number of samples, two.
a key role in object recognition by humans [6]. ©One key observation [23] about the 1-D embed-
It is also an important problem in geometry pro-dings derived from Nystrom approximation using
cessing [17] with such applications as morph-two sample faces, safi and f;, is that in general
ing [19], skeleton extraction [10], mesh parameterWhen a facef; is closer to one of the samples, e.g.,
ization [24], and compression [15]. Research onfs: On the original mesh, itis also closer foin the
mesh segmentation seeks to find a computationally-D embedding. Thus to make line search work ro-
efficient procedure capable of producing results thabustly, we would want to have the two sample faces
are in close agreement with human shape perceghosen from perceptually separate parts of a shape;
tion, while requiring little or no user intervention.  this is illustrated in Figure 1. We develop a novel
We treat mesh segmentation as a clustering pros@mpling scheme based on shape context [2] that
lem on mesh faces, where face distances are definé@n efficiently and reliably extract such two sample
to respect theminima rule from cognitive stud- faces without segmenting the mesh. The resulting
ies [6]; it stipulates that cut boundaries should con/nesh segmentation algorithm is efficient and pro-
sist of surface points at negative minima of prin-duces robust and meaningful results.
cipal curvatures. We solve the clustering problem
in the spectral embedding spaaerived from the 1.1 Previous work

faces distances. Sp_ectral clustering [1, 3, 5, _13The majority of mesh segmentation works are
18, 20, 2,1] has recelvgq a great dea! of atterTt'c’@eometry-based without the incorporation of prior
recently in computer vision and mgchlne learning. nowledge, e.g., see recent survey by Shamir [17].
Although recent works on the topic have focusec‘ii et al. [12] define a meaningful component of
on using more eigenvectors and computing cluster-

ings in a higher dimensional space, e.g., using Chaining is a well known phenomenon arising from single-
means, we have found this to be non-robust antihkage based clustering [4], where elements are clustered based
. . . on a single link. In the context of mesh segmentation, chaining of
time-consuming for mesh segmentation. The non

A A faces from different parts of a shape typically occurs over a feature-
robustness is mostly due to typical problems associess region, where the minima rule cannot predict a cut boundary.
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Other region-based segmentation algorithms uti-
lize k-means clustering. Shlafman et al. [19] ap-
ply original k-means in the spatial domain where
both geodesic and angle distances between mesh
faces are considered. Liu and Zhang [13] apply

(b) k-means in the spectral domain, where better seg-
mentation results are predicted by the Polarization

Figure 1: We show how the placement of sample! N€orem [3]. Katz and Tal [10] use a p_robabilistic_
faces may influence the result of 2-way cut via linek-méans approach called fuzzy clustering. To opti-
search. The two sample faces dr@ndf, and their Mize cut bounda_mes, a graph min-cut is compyted
Voronoi regions, in terms of face distances (SecOVer a fuzzy region of faces whose membership to
tion 3), are shown in different shades of grey. A_the two pa_tches is inconclusive. An important step
rough direction for the line search in the spectralS © iteratively find patch representatives that act
domain is shown by the arrow. As we can see irPS statistical cluster centers. Preferably, these rep-
(a), line search may be able to locate the best cufesentatives would reside on perceptually separate
marked by a dashed line. But for (b), wheteand ~ Parts of a shape. Their locations determine the size

f, come from the same part, line search will fail. and location of the fuzzy region, which in turn in-
fluences the segmentation result. Typical problems

associated witlk-means exist in all the above three

algorithms. Meanwhile they all require distances

a mesh to be a volume swept by a shape-varying . . .
. etween all face pairs, which are expensive to com-
closed 2D region along a sweep path, between twQ

. ; . . . ute and store.
suitably defined critical points. It works fairly P
well in practice but can produce counterintuitive re- o
sults. Also, it does not conform to the minima rule 1.2 Our contributions

and smoothing of the geometry function may misspyr segmentation algorithm can be seen as an ex-
meaningful segmentations [10]. tension to the normalized cuts approach [18], where
Surface-based mesh segmentation algorithms came utilize a novel sampling scheme to make ef-
be divided into boundary-based [11] and regionfective use of Nystrém approximation at a very
based [14, 16, 13, 19, 10] approaches. Lee dbw sample size, two in fact. Our algorithm also
al. [11] propose a recursive mesh scissoring operaadopts a different optimization criterion, based on
tor, honoring the minima rule [6]. At each step, onepart salience [7], that is specific for mesh segmen-
of the extracted feature curves is selected for comtation. The key features of our algorithm are:
pletion into a cut contour, based on its length and e Efficiency: Our algorithm can handle highly
centricity. Although some contours may be rejected dense meshes directly. It runs@(pnlogn)
by a part salience [7] test, there is no global search  time, compared t®(n?logn) by [10, 13],
for the best cut. The algorithm appears to work the wheren is the number of mesh faces apd
best in a semi-automatic setting. With an effective is the number of recursions. Note that n,
contour completion procedure, snake movements, as it is no greater than the number of parts.
and a small amount of user intervention, excellent e Visually meaningful segmentation: Our al-
segmentation results have been reported. gorithm quantifies the minima rule [6] and the
Watershed was first proposed for mesh segmenta-  part salience measures [7] resulting from cog-
tion by Mangan and Whitaker [14]. Page [16] later nitive studies. This appeals to human percep-
uses fast marching watershed and hill-climbing that ~ tion and ensures the segmentation quality.
respects the minima rule. Although watershed is e Robustness:This is achieved through a com-
fast and there is no need to specify the number of  bination of recursive 2-way cut, salience-based
segments, it is prone to over-segmentation. This  global line search, and our sampling scheme
may be corrected by region merging using a part  based on shape context, which should also be
salience measure [16], but it still does not resolve  useful for other shape analysis tasks.
the “flooding” problem across featureless regions The effectiveness of our approach can be demon-
that should have been identified as cut boundariesstrated using several formal arguments and numer-
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ous examples. We believe our algorithm offers the
best combination of speed, quality, and robustneg
among mesh segmentation algorithms to date.

1.3 Paper organization

The rest of the paper is organized as follows. Seg
tion 2 gives an algorithm overview and Section 3
defines the distance measure. The sampling schen
based on shape context is developed in Section

In Section 5, we describe normalized cuts, Nystrom

» Spectral clustering takes as input affinity ma-
<rix A and typically acts on theormalizedaffinity

matrix N = D~ Y24D~'/? instead [21]. Here

A;; models the probability of data points;j be-

longing to the same cluster ard is the diagonal
_matrix of A’s row sums. In the procedure belo

we only need partial blocks oA and N.

NBESTCUT (M: a sub-mesh with faces)

4. 1.

Select two sample faces and f: from M.
— O(nlogn)

method, and line search. Section 6 quantifies part 2. ComputeW € R%*" a partial distance ma-

salience. Experimental results are given in Sec- trix whererj (resp.sz) encodes the dis-

tion 7 to demonstrate the effectiveness of our apr tance between facg (resp.f:) and facef;,

proach. Finally, we conclude in Section 8 and sug j=1,...,n.—O(nlogn)

gest possible future work. 3. ConvertW into an partial affinity matrix4
using an exponential kernel. ©(n)

2 Algorithm overview 4. Use Nystrom method and to obtainé")

Input and preprocessing: Input to our algorithm ande®, the approximate first two eigenvec-

is a manifold triangle mesh with arbitrary topology tors of the full matrixV. —©(n)

and possibly boundary. Distances between adjacent °: Constrgct t?e linear arrangement where

mesh faces are calculated and serve as edge weights % = 61(' >/€z(~ )i= L,...,n.—©(nlogn)

in the dual graph of the mesh. When the input mesh 6. Line search alongto locate the most salient

is noisy, it is first smoothed slightly using a few cut using our part salience measure, which

steps of Laplacian smoothing so that the face dis- ~ ¢an be updated in constant time along [the

tances can capture more truthfully the surface varir  search. —9(n)

ations, e.g., bending. Alternatively, we could usg 7. Insert the resulting two sub-meshes into the

best fit polynomials [8] to measure bending without priority queue if the resulting salience |is

above a threshold. —©(log p), wherep is
the number of candidate parts so far.

smoothing, but it is more time-consuming.
Recursive 2-way cut:We place all candidate parts,
starting with the original mesh, in a priority queue
ordered by their surface areas. At each step, thEigure 2: BESTCUT(): Salience-based spectral 2-
largest part is selected and the most salient cut i&ay cut. Also shown are the asymptotic time com-
found usingBESTCUT, given in Figure 2, where plexities of each step, whereis the face count.
salience is measured relative to the candidate part.

If the resulting salience is below a user-set thresh
old, then the cut is rejected and the part will no
longer be considered. Otherwise, the resulting tw
subparts are inserted back into the priority queue.
Post-smoothing: Most of the segmentation results
we report are obtained without explicit boundary3 Face distance computations

smoothing, since the cuts are obtained through ﬂneAS in Shlafman et al. [19] and Katz and Tal [10], we

grained line search using part salience and it prefergy giger poth angle and geodesic distances between
shorter cuts. We consider this an advantage of OUhesh faces. but with angle distandeistogram-

algorithm. In the few cases where small jaggies perg, ajized Specifically, the distance between a pair
sist, it is sufficient to use a simple smoothing pro-os adjacentfacesf; and f; is defined as
cedure based on morphological processing, with a ’ !

structuring element of size two, on mesh connectiv- q( 7, ;) = (1—8)-H(fi, f;) +6-G(fi, ), (1)

ity to remove any local artifacts in negligible time.

Termination: The user can specify a maximum whereG(f;, f;) is the geodesic distance between
number of segments to compute. The recursive athe centroids of faceg; and f;, normalized by the

gorithm stops when this number is reached or when
no candidate part has a cut salience, computed via
%ESTCUT, above the given threshold.
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average geodesic distance, &@idf;, f;) is the his-
togram equalized angle distance.

Let 6 be the angle formed by the normals fif
and f;, then one may define the angle distance be-
tweenf; andf; ash(f:, f;) = n(1 —cos ), where
7 is a free parameter aridis subsequently normal-

ized by its average over the whole mesh. '_"OVVeverFigure 3: Faceg, and, are samples furthest apart
for a smooth mesh, the valuesfofvould typically i terms of combined distanag given in (1). f.

be highly concentrated near zero. To increase thSndft are chosen by our sampling scheme.
geometry contrast, we apply histogram equaliza-

tion [9] to h to obtainH, i.e., we sort théi's and -

.~ ferent parts of a sufficiently elongated shape. Be-
map them to a set of equally spaced values in [Osides one cannot find such two faces precisely in
1]. To emphasize the minima rule, we set 0.01, ' P y

— 1 for concave analé. andn — 0.1 for con- sub-quadratic time. Even if we replace geodesic
nm= g'é, n=" . distance by the combined distance (geodesic plus
vex#. Thus faces separated by concave regions over - .

. - angle), the chaining phenomenon [4] reveals that it
the mesh surface are more likely to be clustered |ntc|JS unreliable to judge whether two faces belong to
diffe.rent parts than those just geodesically far AWYyitferent parts simply by measuring a single shortest

Distances between non-‘adjacent fapes are co path between them. This is illustrated in Figure 3,
puteq as s hortest graph distances using Dijkstra here faces from the fin are “chained” together with
alfgt(;]rlthm |nh0(n loﬁ n\)/\,/WZgrtg the. grr]atrr)]h is the dua; faces from the body through the marked flat region;
?h %mes _grr]r:l; o 1 % _lsolngu(ljso (l;ee <1:ases Ojr‘p and f, are the two faces furthest apart but belong

€ edge weig =Lo=0.and) <0< Lre e same body part. Next, we propose a more
ferring to (1). Inthe rest of the paper, we refer to therobust sampling scheme based on shape context to
resulting graph distances (respectively, the corr

. . Calleviate this problem; the two triangles and f;
SPO”d'T‘g shortest paths) as geo_desnc, angleomr are properly selected as samples by this scheme.
bineddistances (paths). They will be used for sam-
pling and face clustering, respectively. No_te th_at4'1 Shape context of a mesh face
we have chosen not to compute true geodesics since
the graph distances given above are much simpler tone of the basic premises of shape context [2] is
compute and they provide sufficiently good approx-that similarity between data points should not be
imations for our work. Finally, note that computing measured by distances between the absolute point
all-pair shortest distances is at lea@tn? logn), coordinates in the original space. Rather, we should
which would be too expensive for large meshes. Wdlarameterize each point by how it is related to the
deal with this problem by carefully selecting two rest of the points and measure distances in a new
sample faces and using only distances originatingeature space. The relationship between a point and
from these two faces to construct the spectral emthe rest of the points definescantextfor the point.

bedding, relying on Nystrom method. We describe The notion of shape context forms the basis of
our sampling scheme next. our sampling scheme. To save storage and process-

ing times, we define the context of a fagewith

respect tok (k is small; we choosé& = 10 in all

our experimentsjeference facesSpecifically, the

The ability to select sample faces from perceptuallycontext vectof(g) = [c1 . .. cx] of g is given by

separate parts of a shape without explicit segmen-

tation is desirable for many tasks, e.g., in finding g )

patch representatives for fuzzy clustering [10]. In G = Z H(fis fivr)sj =1,k

our setting, as explained in Section 1 and Figure 1, =t

we wish to locate samples from perceptually sepawhere the angle distanck is as defined in (1),

rate parts in order for line search to work robustly. f; = g, f,, = h is one of thek reference faces,
The simple strategy of choosing two faces fur-and f1, fo, ..., fm form ashortest geodesic path

thest apart, e.g., geodesically, would not work inbetween faceg and k. In other words, the con-

general, since these two faces may not lie on difiext of faceg is defined by angle distances accu-

flat region

body

4 Sampling based on shape context
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mulated along geodesic paths frgno k reference  step uses the second smallest eigenvector afdhe
faces. The reference faces can be chosen randomiyalized Laplacian matriX, = I — D' A to derive
But for more robust results, we uniformly sample ina 1-D embedding of the image pixels, wheteind
terms of geodesic distances, across the mesh. Onéeare as defined in Figure 2 and one should viéw
chosen, thé: reference faces are used to computeas the weighted graph adjacency matrix. The orig-

context vectors for all the faces. inal normalized cut relies on thresholding and line
search along the embedding has also been suggested
4.2 Our sampling scheme in [20] to locate the best cut.

To select: imatel formlv distributed ref It is known that [21] the second smallest eigen-
0 selects approximately uniformly diStributed et o o1 of the Laplacian matriX is identical to the

erence faqes, we start by choosing one face at rar&’omponent-wise ratibetween the second and first
dom and iteratively select a total @f faces that

. .largest eigenvectors of the normalized affinity ma-
are mutually furthest apart with respect to geodeswrix N = D=2 AD~/2. We use component-wise
distances. This would take tim@(knlogn) us- '

. . ) . . ratio in this paper as it facilitates the use of Nystrém
ing Dijkstra’s algorithm. During this process, the pap y

. method, as we explain in Section 5.3.
context vector for each face with respect to the ref-

erence faces can be computed smultaqeously; we 5 Nystrém approximation
simply need to accumulate the angle distances as
the geodesic paths are being formed. To avoid Computing the full afflnlty matriXA,
Lete™, &2 ... & pe the context vectors of which is at least arD(n?) step, Fowlkes et al. [5]
faces on a part to segment, then the first sanfp|e derive a matrix version of NyStrom method that

and second Samplﬂ are found in linear time by Only requires values in a small sub-block 4f It
approximates th& leading eigenvectors of by us-

fo = argmax ||&? ||, f; = argmax ||@” — &)||.  ing k randomly chosen data samples and extrapolat-
i i ing results from the eigenvectors okax k& matrix.

Our sampling strategy implies that the first sam-SPecifically, let
ple fs is most “isolated”, through angle accumu- X v
lation, from the reference faces. Such a sample is A= |:YT Z} 2
most likely on a peripheral part, e.g., the sample

face on the fin part in Figure 3. The second samplgith x ¢ R*** andY € R**(" % Let X =

fris least similar to the first sample in terms of their gy \ ;77 pe an eigenvalue decompositionsf Then

contexts. The success of our sampling scheme rgne gpproximate eigenvectoi,of A are given by
lies on the premise that if the contexts of two faces

differ significantly, then they do not belong to the - U
same part of an object. T YTUAT

Thus only©(kn) pairs of affinities are needed and
the complexity of computing approximated eigen-
We now describe our spectral 2-way cut and linevectors ofA is reduced ta@(k* + kn). In practice,
search procedure. This is inspired by previous work; < n, and good image segmentation results using
on normalized cut [18] and Nystrom method [5, 22]. spectral embeddings have been reported [5].

We first give a brief introduction to these topics.

5 Spectral 2-way cut and line search

5.3 Spectral embedding and line search

5.1 Normalized cuts Given distancel(f;, f;) between two faceg; and
Normalized cut was first introduced for image seg-/;. defined in (1), we use aexponential kernefo
mentation by Shi and Malik [18], where one seeks alefine the affinity matrix4, A;; = e~4(i:fi)/o”,
graph cut minimizing the normalized cut criterion; The kernel widtho does not appear to have a great
the tendency is to locate a small edge cut that sepnfluence on the partition results, as long as it is not
arates the graph into subgraphs of similar “strengthoo small. Otherwise, small clusters can be formed
of connectivity” to the whole graph. The algorithm that can clutter the spectral embedding. We simply
recursively cuts a graph into two parts and at eaclechooser to be the average of all distances available.
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With only two samplesfs and f:, Nystrdom They conclude that part salience should depend on
method reduces to solving2ax 2 eigenvalue prob- (at least) three factors: isize(V,) relative to the
lem followed by©(n)-time eigenvector extrapola- whole object, thestrength(V..) of its cut boundary,

tion. Specifically, the sampled block df is and itsprotrusivenesgV,,), estimated by the ratio
of the surface area of the part to its base area.
A= {“’1 xn} — [1 N For a given 2-way section of a sub-mesh de-
oo Yn wo by note by the part with a smaller surface area and

0Q its boundary. We define the visual salience of

where0 < u, z;,y; < 1 are affinity values defined C T
" i = vy Q as a convex combination, similar to [16],

by the exponential kernely being the affinity be-
tween fs; and f:. Since we use normalized affinity —
matrix N = Df‘l/QAD‘l/2 rather thand, the cor- V(@) = V(@) + BVe(@) +1V5(@). - G)
responding blockV has to be approximated without whereV,(Q) = Area(Q)/Area(M), a ratio of
knowing all the rows ofA. This can be done via an surface areas/.(Q) measures the cut strength, ac-
approximation to blockZ of A [5], referring to (2). cumulated over then edges 0D Q,
But with the use of component-wise ratios between B
the second and first eigenvectors ¥fas our 1-D Vo(Q) = 1 Z H(e)
embedding, we can avoid any errors resulting from ) m Homax(M)’
this approximation since it can be shown that the
unknown row sums ofl cancel out [23]. whereH oz (M) = mazecrrH(e), Hie) = 0 if
Line search starts at one end of the 1-D embedthe dihedral angle at edgeis convex, and other-
ding and visits one face at a time sequentially. Durwise H(e) = H(e), the histogram equalized an-
ing the search, we maintain a dynantionnected gle distance between two faces incident at edge
meta patch@ formed by faces visited so far. If a Note thatH is only defined for edges interior to the
facea is encountered but it is disjoint fro, then  current patch being segmented. Finally, the protru-
we give a special label ta but do not update). sivenesy’,(Q) = 1 — 4/ A1 \2/Area(Q), where
Later on in the line search, some faces with these,, and)\, are the leading eigenvalues of the covari-
special labels may be joined 19 via a newly en-  ance matrix for the mesh vertices alofig). Note
countered faceé, at which time their labels are re- that both); andV .. can clearly be updated iB(1).
moved andQ is updated. The meta patch can beConstant time update fd?, is also possible since
updated inO(1) time after each face is added. both the mean and the covariance matrix of a ran-
Our algorithm maintains the set of cut bound-dom sequence can be updated(iil) time after
ary edges and vertices of the meta pafghwhere insertion or deletion of a variable (data point).
any exterior edge of the original patch being seg- Part salience is used in several components of
mented is excluded. Using a simple valence countour algorithm. When selecting a candidate part to
ing scheme, we can perform these update@(h) segment, we only use size salience, relative to the
time as well. Information abou® is used to com- original mesh. When finding the best cut, appro-
pute a part salience measure. Our line search locatggiate values ofy, 3, and~ need to be chosen. In
the best cut based on this measure and divides thsur current work, we do not develop an automatic
mesh into two parts, the meta pat¢hand the rest. mechanism for their selection. We have found set-
In rare cases,) might become a closed region with ting o = 0.1, 5 = 0.6, andy = 0.3 to work
holes. This can be detected by our algorithm angenerally well. To determine whether a part should

ecdqQ

the corresponding cut will be disregarded. be segmented further, the part salience returned is
) tested against a user-set threshold. The choice of
6 Part salience the threshold and weighis, 3, and~ is model-

We judge the “goodness” of a 2-way section by gdependent and would require further study.

visual salience measure of the resulting part thath .
a smaller size; this is often a peripheral part that w: Experimental results

wish to cut away from the core body of a shape.in this section, we first evaluate several components
Hoffman and Singh [7] have conducted a variety ofof our segmentation algorithm using isolated tests.
cognitive studies about the salience of a visual partwe then show our segmentation results.
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7.1 2-way cut and line search vsk-means  manifold; it applies to open meshes, (a) and (i), and
meshes with genus greater than zero, (g). It can be

Most k-way partitioning schemes use a variankef A that parts of vari . nd sh re ob
means clustering [1, 10, 13, 19, 21]. The commontse.e d a lpa S0 txa lous sizes a " N lt_':lpetstate Od-
pitfalls of k-means, e.g., bad local minima, link- ained as long as they pass our part safient test an

age, and the difficulty of choosirig have also been the results gener_ally appeal to our intuition. For
well-documented [4]. Our algorithm relieves the most cut boundaries, post-smoothing are not neces-

burden of having to choose a profieby relying on sary at all and only few of them are smoothed using

recursive 2-way cut. The robust sampling scheménOTrE hologlli(;al pfroc:essmr?] t(r)“retgngvre Iocltal atrttlfatct?.
and line search illuminated by part salience neutral- € qualily of our segmentation results attests to

ize the chaining problem. Here we compare our aI-the robustness of our sampling scheme and the ef-

gorithm to spectral clustering usirigmeans [13], ;ectlvenesls of Shqhﬁnce'?c??d I"E)e search. t():lhalnflng,
where full affinity matrix is used and the dimen- or example, which woulld have been a problem for

sionality of the embedding space is the same as thselngle;}llnkgge b.la.sed cluste‘flng |Sn ;everal modhels,
number of desirable segments set by user. The r(?e__.g., t r? t;)'rd lza'f";] (Cd), It r?. s_nabe hln (E)‘ and the
sults are shown in Figure 4, wheteway, (a), which in on the back of the dolphin in (b), has been grace-
partitions a mesh into a desirable number of partéu"y_ handled by our algorithm.

all at once, and recursive 2-means, (b)-(c), are com- Finally, note that the search space we use at each

pared with recursive 2-way cut via line search, (d) recursion is restricted by a linear ordering, thus the
The advantage of our approach is quite eviden,t ‘cut returned is not guaranteed to be the most salient

among all possible 2-way sections (there are expo-
nentially many of them). However, our experimen-
7.2 Two samples vs. more samples tal results demonstrate remarkable robustness of the

We have also experimented with using more samline search approach for mesh segmentation.
ples in Nystrém approximation for computing the

1-D embedding. Although lesk. error is intro-

duced with the use of more samples, where we com8 Conclusion and future work

pare the approximate eigenvectors with the eigen- ) )
vectors of the full normalized affinity matriy, the e present a mesh segmentation algorithm based

resulting segmentation is no better and can somé2" recursive spectral 2-way section and Nystrom

times be even worse. Note that we have conducte@PProximation. A novel sampling scheme inspired

this test using several sampling schemes, includinfy shape context is designed to place two sample

random and uniform sampling based on geodesidaces on perceptually different parts of a shape. Our
angle, combined, and shape context distances; tidudy of the effe.ct of Nystrom approximation on

outcomes are consistent. Apparently, the clusterin§P€ctral embeddings using only two sample faces
structure in the 1-D embedding resulting from usingsuggests that the negative impact of distance distor-

two sample faces only is more favorable, but this isdion in low dimensional embeddings can be coun-
sue requires further study. tered by an appropriate sampling scheme. This al-

lows the combination of Nystrém method and a
line search based on part salience to produce high-
quality mesh segmentations efficiently and robustly.
Our segmentation algorithm has been tested on var- A number of ways to automate the segmentation
ious mesh models having varying size (see Table 1jrocess have been experimented with. In our cur-
genus, boundary type, and geometric complexity irment implementation, recursion order is determined
terms of part count, size and shape. In Table 1, wéy part size, which is one of the three factors of part
report timing statistics recorded on a Xeon 2.2 GHzsalience [7]. Our stopping criterion is still rather
machine with 1GB RAM. Due to sub-sampling, our primitive however. Indeed, the question of whether
algorithm is much more efficient than those requir-a segmentation is sufficiently salient is a difficult
ing all-pair face distances [10, 13]. one. We believe this is model-dependent and plan

Figure 5 displays the segmentation results usto investigate this issue further. At the same time,
ing different colors for different segments. Note a study of the relative importance between the three
that our algorithm only requires a mesh to be a 2part salience factors would also be interesting.

7.3 Mesh segmentation results
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Table 1: Execution times (in seconds) for our mesh segmentation algorithm.

Model (# faces) | Initialization | Sampling | Embedding | Line Search | Total | # parts
Heart (1.6K) 0.04 0.03 0.01 0.09| 0.17 5
Dolphin (2K) 0.03 0.14 0.03 0.25| 0.45 8
Bird (3K) 0.07 0.15 0.02 0.24| 0.48 5
Dino-pet (4K) 0.08 0.45 0.15 0.79 | 147 29
“Snake” (12K) 0.24 0.40 0.12 0.61| 1.37 4
Bowl (13K) 0.25 0.30 0.07 0.32| 0.94 3
Machine part (20K) 0.46 1.82 0.47 21| 4.85 6
Horse (40K) 0.54 5.3 1.79 5.13 | 12.76 19
Bunny (70K) 1.02 7.2 1.86 7.29 | 17.37 14
Isis (200K) 2.92 19.7 4.54 13.48 | 40.64 5

There is still room to improve the efficiency of [11] V. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-
our algorithm, e.g., through reuse of the reference
faces. We would also like to extend our current sam-,

pling scheme to include more parts. From a theoret-

ical perspective, we would like to study the polar-
ization phenomenon on the samples used by Nys-
trém approximation further, especially in a higher [13]
dimensional embedding space. Finally, we believe
that to obtain truly intuitive shape segmentation, the[14]
incorporation of prior human knowledge is neces-
sary. Thus we plan to look into that issue as well.
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Figure 4: Comparison betweénmeans spectral clustering [13], (a)-(c), and our algorithm, (d), on a hand
model with 4000 faces. (a) Result of spectral clustering ugimgeans,k = 6. (b) Result of recursive
k-meansk = 2. The first recursion groups the forefinger and the middle finger together and the third
recursion gives the red and green parts. (¢) Embedding of the faces, at the third recursion, that are separate
into the red and green parts in (b), by 2-meansandy axes represent spectral embedding coordinates
given by the first and second eigenvectors. We see that althoagians £ = 2) finds the global minima

in embedding space, the segmentation is still counterintuitive. This is due to the concavities present on the
palm and at the back, which do not give rise to salient parts, but provide a separation between the red an
green parts. (d) Result of our algorithm, which solves the problem shown in (c). The jagged boundaries are
tessellation artifacts, as our segmentation boundary does not cut across faces.

AN W

(a) Heart. (b) Dolphin. (c) Bird. (d) Dino-pet. (e) “Snake”.
(f) Bowl. (g) Machine part. (h) Horse. (i) Bunny. () Isis.

Figure 5: Some of our segmentation results with running times shown in Table 1.
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