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Figure 1: Progressive synthesis of 3D indoor scenes. Starting from an empty room, results from steps 1, 4, and 7 of the synthesis procedure
are shown. Two close-ups are given on the side for the last result to highlight the placement of small objects into the scene. Object selection
and arrangement are implemented fully automatically based on models learned from a large set of annotated RGB-D Images.

Abstract
We present a data-driven method for synthesizing 3D indoor scenes by inserting objects progressively into an initial, possibly,
empty scene. Instead of relying on few hundreds of hand-crafted 3D scenes, we take advantage of existing large-scale annotated
RGB-D datasets, in particular, the SUN RGB-D database consisting of 10,000+ depth images of real scenes, to form the prior
knowledge for our synthesis task. Our object insertion scheme follows a co-occurrence model and an arrangement model,
both learned from the SUN dataset. The former elects a highly probable combination of object categories along with the
number of instances per category while a plausible placement is defined by the latter model. Compared to previous works on
probabilistic learning for object placement, we make two contributions. First, we learn various classes of higher-order object-
object relations including symmetry, distinct orientation, and proximity from the database. These relations effectively enable
considering objects in semantically formed groups rather than by individuals. Second, while our algorithm inserts objects one
at a time, it attains holistic plausibility of the whole current scene while offering controllability through progressive synthesis.
We conducted several user studies to compare our scene synthesis performance to results obtained by manual synthesis, state-
of-the-art object placement schemes, and variations of parameter settings for the arrangement model.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—

1. Introduction

With the resurgence of VR and AR applications, there has been
an increasing demand for 3D scene data, particularly those of in-
door environments. Large collections of 3D scenes are also im-
mensely valuable both as training data to support machine learn-
ing algorithms for scene analysis and understanding [ZSTX14],
as well as model repositories for data-driven 3D scene model-
ing [CLW∗14, FSL∗15, KMYG12, LZW∗15]. Hence, techniques

and tools that are capable of producing realistic virtual 3D scenes
in high volume and with large diversity are sought after.

Automated or semi-automated generation of 3D indoor scenes
is a relatively new research topic in geometric modeling. Methods
proposed so far can be roughly classified into three categories in
terms of the input and problem formulation: furniture layout op-
timization, scene modeling and reconstruction, and scene synthe-
sis. Layout optimization involves rearranging a given set of pieces
of furniture in a specified room [MSL∗11, YYT∗11], while scene
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modeling is necessarily constrained by a model specification, such
as a Kinect capture [FSL∗15], an online photo [LZW∗15], or a free-
hand sketch [XCF∗13]. On the other hand, the synthesis problem is
typically more open-ended and less constrained. This is the prob-
lem we are interested in.

The best known and state-of-the-art method for synthesizing 3D
indoor scenes is the work of Fisher et al. [FRS∗12]. They take an
example-based synthesis paradigm where the output scene should
bear resemblance to a small number of exemplar 3D scenes pro-
vided by the user. To encourage diversity in the synthesized results,
a larger database of 3D scenes, serving as priors for the synthesis,
is utilized to provide more variations in object occurrences and ar-
rangements, as well as contextual relations between scene objects.
They learn a probabilistic model which mixes knowledge from both
the exemplars and the background database and produce a synthe-
sized scene by sampling from the probabilistic distribution.

Our synthesis approach is inspired in part by Fisher et
al. [FRS∗12]. However, instead of taking a holistic view of scene
synthesis, targeting overall similarity between the generated scene
and the exemplars, we synthesize a 3D scene progressively by in-
serting one or more objects into the scene at a time based on a
learned probabilistic model. Similar to Fisher et al. [FRS∗12], our
probabilistic model also consists of two main components: a co-
occurrence model to guide which objects are to be inserted into the
scene and an arrangement model to determine where each object
should be placed. However, there are two key distinctions related
to the probabilistic model and the associated learning process:

1. In addition to considering pairwise object relations, we extract
and learn salient higher-order relations involving more than two
objects, e.g., two nightstands symmetrically surrounding a bed.
Clearly, higher-order relations of these kinds do exist in many
indoor scenes, and more importantly, such relations are not mere
aggregates of a set of pairwise relations. Incorporating such re-
lations into the probabilistic model allows us to insert a group
of objects into the current scene following the learned priors.

2. Both co-occurrence and arrangement models consider the whole
current scene. This way, we do progressive synthesis to offer
more controllability of the synthesis process while still ensur-
ing global coherence and plausibility of the synthesized result
at each step.

For both the method in [FRS∗12] and our work, along with
any other data-driven methods, the generality and richness of the
data, which forms the prior knowledge for modeling, is critical.
Our co-occurrence and arrangement models are not learned from
a database of a few hundred user-synthesized 3D scenes, but from
a much larger database of depth images capturing real-world in-
door scenes. For our work, we utilize the SUN RGB-D database
of Song et al. [SLX15], which consists of 10,000+ RGB-D scenes
(about 1,300 bedroom scenes alone) in contrast to a total of 130
hand-crafted scenes used by Fisher et al. [FRS∗12]. The ensuing
challenge however, lies in the extraction of object relations from
the far-from-perfect and much noisier RGB-D images.

The co-occurrence model learned for a particular class of scenes
is represented as a factor graph [ZJ10] encoding different types
of pairwise and higher-order relations between objects, including
support, symmetry, distinct orientations, and proximity, along with

their probabilities. Furthermore, the pairwise placement patterns
among different object categories, expressed as the arrangement
model, are learned and clustered by the K-means algorithm. Even-
tually, in the synthesis step, we start from either an empty or a pre-
organized scene and sample a set of objects from the factor graph
to insert in the scene which results in a high combination score.
Afterwards, according to the arrangement model learned from the
RGB-D dataset and additional placement constraints imposed by
design guidelines, we optimize the position and the orientation of
objects in the scene.

We evaluate our contributions by examining the arrangement
plausibility of our method against human efforts to manually de-
sign a placement in a user study. The first of the other two tests
involve comparison with different settings for higher-order rela-
tions and the second one evaluates our approach against Fisher’s
arrangement model in [FRS∗12]. Additionally, we emphasize on
compelling elements in our approach which result in a consider-
able improvement. Particularly, as the major contrast to Fisher et
al. [FRS∗12], we can accomplish holistic plausibility for the whole
scene, not just a dining or study area. The distinction is mostly at-
tributed to the richer source of knowledge which empowers us to
extract, learn, and formulate more object-object relations.

2. Related Work

There are several ways to produce a virtual 3D scene: furniture
layout design or re-arrangements, 3D scene modeling from RGB-
D scans or 2D sketches and images, object placement, or synthesis
from scratch. Our discussion follows this classification. But first,
we start by reviewing two relevant works in the 2D domain.

Edit and shape placement propagation. Employing geomet-
ric relations as the building blocks, both works in [GJWW14,
GJWW15] intend to propagate edit operations in the 2D domain.
In [GJWW14], the edit propagation is applied to similar parts
based on a set of geometric relationships. By incorporating ex-
ample 2D scenes for guiding the shape placement, a more recent
work [GJWW15] learns a probabilistic model based on the feature
sets of geometric relations in example placements, which further
enables generating novel similar placements. Although the second
method can be extended to 3D scenes, both approaches are orig-
inally developed for 2D polygons. Moreover, they only consider
pure geometric relations, rather than semantic higher-order rela-
tions as in our proposed algorithm.

Furniture layout optimization. Focusing on re-arranging furni-
ture in a room, the works of Merrell et al. [MSL∗11] and Yu et
al. [YYT∗11] both start from a given set of furniture placed arbi-
trarily in a room. In [MSL∗11], Merrell et al. optimize the furni-
ture layout based on a cost function encoding spatial relationships
between objects along with ergonomic factors, such as visibility
and accessibility. Yu et al. [YYT∗11] also attempt to achieve the
same goal in an interactive framework by suggesting furniture ar-
rangements following a set of interior design rules, namely visual
balance and alignment. In contrast, our approach enumerates the
category and number of instances per category to be inserted in the
scene automatically and optimizes the placement in a progressive
manner, as opposed to a global optimization.
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Figure 2: An overview of progressive 3D scene synthesis. From the annotated SUN RGB-D image dataset of real scenes, two general types
of relations between objects are obtained; salient higher-order relations to develop a factor graph as the co-occurrence model, which are
accompanied by pairwise spatial relations to learn the arrangement model. Objects are sampled from the factor graph to certify a highly
probable combination. Subsequently, they are placed in the scene observing a high configuration score computed by the arrangement model.

Scene modeling and reconstruction. To acquire a 3D scene, one
can perform reconstruction from freehand sketches [XCF∗13] or
single-view images [LZW∗15]. To model a set of sketched objects,
Xu et al. [XCF∗13] propose a joint processing technique to co-
retrieve and co-place objects in an output scene, according to the
structural groups denoting salient relations between objects. In an-
other recent work, Liu et al. [LZW∗15] segment an input image to
recover object cuboids and obtain the most similar 3D models from
the database to model the complete scene in the image. As opposed
to their works, we synthesize a 3D scene from scratch guided by
knowledge learned from real scenes.

Generating new scenes can also be guided by human activities.
Fisher et al. [FSL∗15] focus on imitating the functional and ge-
ometric properties of the input which is a noisy and incomplete
RGB-D scan of a scene. Our model, in contrast, does not consider
the viable actions in a scene. Instead, we learn co-occurrence and
arrangement relations between objects from RGB-D images. Aim-
ing to extract 3D cuboid arrangements for objects in an RGB-D
scan, and similar to our work, Shao et al. [SMZ∗14] consider a set
of higher-order relations, mainly stability, to construct their model.

Object Placement. The works of Jiang et al. [JLZS12, JLS12]
learn object arrangement models from 3D scene data. Specifically,
in [JLZS12], for a noisy scan of multiple objects and prospective
supporting areas, they deduce the surface that each object should be
placed on along with its feasible position and orientation. To tackle
this problem, they train a probabilistic graphical model based on
various criteria including stability, semantic preference, and stack-
ing objects together. Although they follow a learning algorithm for
object-object relations, contextual information is not encoded in
their model. The work [JLS12] focuses on human-object relations
in compliance with the observation that an object arrangement is
normally controlled by its affordance and reachability. Similar to
our work, they allow placing relevant objects together with the dis-
tinction of grouping them according to human poses they share.

Example-based synthesis. Our approach is inspired in part by the
work of Fisher et al. [FRS∗12]. In their framework, they learn a
probabilistic model to place and arrange the objects from a mix
of user-provided examples and a 3D scene database. Results were
only reported for the synthesis of partial scenes, such as those sur-
rounding an office desk or dining table, not of larger-scale scenes
such as those of a whole bedroom. In addition, their use of a lim-
ited number of training scenes appears to restrict the variety in the
final set of outputs. In our work, we learn from many more depth
images of real-world scenes to attain more diverse arrangement pat-
terns which are observed over whole rooms. As well, our synthe-
sis algorithm is progressive, allowing a higher-degree of modeling
granularity. Technically, one may view our synthesis paradigm as a
special case of theirs with the exemplars given a weight of zero in
the mixed model. In terms of the object co-occurrence and arrange-
ment models, we add higher-order relations and consideration of
holistic scene plausibility into the learning and synthesis pipeline.

3. Overview

In this work, we aim to synthesize plausible 3D indoor scenes given
the scene type and the desired number of objects to be added in
each step. The challenge is first, which objects feature a plausible

Figure 3: Annotations for images in SUN RGB-D. Left: 2D bound-
ing boxes with category labels for objects. Right: Corresponding
3D bounding boxes along with object orientations.
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combination and second, how each object should be placed and ori-
entated to produce a realistic configuration. Additionally, the syn-
thesized scenes should observe diversity and variety.

We start with a set of annotated RGB images along with their
depth data as the main source of knowledge to learn two mod-
els in the proposed approach; the extracted higher-order relations
between objects are encoded in a factor graph as the probabilistic
model and they are augmented with the pairwise relations to state
the recurrent patterns for relative arrangements of different object
categories. To avoid repeated scenes in a group of final outputs, we
apply sampling methods both for generating the list of objects for
the scene and also while solving for their placements. As one of
the key points of our approach, we benefit from utilizing the SUN
RGB-D dataset of more than 10,000 depth images of real-world
scenes which contains annotations for 2D and 3D bounding boxes
of objects along with their category labels and orientations, as dis-
played in Figure 3.

The rest of the paper is organized as follows; in Section 4, we ex-
plain various types of higher-order relations in more detail and the
logic behind the choice of factor graphs as the probabilistic model
for our problem. Section 5 provides a closer look at the pairwise
relations and side-to-side constraints contained in the arrangement
model. Further explanations about utilizing aforementioned models
in a sampling procedure to synthesize scenes are included in Sec-
tion 6. Section 7 presents a comprehensive discussion on results
and the evaluation method. Lastly, we conclude and suggest some
future directions in Section 8.

4. Co-occurrence Model

To control the category and number of instances per category of
objects to be inserted in a scene, the co-occurrence model prior-
itizes the ones with salient relations with other objects which are
present in the scene. The prominence of each relation is denoted
as a probability in a factor graph. We learn these probabilities from
the scenes in RGB-D images and construct a global scene graph for
a specific scene category.

4.1. Types of relations between objects

The co-occurrence model incorporates several classes of relations
between objects. In addition to supporting relations in previous
work [FRS∗12], two or more objects can be grouped according to a
set of higher-order relations, representing their co-occurrences. The
significance of the obtained relations is deduced from their frequen-
cies in the training data. We preserve the ones with instance counts
higher than a specific threshold. These thresholds are specified sep-
arately for each type of relations in Table 1.

Support Relations. Every object in a scene, excluding the room it-
self, requires to be supported by a certain surface of another object.
The support could be either from below or behind. To illustrate, a
book might be supported by either a desk, a shelf or a nightstand
from below while a mirror is usually supported by a wall from be-
hind (Figure 4(a)). We extract and count these relationships from
the labels in the image database.

Symmetry Relations. Being ubiquitous at every scale in the phys-
ical world, geometric symmetry is an inseparable factor from any

Type of relation Threshold
support 10

symmetry 0.5
proximity 5
orientation 5
side-to-side 5

Table 1: The threshold for recognizing salient relations, stated as
the percentage of scenes that include a specific relation

scene synthesis approach. As an example, in a dining set, the chairs
are placed symmetrically around the table. Multiple instances of an
object category is regarded as a symmetric group if their 3D models
are identical. Since it is challenging to detect similarity between the
3D models in images, we assume that having the same size and the
same object category would suffice for being symmetric. Further-
more, the items in a symmetric group might share the same distance
and orientation with respect to an object with a different class label,
which introduces a different set of relationships in our model.

Proximity Relations. The saliency of the relations between ob-
jects can be evaluated based on their proximity. Following the prior
work on organizing scene collections [XMZ∗14], we utilize fre-
quent substructure mining for scene graphs to acquire groups of
two or more objects within a proximity threshold of one another.
We start with modeling each scene in the RGB-D images dataset as
a local graph. The graph comprises the objects as nodes as well as a
set of proximity edges connecting each object to the nearest match
(Figure 5). Thus, applying a standard algorithm for frequent sub-
structure mining, namely gSpan in [YH02], on the collection of all
the local scene graphs would supply recurrent proximity relations
between objects.

Distinct Orientation Relations. To determine the categories for
objects to generate a plausible scene, their relative poses are likely
to provide more guidance. For instance, although a combination of
a TV set and a sofa is repeated in indoor scenes, they are generally
placed too far apart to be considered as a proximity pair. Also, they

Figure 4: (a) The lamp is supported from below by the nightstand
which is itself supported by the floor. The mirror is supported from
behind by the wall. (b) The monitor and the desk are relatively
aligned and they are both oriented oppositely to the chair. The ori-
entations of these three objects are perpendicular to the poses of
the lamp and the nightstand. (Note that all of these relations are
extracted from RGB-D images and the 3D representation in this
figure is for better visualization.)
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Figure 5: A local scene graph constructed for a scene in the SUN
dataset. Each object, represented as a node, is connected to its clos-
est counterpart.

are not categorized as a symmetry or support group, yet the pair
follows a common pattern of placement with opposite orientations.
Observing similar cases, we encode a number of specific orienta-
tion relations in the model, including pairs of objects with aligned,
perpendicular, and opposite orientations (Figure 4(b)).

Note that in our current implementation, we only focus on sym-
metry, proximity, and distinct orientation as the higher-order rela-
tions extracted and applied, while other types of grouping relations
can also be considered. In particular, groups of objects often ap-
pear together in a scene, with specific spatial configurations, due to
the functionalities they each serve and collectively perform. For ex-
ample, a laptop, keyboard, monitor, mouse, mousepad, and printer
are typically placed in a predictable manner. We currently do not
attempt to learn such complex relations as the analysis would re-
quire sophisticated functionality-aware analysis, e.g., [HZvK∗15];
we leave that for future work.

4.2. Global Scene Graph

To allow an efficient estimation of the plausibility score for a scene
configuration, we exploit probabilistic graphical models as in prior
work on example-based scene synthesis [FRS∗12]. However, our
model differs from their approach in several respects, the most no-
table of which is instead of a Bayesian network, we represent the
acquired knowledge from the data in a factor graph [FKLW97].
The principal rationale for this modification is the requirement of
combining various types of relations in one model. We desired
both conditional relations, such as support, and unconditional ones,
namely proximity, to be denoted as a single global graph for a scene
type. Inspired by the approach in [ZJ10], among several graphical
models, we employed factor graphs as they correspond to our goal
the most.

Factor graphs consist of two kinds of nodes; variables and fac-
tors. For example, in our implementation, the global scene graph
for bedrooms contains 30 variables and 108 factor nodes. More de-
tails about the global scene graph, including a list of variables, the
scope of each factor, and learned parameters are provided in the
supplementary material.

Variables. In the global factor graph, the variables denote dis-
parate object categories along with the possibly maximal number

Figure 6: A part of the global scene graph containing three nodes:
bed, nightstand_1, and nightstand_2, along with all the salient re-
lations between them, encoded in factors.

of instances per category. To put it another way, for each differ-
ent number of instances of a category, a distinct binary variable is
incorporated in the model. By way of illustration, if we do not de-
tect a scene in the dataset with more than two chairs, we preserve
two variable nodes for chairs, each with two possible values; one
demonstrating the presence of the first chair and the second variable
for the second chair. Obviously, the second variable is conditioned
on the first one.

Factors. The factor nodes in the co-occurrence model primarily in-
dicate the relations between objects and their probabilities. Hence,
every factor is associated with two or more variable nodes. As
an example, in Figure 6, forient(bed,nightstand) denotes the fre-
quent aligned orientation between the bed and the nightstand and
fsymm(bed,nightstand,nightstand) stores the probability informa-
tion for a group of two nightstands symmetrically placed on two
sides of a bed. Additionally, to demonstrate the occurrence proba-
bility of one object, a set of single-variable factor nodes are con-
tained in the graph, indicated as f f req in Figure 6.

5. Arrangement Model

The plausibility of a scene is contingent on the layout of the
scene and its comprising objects; i.e. where each object is placed
and which orientation it indicates. Thus, in addition to the co-
occurrence model for determining the categories of objects in a
scene, the synthesis scheme entails an arrangement model to as-
certain a realistic placement for the selected set of objects.

The principal components of the arrangement model is augment-
ing the higher-order relations with the pairwise spatial relations be-
tween different objects. However, we observed that K-means clus-
tering results in a more robust description of these relations than
the Gaussian mixture models in their method, primarily owing to
the fact that GMMs tend to suffer from overfitting in the case of
a small amount of training data. Moreover, instead of considering
only the centroids of objects, our model respects the side-to-side
relations between them as well to fulfill some arrangement con-
straints such as pushing objects to the walls.

5.1. Pairwise Spatial Relations

To model the arrangement of objects, in addition to the higher-order
relations, we extract the spatial relations between every pair of ob-
jects present in all the instances of a particular scene category in
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the dataset. Both position and orientation factorize the placement of
an object. As a consequence, the pairwise relations integrate three
variables (x,y,θ); x and y are the projected coordinates of the center
of the object 3D bounding box (as in Figure 7(a)), and θ depicts the
yaw angle for the object orientation which measures how much the
object is rotated about the z axis, indicating the direction it faces. To
reduce the number of parameters of the model, we do not include
the z coordinate for it can be estimated by knowing the supporting
surface.

During locating an object in the scene, we examine its position
and orientation with respect to other objects. Accordingly, for a pair
of object categories C1,C2, the acquired triples (x,y,θ) encode the
position of the instances of category C1 in the frame of category C2
objects and the angle between their orientation vectors as annotated
in the SUN RGB-D dataset. Thereafter, to account for varied ratio-
nal settings of a pair, we apply the K-means clustering algorithm to
obtain several feasible modes. Since the number of clusters changes
for each pair, we evaluate the silhouette values [Rou87] to estimate
the appropriate number.

5.2. Side-to-side Constraints

A group of critical arrangement standards which mainly require
certain pairs of objects to have the minimal distance could not be
perfectly achieved through a model based on the centroids of ob-
jects. To name a few instances, nightstands are generally found
adjoining to the bed as illustrated in Figure 7(b) or nearly all of
the pieces of furniture supported by the floor, rested against the
walls, which demands counting walls as objects in the model. Con-
sequently, we investigate distances between disparate pairs of sides
of two objects and treat it as a placement guideline if it is less than a
definite threshold, which is set to 30cm in our implementation, and
occurs frequently enough (Table 1). The collection of side-to-side
constraints leads to creating real-world scene layouts by means of
rejecting undesirable samples.

6. Scene Synthesis

Our scene synthesis framework achieves flexibility through the
choice of starting from either an empty scene of a particular cat-
egory or a prearranged one. Additionally, the desired number of
extra objects for the input scene can be specified by the user. To
maintain plausibility while reducing the optimization parameters,
we adopt a progressive approach to place objects in the scene, one

Figure 7: (a) The relative positions of the nightstand, the table, the
desk, and the chair in the coordinate frame of the bed (illustrated by
the red arrows) to learn pairwise relations. (b) An example of side-
to-side constraints between two sides of bounding boxes of the bed
and the nightstand. (Note that all of these relations are extracted
from RGB-D images and the 3D representation in this figure is for
better visualization.)

group at a time. The results in Section 7 demonstrate that our algo-
rithm generates scenes with holistic coherency.

6.1. Sampling Object Categories

To determine the categories and the number of instances for each
category of objects, we draw samples from the factor graph formu-
lated in Section 4. To attain both variety in the synthesized scenes
and soundness in the sampled set, we perform the Markov Chain
Monte Carlo (MCMC) method [Bis07] to obtain multiple plausible
combinations of objects.

The sampling step begins with a random collection and proceeds
by enabling, disabling, or replacing a factor in each iteration. When
we enable a factor, we assign the value one to the associated vari-
ables, denoting the presence of the corresponding objects in the
scene. Disabling refers to the reverse act of setting the binary vari-
ables to zero and integrating the two aforementioned acts intro-
duces a separate type of movement in the sampling process as fac-
tor replacement. The probability of selecting each kind of moves
is adjusted according to the number of existing objects. As an ex-
ample, if the user aimed for five new objects and the current set
contains six, the probability of disabling factors becomes higher
than the other two types.

Every possible move is evaluated according to the joint proba-
bility of the factor graph, which is interpreted as the objects com-
bination score. If the scores for current and new combinations are
denoted by s and s′ respectively, the proposed move is accepted
with probability:

α = min(
s′

s
,1) (1)

We repeat sampling for a fixed number of iterations to produce var-
ied reasonable groups of objects.

6.2. Object Placement

The above sampling procedure is followed by placing each object
in the set with respect to the existing ones. The order in which mul-
tiple objects are placed depends on their sizes and the number of
their salient relations with other objects. Larger objects with more
relations limit the arrangement of others, which induces their prece-
dence for being placed in the scene.

We utilize a discrete optimization approach by taking samples
from the pairs in the training data. When an object is being inserted
in the scene, the algorithm searches for a current object with the
most salient relationship with the new one. To identify saliency,
besides the occurrence probability of every relation in a particular
class, various types of relations should be ranked in accordance
with their importance. Our experiments revealed that prioritizing
in the order of support, symmetry, and distinct orientations, leads
to promising results.

Similar to the previous step, we employ MCMC sampling to
avoid copying arrangements in the training data. The samples are
generated for the position and orientation of the new object with
respect to its paired object from the acquired clusters in Section 5,
weighted by the number of available data points in each cluster. To
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evaluate each sample, we compute the scene configuration score
which equals the sum of K-means scores for all the pairs of objects
in the scene which are related to the new object through at least one
of the higher-order relations.

6.3. Holistic Plausibility Constraints

The scene configuration score is not sufficient for ensuring the plau-
sibility of the final scene. We reject the sample placements con-
travening the holistic plausibility constraints including side-to-side
constraints, objects not colliding, and sufficient space on the sup-
porting surface. Among the remaining samples, we pick the one
with the highest scene configuration score.

7. Results and Evaluation

Considering the nonexistence of a quantitative criteria for analyz-
ing the plausibility of a scene arrangement, we entrusted human
subjects to judge the quality of our results. We first compared our
synthesized scenes against manually arranged ones in a pairwise
manner. Second, we produced a set of results by removing one or
multiple types of relations between objects from the model and in-
vestigated their impact on the final placement. We also compared
our approach against the object arrangement model by Fisher et
al. [FRS∗12].

The user studies were distributed among 35 graduate students
with diverse majors. User study results reveal (a) our results are
reasonably close to human-level arrangement, (b) the effective-
ness of relation models in our method, and (c) a clear advantage
of our learned object arrangement model against the state-of-the-
art [FRS∗12].

7.1. Datasets

For extracting the knowledge for our models, we mainly exploit the
images in SUN RGB-D dataset [SLX15, NSF12, JKJ∗13, XOT13].
We retrieve the scenes with the same label as the target category
and learn the co-occurrence and arrangement models conforming
to them. The dataset incorporates 10,335 images from 47 scene cat-
egories in total. Existing objects are from about 800 various cate-
gories. To illustrate, there are around 1300 bedroom images. In our
method, we focus on 2D and 3D bounding boxes and orientations
of objects among the annotations in the dataset.

To model support relations, since SUN RGB-D does not include
labels for supporting and supported surfaces, we concentrated on
NYU Depth dataset V2 [NSF12] which is also included in SUN
dataset. NYU dataset comprises 1449 images including 383 sam-
ples of bedroom category.

For the synthesis of scenes, we utilized the 3D models collected
in the scene database in [FRS∗12]. Furthermore, to display the out-
put, we employ a slightly modified version of their scene viewer.

7.2. Comparison with Human Performance

To be aligned with real-world data, the synthesized scene should
express an object arrangement which is feasible and plausible, i.e.
in addition to a set of hard constraints, such as no collision be-
tween objects or sufficient supporting area for an object, there is a
group of guidelines for placing objects in a room that are challeng-
ing to be stated concisely. The comprehensive evaluation intends

Figure 8: The results for the comprehensive evaluation for 20
scenes. The y axis states the percentage of votes for our method,
manually designed, and the ’Cannot Decide’ option as green, blue,
and yellow bars, respectively.

to assess the plausibility of our synthesized results subject to these
constraints and guidelines. The control group is a set of manually
arranged scenes created by non-expert users in a similar setting.

In this study, for a collection of 20 scenes, randomly chosen
among the ones generated by our approach, we asked a user to
arrange the same set of objects for each room without providing
him/her any prior examples of plausible scenes. Next, we ask users
to rate between pairs of results, one by our algorithm and the other
by a human, which one is more plausible. Figure 8 summarizes the
results. On average, 52% of the votes were assigned to manually de-
signed scenes while object arrangements produced by our method
were selected 41% of times, leaving 7% for the cases that the user
could not recognize which scene is more plausible. These numbers
demonstrate we are very close to human-level performance.

7.3. Higher-order Relations and Constraints Evaluation

To demonstrate the effectiveness of salient relations and constraints
learned in our model, we performed a second user study focus-
ing on different modes of higher-order relations. The synthesized
scenes in the previous study are split into four subgroups. For each
subgroup, a comparing arrangement is reproduced with one or two
types of salient relations being removed. In the experiment, partici-
pants are presented with two views of each scene in a pair and asked
to select the more plausible one. The results are plotted in Figure 9.
It shows that integrating each class of higher-order relations results
in a significant improvement in the plausibility test, especially for
the “symmetry and orientation”, and “side-to-side” relations.

Symmetry Relations. Excluding symmetry from the set of salient
relations in the model does not considerably affect the plausibility
of the final arrangement; however, it might lead to choosing dif-
ferent 3D models for symmetric objects. We observed that objects
in a symmetry group are normally associated through other types
of higher-order relations, which results in considering them while
determining the position and the orientation of one of the objects in
the group. To illustrate, in the first column of Figure 10, although
the nightstands are not placed perfectly symmetrically around the
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Figure 10: Comparison with different parameter settings. In each column, the top row represents the arrangement produced by our algorithm
and the bottom row is related to discarding (a) symmetry, (b) orientation, (c) symmetry and orientation, (d) side-to-side relations, from left
to right, respectively.

bed, they are arranged on two sides of the bed and relatively close
to the wall.

Distinct Orientation Relations. To represent the influence of this
category, consider the second column in Figure 10 in which an in-
correct orientation is assigned to the TV. To go into detail, the pair
(bed, TV) is not incorporated in optimization steps for the TV as
an outcome of removing the oppositely oriented relation from the
model.

Symmetry and Orientation Relations. If we cross out both sym-
metry and orientation from the list of salient relations, all the other
objects will be taken into account to obtain an ideal arrangement for
an object. As demonstrated in the third column in Figure 10, this
behavior might induce undesirable output such as the orientation of
the nightstand in this room. In this example, the desk and the shelf
are inserted before the nightstand because of their larger sizes and
consequently, pairs (desk, nightstand) and (shelf, nightstand) lead
to the improper pose for the nightstand. On the other hand, in our
approach the above pairs do not influence the arrangement process

Figure 9: For each mode of higher-order relations, the green bar
demonstrates the output for the general setting while the blue bar
is for the percentage of votes for eliminating the specific relation
from the model.

for the nightstand since there are no salient symmetry or orientation
relations between them.

Side-to-Side Constraints. Although the salient relations provide a
solution for relative placement of objects, the holistic arrangement
is not counted as plausible unless side-to-side constraints are added
to the model. Even for a simple scene like the one shown in the
last column in Figure 10, the position of the bed is not entirely
suitable since its back side is too far from a wall and it is almost in
the middle of the room. In contrast, side-to-side relations constrain
almost a zero distance between the back of a bed and a wall.

7.4. Comparison with the Arrangement Model in [FRS∗12]

The work that comes the closest to ours is Fisher’s object arrange-
ment model in [FRS∗12]. Note that although the general models
share a set of similarities in two methods, they differ when it comes
to the details and applying the models. To indicate that these vari-
ations make a notable difference in the final result, we attempted
to compare the two methods in a similar setting. Since justifying
plausibility for two scenes with both different sets of objects and
different placements is more tricky, we only compared the arrange-
ment models of two approaches for the same set of objects. We
also factor out the influence of the source of data by adapting their
arrangement model to utilize SUN RGB-D dataset. Furthermore,
we trained a set of GMMs for pairwise spatial relations and im-
plemented hill climbing to optimize the object placement. We pro-
duced arrangements for half of the scenes in the first study by their
approach and sought users’ opinions on the plausibility of each pair
of scenes. Since we do not have any exemplar scenes as the input
in our algorithm, we assumed a zero weight for examples in their
work.

The user study results indicate that the users significantly prefer
our method over Fisher’s arrangement model for holistic plausi-
bility. Quantitatively, our results were favored 93% of times while
their approach received 7% of users’ preferences. We inspected that
stating pairwise relations only as coordinates of the centroids of
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objects in Fisher’s model causes the issue of not pushing objects to
walls when it is essential. To illustrate, consider the arrangements
in the top row of Figure 11. Although Fisher’s arrangement model
succeeds in finding a plausible relative arrangements between ob-
jects, the scene is not voted as holistically plausible, since objects
are not pushed to walls. As explained in Section 5.2, side-to-side
constraints in our model prohibits similar cases.

A closer investigation reveals that for a continuous optimization
such as hill climbing in Fisher’s approach, a richer source of data
is required to avoid unclear distributions for pairwise relations. We
instead applied MCMC sampling to provide a more clear image of
a plausible arrangement. Furthermore, when all the pairs are con-
sidered, a large number of free parameters is involved in the opti-
mization task which might fail to find a plausible solution, namely
the placement for the pink stool and the orientation for the brown
dresser in the bottom row of Figure 11. In contrast, we only con-
sider pairs with at least one of the salient higher-order relations to
prevent misleading the optimization process.

8. Discussion and future work

We propose a data-driven 3D indoor scene synthesis scheme to
automatically select and place objects progressively. The salient
higher-order object-object relations learned by our models, along
with the rich source of annotated RGB-D images utilized during
learning, distinguish our work from previous example-based and
probabilistic learning methods for 3D scene synthesis. Subjective
evaluations validate our argument that although progressive syn-
thesis offers more local controllability, it ensures global coherence
and holistic plausibility of the scene as well.

The key observation which motivated our work at the start is
that all the automatically synthesized scenes from existing works
appeared to be quite simple and clean, while real scenes which sur-
round us can be rather cluttered and untidy. Since untidy placement
of many objects does not necessarily exhibit clear global patterns, it
may not be easy to learn a clean global probabilistic model. To this
end, a progressive placement based on local object-object relations,
like the one adopted by our work, may be more promising.

Figure 11: Comparison of Fisher’s arrangement model (the left
column), against our approach (the right column).

Limitations and Future Work. Ultimately, the success of all data-
driven approaches critically depends on the richness of the data
source. Relying on a relatively small number of hand-crafted 3D
scenes, which are mostly clean to start with, does limit the variabil-
ity and messiness of the synthesized scenes. Our work learns the
synthesis model from real scenes, in the form of RGB-D images,
and from a much larger number of them compared to previous at-
tempts. Even so, we believe that we are still far from being able
to synthesize highly clustered and untidy scenes, and as the results
demonstrate, the set of selected objects are not diverse enough to
be accounted a rich dataset. One possible future work is to tap into
the vast amount of scene photographs; some of these, with annota-
tions, are available from the Microsoft COCO [LMB∗14] and the
Visual Genome datasets [KZG∗16]. However, learning 3D object
placements from photographs offers a different set of challenges.

In addition to the small number of detailed items in the synthe-
sized scenes, there are other limitations that differentiate the cur-
rent set of results from real-world data. Particularly, our algorithm
is designed for perfect rectangular rooms and is not applicable to
other shapes, e.g. L-shaped rooms. As another instance, consider
the chair and the desk in the right scene in Figure 1. Normally, a
chair is partially occluded by a desk or a table; however, the hard
constraint of intersection between bounding boxes of objects pre-
vent such a setting. The algorithm might encounter failure in some
cases. This can be seen when the algorithm attempts to insert a bed
and a pair of night stands in the scene and orientation relations are
removed from the model, which yields to a higher priority for the
symmetry pair of two night stands over the bed and since the sys-
tem is not able to determine a plausible location for the bed, it is
removed in spite of its discriminating characteristics for a bedroom.

Another future direction stemming from this work is to render
each generated scene from multiple viewpoints to obtain various
RGB-D images. This will lead to supplying more accurate and
noise-free training data for a set of computer vision tasks related
to scene understanding. Technically, the synthesis algorithm can
be improved, e.g., to speed up the sampling process and to learn
more granular object-object relations, as well as a richer variety of
higher-order structural or functional relations.
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