
Quality Encoding for Tetrahedral Mesh Optimization

Kai Xua,b, Zhi-Quan Chenga, Yanzhen Wanga, Yueshan Xionga, Hao Zhang∗,b

aSchool of Computer Science, National University of Defense Technology, China
bSchool of Computing Science, Simon Fraser University, Canada

Abstract

We define quality differential coordinates (QDC) for per-vertex encoding of the quality of a tetrahedral mesh. QDC measures the
deviation of a mesh vertex from a position which maximizes the combined quality of the set of tetrahedra incident at that vertex.
Our formulation allows the incorporation of different choices of element quality metrics into QDC construction to penalize badly
shaped and inverted tetrahedra. We develop an algorithm for tetrahedral mesh optimization through energy minimization driven
by QDC. The variational problem is solved efficiently and robustly using gradient flow based on a stable semi-implicit integration
scheme. To ensure quality boundary of the resulting tetrahedral mesh, we propose a harmonic-guided optimization scheme which
leads to consistent handling of both the interior and boundary tetrahedra.

Key words: Tetrahedral mesh optimization, Tetrahedral element quality, Algebraic metrics, Quality differential coordinates

1. Introduction

Tetrahedral meshes are widely used in computer graphics for
physically-based modeling, in particular realistic simulation of
deformable objects [27] and fluid [11] via the finite element or
finite volume method. High-quality tetrahedral meshes can re-
markably improve the numerical accuracy and convergence of
the simulation, as well as the visual appearance of the object
surface. Tetrahedral meshes reconstructed from volume data or
generated by tiling a scanned 3D surface often do not possess
the desired quality. Their surfaces are typically rough due to
physical noises in the data. Badly shaped, degenerate or tan-
gled (i.e., inverted) tetrahedra are often present and they can
significantly hinder the performance of numerical simulation.

To produce tetrahedral meshes with smooth boundaries and
well-shaped interior tetrahedra, one natural solution is to em-
ploy a two-stage method. In the first stage, feature-preserving
surface fairing is performed to denoise the surface mesh and
improve its quality. The second stage then aims to improve the
quality of the mesh interior while keeping the smoothed surface
boundary approximately unchanged. Typically, the quality of a
mesh element, a tetrahedron in our context, is measured based
on its effect on interpolation error, discretization error, and the
conditioning of the stiffness matrix [32].

Surface fairing has been extensively researched during the
last decade and many excellent feature-preserving faring algo-
rithms [9, 14, 21, 34, 37] are now available. Many of them can
produce smooth, high-quality surface (triangular) meshes while
preserving geometric features. However, surface fairing is gen-
erally oblivious to the quality of the interior tetrahedral mesh.

∗Corresponding author. Tel.: +1 778-782-6843.
Email addresses: kaixu@nudt.edu.cn (Kai Xu),

cheng.zhiquan@gmail.com (Zhi-Quan Cheng),
yzwang@nudt.edu.cn (Yanzhen Wang), ysxiong@nudt.edu.cn
(Yueshan Xiong), haoz@cs.sfu.ca (Hao Zhang)

By repositioning boundary vertices during faring, one may even
damage the quality of certain boundary tetrahedra.

The handling of boundary tetrahedra is a difficult problem
for both tetrahedral mesh generation and optimization. Pre-
vious methods often trade off between two competing goals:
quality improvement and boundary conformation. Some meth-
ods [13, 17, 16, 23, 28] choose to fix all boundary vertices
during optimization of tetrahedral element quality, which con-
strains the processing of boundary tetrahedra. Other meth-
ods [19, 22] optimize the boundary tetrahedra by repositioning
boundary vertices or by changing boundary mesh connectivity
under necessary constraints. However, these methods can still
produce degenerate boundary tetrahedra. Additional process-
ing to remove the degeneracies [7] is often needed. However
this may in turn introduce noticeable boundary error and hence
new surface noises as well as distortion of surface features.

As a result, the main difficulties with the two-stage approach
as we describe above calls for an algorithm which can consis-
tently improve the quality of the interior and boundary tetra-
hedra without introducing noticeable errors at the boundary.
Other issues of concern include numerical stability and speed.
Previous mesh optimization methods [15, 18, 19] mostly em-
ploy nonlinear optimization whose objective function is built
directly from certain mesh quality metrics [32]. These methods
can turn an initial mesh with sufficient quality into an even bet-
ter one, however they may fail to converge on an input whose
quality is too low. In addition, due to the slow convergence rate
and high computational cost of each iteration, these approaches
often cannot deal with large data sets.

In this paper, we propose a variational approach to tetrahe-
dral mesh optimization based on quality encoding. Our ap-
proach is inspired by existing works on Laplacian mesh edit-
ing [1, 5, 33, 38], where the main idea is to use a representation
that captures the local differential properties of the surface and

Preprint submitted to Computers & Graphics March 2, 2009

Figure 1: Given an input tetrahedral mesh (left), our method can well improve the mesh quality (middle). With harmonic field guidance, the quality of boundary
tetrahedra (highlighted in red) can be better improved (right). Note the zoomed-in comparison of the boundary tetrahedra with and w/o harmonic field guidance.

to preserve these properties during deformation [5]. Specifi-
cally, differential coordinates are used to encode surface de-
tails. A deformed mesh is obtained by reconstructing the mesh
geometry under positional constraints of edited vertices while
preserving the surface details as much as possible.

Analogously, we introduce a volumetric representation,
which we call quality differential coordinates (QDC), to en-
code the “quality details” at the vertices of a tetrahedral mesh.
Specifically, QDC encodes mesh quality as the deviation of a
vertex from a position which maximizes the combined qual-
ity of the tetrahedra incident at that vertex, where the element
quality is measured by quality metric [32]. Based on QDC, a
quadric energy is built to measure the distance between the in-
put mesh and its counterpart with the total element quality max-
imized. Minimizing the energy under the positional constraints
of boundary vertices leads to optimization of mesh quality.

Different from preserving surface details in the context of
mesh editing, the variational process in our method improves
the “quality details”. The resulting nonlinear variational prob-
lem is solved by a semi-implicit gradient flow solver derived
from [3]. Through analysis and numerical experiments, we
show that our solver obtains both robustness and efficiency by
improving the conditioning of the system matrix. To better op-
timize boundary tetrahedra, we propose harmonic-guided opti-
mization. Under the guidance of harmonic weight fields, the
boundary tetrahedra can benefit from weighted least-squares
optimization, resulting in high-quality boundary tetrahedra (see
Figure 1). Figure 2 gives an overview of our algorithm. The
main contributions of our work are:

• Flexibility: Different quality metrics and their combina-

Figure 2: Algorithm overview. Given a tetrahedral mesh, we first compute
a harmonic weight field over the entire mesh. Then our algorithm alternates
between quality encoding with QDC and mesh reconstruction guided by the
harmonic field until convergence. The reconstruction, from QDC to Cartesian
coordinates, minimizes the energy function that measures the distance between
the input mesh and its counterpart with the total element quality maximized.

tions can be used for quality encoding to obtain different
optimization behavior and suit different applications.

• Consistent optimization: With harmonic-guided optimiza-
tion, interior and boundary tetraheda can be improved
more consistently.

• Simultaneous smoothing and untangling: By integrating
a quality metric which is continuous over <3, our algo-
rithm can simultaneously untangle (removal of inverted el-
ements) and smooth a mesh.

• Robustness and efficiency: Our algorithm can robustly op-
timize meshes with low quality. The semi-implicit gradi-
ent flow solver provides fast convergence and efficiency.

2. Related works

Tetrahedral mesh optimization, designed to improve the
quality of a mesh, is an important research topic in both com-
puter graphics and several industrial applications. Many algo-
rithms have been proposed during the last decade. We only
review those works most related to ours.

The basic methods for mesh quality improvement can be
classified into two categories. The first category of methods
apply topological transformations to improve a mesh, typically
by changing its connectivity. The operations include local face
swapping, element or vertex insertion/deletion, etc. The other
type of methods, referred to as smoothing or vertex reposi-
tioning, improve a mesh by moving its vertices while keep-
ing the mesh connectivity unchanged. For this class of tech-
niques [13, 15, 16, 17, 23, 28], quality improvement is reduced
to a numerical optimization problem where the objective func-
tion measures one or more mesh properties. Minimizing the ob-
jective function through vertex repositioning leads to improve-
ment in those mesh properties. Combining the two strategies
can often result in higher quality meshes [19, 22].

Vertex repositioning employs quality metrics defined on
mesh elements to measure their quality. Shewchuk [32] pro-
vided a clear exposition of the relations between the metrics and
(1) the conditioning of stiffness matrices in finite element meth-
ods and (2) the accuracy of linear interpolation of functions and
their gradients. Based on the quality metrics, two classes of ap-
proaches, local and global optimizations, have been proposed.

2

For local methods [15, 16, 23], an objective function is built
on a submesh (see Figure 3) to locally measure the mesh qual-
ity. Quality improvement is achieved by repeating a local opti-
mization of the objective function defined on each submesh.

Objective functions for global methods [12, 17, 28] are con-
structed by accumulating contributions from each local measure
into one scalar function of vertex positions. The overall mesh
is optimized through minimizing the global objective function.
In [17], two methods, inexact Newton and block coordinate
descent, for numerically optimizing global objective functions
were compared. While inexact Newton method leads to all-
vertex optimization [17] where all of the free vertices are moved
simultaneously within a single iteration, the block coordinate
descent results in a single-vertex optimization [17] in which
only one vertex at a time is modified through a sub-optimization
for that vertex. Local methods can also be seen as single-vertex
methods. Generally, all-vertex approaches have faster conver-
gence rate and often provide more accurate optimization results
than single-vertex ones, although they need more computation
for a single iteration [17]. Our method fits into the all-vertex
category since our energy function is built globally and all the
vertices are repositioned simultaneously.

Methods reviewed above can only optimize a valid mesh,
i.e., one that does not have tangled elements, since their ob-
jective functions present singularities when any element is tan-
gled. To overcome this problem, Freitag et al. [15] proposed
a two-stage method to untangle and smooth tetrahedral meshes
separately. By modifying two quality metrics and their corre-
sponding objective functions to ensure their continuity over<3,
Escobar et al. [13] obtained an algorithm which can simultane-
ously smooth and untangle a tetrahedral mesh.

Minimization of the above objective functions is often a non-
linear problem. For meshes with very low quality, most of the
existing methods will run into slow convergence or even di-
vergence. Furthermore, previous methods [12, 13, 17] often
result in bad boundary tetrahedra since boundary vertices are
fixed for boundary conformation and hence boundary tetrahe-
dra benefit less from the optimization than interior ones. Some
methods [19, 22] relax the problem to approximately preserve
the boundary shape. They employ constrained smoothing of
boundary vertices, in which a boundary vertex can be moved
within a common plane or edge of its neighbor vertices to avoid
boundary shape distortion [19]. However, curved boundaries
can not benefit from such an approach as few neighboring ver-
tices share a common plane or edge [22].

Alliez et al. [2] proposed a variational meshing algorithm,
in which both vertex positions and connectivity are updated to
minimize the same quadric energy. This energy is defined based
on optimal Voronoi partition [6] where no element quality met-
ric is considered. In our approach, quality metrics are encapsu-
lated explicitly into the objective function. Moreover, the vari-
ational meshing algorithm also shares the problem of boundary
degeneracy due to the requirement of boundary conformation.

Laplacian mesh processing has been extended to optimize
triangular meshes recently [26, 29]. Their methods can be
successfully used for quality improvement of triangular mesh.
However, for optimization of tetrahedral mesh, simple Lapla-

cian smoothing can produce tangled tetrahedra when the mesh
boundary is non-convex.

3. Mesh Quality Encoding

In this section, we give a brief review of mesh quality mea-
surement. Then, we introduce QDC-based quality encoding.

Let a tetrahedral mesh M be described by a triple (V,E,T),
whereV is the set of vertices, E the set of edges and T the set
of tetrahedra. V̂ ⊂ V denotes the set of boundary vertices, and
Ê ⊂ E the set of boundary edges. Let |•| denote the size of a set.
The position of vertex vi ∈ V is represented by Cartesian coor-
dinates vi = (xi, yi, zi)T ∈ <3. X = (xT, yT, zT)T ∈ <3×|V| refers
to the collection of all vertex coordinates, where x = (xi)T

vi∈V
∈

<|V|, y = (yi)T
vi∈V

and z = (zi)T
vi∈V

. Throughout the paper “tet”
will be the abbreviation for tetrahedron. Each tet t consists of a
small subset of the vertices, denoted byVt. Xt ∈ <

3×|Vt | is the
coordinate matrix of all vertices in t. Tet t is a boundary tet if
and only if at least one of its vertices is a boundary vertex.

3.1. Mesh Quality Measurement
Mesh generation and optimization algorithms often evaluate

element quality by a continuous function q : <3×|Vt | → <.
In particular, q(Xt) or qt for short, measures the quality of
the tet t, where we assume a larger value indicates higher
quality throughout this paper. Many such quality metrics are
available [24, 32]. We, however, prefer those algebraic ones
which can measure the orientation of a tet, allowing to opti-
mize against tangled tets. Specifically, qt = 1 if t is a regular
tet, qt = 0 if it is flat, and qt < 0 if it is tangled (inverted). Ob-
jective functions are often built with the inverse of qt (denoted
by q̃t, where q̃t ∈ [1,∞) when t is not tangled). so that quality
improvement can be achieved by a minimization process. In our
experiments, we use the original versions of the quality metrics
to evaluate and compare the quality of resulting meshes.

We employ three algebraic quality metrics which measure a
tet’s deviation from a regular tet and its volume-(edge)length
ratio respectively:

Modified inverse mean-ratio (MIMR). Mean-ratio [24] is a
well-known algebraic metric in the literature. It measures the
quality of a tet using the norm of the affine mapping matrix that
maps the tet to a regular one. Let St denote the weighted Jaco-
bian matrix of the tet t, which is the affine map that takes t to a
regular tet. The mean-ratio of St is the scalar:

ηt =
3σ2/3

t

‖St‖
2
F

,

where ‖St‖F =

√
tr(ST

t St) is the Frobenius norm of St and
σt = det(St). Escobar et al. [13] replace σ by h(σ) = (σ +
√
σ2 + 4δ2)/2 (see [13] for details on choosing δ) to remove the

singularities appearing in the inverse mean-ratio metric when t
is tangled, leading to a metric that is continuous over<3:

η̃t =
‖St‖

2
F

3h(σt)(2/3) .

3

Figure 3: Illustration of QDC vector (a) and QDC weighting scheme (b) in a 2D
planar submesh M (v0), where v0 is the free vertex. u0 is the optimal position of
v0, maximizing the overall quality of T (v0) while holding the positions of the
other vertices in M (v0) fixed. u0 is the weighted average of the 1-ring vertices,
where the weights are computed based on the optimal position for each triangle
in the submesh. For instance, in (b), u1 is the optimal position of v0 with respect
to the quality of triangle T1 while holding the positions of v1 and v2 fixed.

Modified inverse condition number (MICN). This metric is also
derived by [13] through modifying the condition number met-
ric [24] with the same consideration as for MIMR:

κ̃t =
‖St‖F ·

∥∥∥S∗t
∥∥∥

F

3h(σt)
,

where S∗t = σtS−1
t is the adjoint matrix of St.

Modified inverse volume-length (MIVL). The volume-length
metric, suggested by Parthasarathy et al. [30] and denoted by
ρt = 6

√
2V

/
l3rms, is the signed volume of a tet divided by the

cubic of the root-mean-square of its edge lengths. We modify
this metric similar to [13] and use:

ρ̃t =

√
2l3rms

12h(V)
.

Note that the three modified metrics are all continuous over
<3 with respect to the coordinates of tet vertices and reach their
minimum (equal to 1) when t reaches its highest quality, the
measure of a regular tet. They are also referred to as the smooth
quality metrics in the literature [32].

3.2. Quality Encoding
In detail-preserving shape editing, differential representa-

tions have gained significant popularity over the past few
years [1, 5, 33, 38]. Given a surface mesh, the differential coor-
dinates of a vertex vi are defined by a displacement vector be-
tween vi and the weighted average of its 1-ring neighborhood:

δi = [δ(x)
i , δ

(y)
i , δ(z)

i]T = vi −
∑

j∈N̂1(i)

w jv j, (1)

where N̂1(i) = { j|(i, j) ∈ Ê} is the set of 1-ring neighborhood
of vi. In [38], the volume differential coordinates which encode
the so-called volumetric details were introduced for volume-
preserving mesh deformation. For a tetrahedral mesh, volume
differential coordinates are defined through extending the 1-
ring neighbor to the interior, where the 1-ring set is given by
N1(i) = { j|(i, j) ∈ E}.

In a sense, differential coordinates locally encode the ge-
ometric details through measuring the deviation of a surface
mesh from its smoothed version. Enlightened by this observa-
tion, we define analogously the “quality details” as the devi-
ation of a tetrahedral mesh from its counterpart with the total
element quality maximized.

Similarly, we use a differential representation to represent the
(volumetric) “quality details”. We consider the local submesh
M (vi) formed by T (vi) which is the set of all the tets that share
vertex vi. Vertex vi is the free vertex of submesh M (vi). See
Figure 3 for a submesh of a 2D planar triangle mesh. The qual-
ity of vi is encoded with a displacement vector (Figure 3a):

γi = vi − ui, (2)

where ui is the optimal position of vi, which maximizes the
overall quality measure for all tets in T (vi), with the other ver-
tices in M (vi) held fixed. We call γi the quality differential
coordinate (QDC) of vi in this paper. Akin to the differential
coordinates for geometric details, we write ui as a weighted av-
erage of the 1-ring neighbors of vi and rewrite QDC as follows:

γi = (γ(x)
i , γ

(y)
i , γ(z)

i)T = vi − XN1(i)wi, (3)

where XN1(i) ∈ <
3×|N1(i)| is the Cartesian coordinate matrix of

{v j| j ∈ N1(i)}, and wi = (wi j)T ∈ <|N1(i)|×1 (j ∈ N1(i)) the
weight vector. As a result, the computation of QDC is reduced
to finding the optimal weights wi satisfying vi = XN1(i)wi:

wi = arg min
wi

∑
t∈T (vi)

q̃t. (4)

The matrix that transforms a vector of Cartesian coordinates to
the QDC vector is:

Qx = γ(x), (5)

where x and γ(x)are |V|-vectors containing the x Cartesian and
quality differential coordinates of all the vertices, respectively.
The same goes for y and z coordinate vectors. We will simply
use x and γ(x) to cover all the three dimensions in the following
discussion. Q is called QDC Matrix in this paper which has the
form (assume the weights are normalized):

(Q)i j=

1 i = j
−wi j (i, j) ∈ E
0 otherwise.

The local differential representation comes at the expense
of a global reconstruction computation, i.e., the generation of
Cartesian coordinates from differential coordinates requires one
to solve a global PDE [33]. However, different from shape edit-
ing, we do not want to preserve the differential coordinates.
Instead, we hope the reconstructed mesh would minimize the
quality deviation for the purpose of quality improvement. This
is the core of our algorithm, which we describe in Section 5.

4. Computing QDC

In this section, we describe how to compute QDC. As we
have stated in Section 3.2, the key is to find a set of optimal

4

weights for each submesh (1-ring neighborhood of a vertex).
Our main idea is to find approximately optimal weights such
that minimizing the QDC of a free vertex in a submesh can
untangle and smooth the submesh.

4.1. Weighting Scheme

The basic idea of our weighting scheme is to put larger
weights on those vertices which have shorter distance to the
optimal position of the free vertex in a submesh. However,
computing the optimal position itself is a non-linear optimiza-
tion problem. Therefore we compute it approximately based
on the optimal position of the free vertex for each element. To
make it clearer, we show the weighting scheme on the 2D pla-
nar submesh M (v0) shown in Figure 3b. Let us take triangle
T1 formed by v0, v1 and v2 for example. Let u1 be the optimal
position of v0 which makes T1 a regular triangle and hence op-
timizes T1’s quality. T1’s contribution to the weight of a 1-ring
neighbor vertex, e.g., v1, is inversely proportional to the square
of the distance from v1 to u1. The same goes for other triangles
in the submesh. Meanwhile, triangles with worse quality will
contribute more to the weight computation in order to improve
the worst tets preferentially. The final weight of a 1-ring neigh-
bor is obtained by accumulating contributions from each of the
triangles in M (v0).

Thus the weighting scheme can be formularized as Eq. 6. In
submesh M (vi), the weight of v j, a 1-ring neighbor of vi, is:

w̃i j =
∑

t∈T (vi)

q̃2
t∥∥∥v j − ut

∥∥∥2 , (6)

where T (vi) is the set of tets in M (vi) and q̃t is the quality of
tet t. The weights should be normalized:

wi j = w̃i j/
∑

k∈N1(i)

w̃ik (7)

Although the estimation of optimal position of a vertex in a
triangle (with the other vertices fixed) is obvious as mentioned
above, it is not trivial in a tetrahedron. To achieve that, one
can define an objective function of the position of the free ver-
tex to measure the quality of the tet with some quality metric
and optimize this objective function with a gradient-based algo-
rithm. This expensive sub-optimization needs to be performed
4|T | times for the entire mesh, where |T | is the number of tets.

We relax the requirement to find an approximate optimal
position along a specific direction which we describe with a
tet in the figure to the right. The tet t is composed of ver-
tices v1, v2, v3, and v4. Suppose that v1 is the free vertex
(the other three vertices are fixed) and we
want to find the position where v1 opti-
mizes t’s quality. Instead of finding v1’s
optimal position over the entire <3, we
search it along the ray, whose starting
point is pc (the barycenter of 4v2v3v4)
and whose direction is along n (the nor-
mal of 4v2v3v4, pointing into M (v1), the submesh around v1).

Figure 4: Visualization of the QDC vector fields for several 2D planar sub-
meshes. The free vertex and all edges involved are hidden for clarity. In each
submesh, the QDC vector field is visualized with both a scalar field to illustrate
the magnitudes of all QDC vectors and arrows on a regular grid to demonstrate
the directions of the QDC vectors. The barycenter of a 1-ring neighborhood in
the figure is shown by a red point.

Therefore, the problem is reduced to a standard Armijo line
search problem which is easy to solve:

popt(v1) = pc + α
∗ · n

α∗ = arg min
α

q̃t(pc + α · n) s.t. α ≥ 0 . (8)

4.2. Further Analysis

For a different position of the free vertex in a submesh, there
is a different set of optimal weights and hence a different QDC
vector. A QDC vector field, defined over the space in which
the submesh is embedded, can be constructed with all QDC
vectors for different positions of the free vertex. To observe
and analyze the behavior of our weighting scheme, we visualize
the QDC vector field in a 2D planar submesh (see Figure 4),
in which the magnitudes of all QDC vectors are illustrated as a
color-coded scalar field while the directions of QDC vectors are
demonstrated with arrows. We also depict the position of the
barycenter of a 1-ring neighborhood (shown with a red point in
figure 4) of the free vertex to compare our QDC approach with
Laplacian smoothing for improving element quality.

The weighted average of 1-ring vertices is located at the posi-
tion where the free vertex approximately optimizes the quality
of the submesh. We call this position the approximate optimal
position of the free vertex. The smaller the magnitude of a QDC
vector is, the closer the free vertex is to its approximate optimal
position. In consequence, the position where the QDC mag-
nitude reaches the minimum can be seen as the approximate
optimal position of the free vertex.

If the submesh is convex (Figure 4a), the approximate opti-
mal position almost coincides with the barycenter. Otherwise,
if the submesh is noncovex (Figure 4b), the two positions can
be quite different. As shown in Figure 4b, the free vertex can be
safely moved to the approximate optimal position without intro-
ducing any tangled triangle. This is not true for the barycenter

5

however. That is why Laplacian smoothing can cause element
tangling for a noncovex mesh whereas our method does not.

The feasible region of a submesh is an interior region of the
submesh, within which moving the free vertex will not intro-
duce any tangled elements [13]. By observing the scalar fields
in Figure 4c and d, it can be found that the distribution of QDC
magnitudes roughly reflects the feasible region of a submesh
(See the blue regions in the two figures). Specifically, the meg-
nitude of a QDC vector is relatively small when the free vertex
moves within the feasible region. When it moves out of the
feasible region, the magnitude increases quickly. Meanwhile,
QDC magnitude reaches its minimum in the feasible region.
These properties meet approximately the requirements of mesh
untangling and quality improving.

Another important feature of QDC is that if there is no feasi-
ble region in a submesh (Figure 4e and f), the approximate op-
timal position again coincides approximately with the barycen-
ter. This feature leads to stability of our method for optimizing
meshes of very low quality: our QDC-based optimization first
smoothes a low-quality mesh, in which almost no feasible re-
gion is available, like Laplacian smoothing. As the smoothing
proceeds, more feasible regions appear on which our method
performs both smoothing and untangling simultaneously.

5. Variational Optimization

The computation of QDC is essentially a process of mesh
quality encoding. The Cartesian coordinates of mesh vertices
can be reconstructed from the QDC under certain boundary
conditions. As QDC measures the quality deviation of a sub-
mesh from its counterpart with the total element quality max-
imized, in order to optimize the quality of the reconstructed
mesh, the QDC vectors in the reconstruction should be set to
zero. In Laplacian mesh editing, one must fix at least one ver-
tex as additional constraint to guarantee that the reconstruction
has a unique solution [33]. In tetrahedral mesh optimization,
the boundary vertices will serve as the positional constraints as
we hope to keep the boundary unchanged.

Our optimization solves the following quadric minimization
problem:

min
x

(G(x)x − g(x))T(G(x)x − g(x)), (9)

where G(x) = [Q(x),B]T and g(x) = [0,b]T. B is the posi-
tional constraint matrix for boundary mesh, and b is the origi-
nal positions of boundary vertices of input mesh. The resulting
mesh will reduce the above-mentioned quality deviation while
preserving the positions of boundary vertices in a least-square
sense. The quadric energy is defined globally over the entire
mesh. All the inner vertices are repositioned simultaneously.

5.1. Harmonic-Guided Optimization
Most previous tetrahedral mesh optimization methods run

into issues with boundary optimization: boundary tets often
benefit less from the optimization than interior ones since the
positions of boundary vertices are fixed as positional constraint.
Our optimization by solving (Eq. 9) has the same problem.

Figure 5: The cut-away views of the medial axis transform (left) and harmonic
fields (right) of two tetrahedral meshes. The harmonic fields are computed
using boundary surface constraint and the medial axes (middle).

We propose harmonic-guided optimization to overcome this
inconsistency problem. To allow the boundary tets to benefit
more from the optimization, we employ weighted least-squares
where we weight the residuals for each vertex according to their
distances to the boundary. We compute a harmonic scalar field
for the tetrahedral mesh to be optimized, which reaches maxi-
mum at its boundary and minimum at its medial axis. Using the
values in the harmonic scalar field as weights, both the bound-
ary and interior tets can be optimized more consistently.

A harmonic function h defined on mesh vertices satisfies
Laplace’s equation ∇2h=0. We prescribe the value 1 as bound-
ary conditions for surface vertices acting as sources, and 0
for the vertices located at the medial axis serving as sinks.
By solving Lh = 0 (where h =(hi)T

i=1,2,...,|V|) with respect to
these boundary conditions, we obtain a harmonic function that
smoothly blends between 0 and 1. Therefore the weight matrix
we use in the weighted least-squares is composed of two parts,
harmonic weights and positional weights:

W = diag(ωIh1, ωIh2, . . . , ωIh|V|, ωB, . . . , ωB︸ ︷︷ ︸
|V̂|

),

where ωB is the positional weight which is used to tweak
the importance of positional constraints of boundary vertices.
Larger ωB leads to more accurate boundary shape preservation
but less interior mesh quality improvement. We find by ex-
periments that |V|

/
|V̂| is a relatively good tradeoff. ωI is the

maximum weight for interior vertices, which can be seen as the
decreasing rate of the harmonic weights from the boundary to
the medial axis. The larger the decreasing rate we use, the larger
the weight difference between boundary and interior and hence
the more optimization the boundary tets can obtain. However,
large ωI weakens the boundary constraint (weighted by ωB) and
introduces more errors in boundary mesh at the same time. In
our experiments, we use ωI = 0.4ωB. The new energy is thus:

min
x

(W(G(x)x − g(x)))T(W(G(x)x − g(x))). (10)

The extraction of medial axis for a mesh model is often a
time-consuming task. Fortunately, a tetrahedral mesh provides
a natural voxelization (tets stuffed in its boundary) on which
the medial axis transform (MAT) [31] can be performed to ob-
tain an approximate medial axis (see Fig. 5 for some results).
In practice, the tets in a low quality input mesh are often too

6

Figure 6: Effects of harmonic-guided optimization. For different input tetra-
hedral meshes (left), optimization results w/o (middle) and with (right) har-
monic field guidance are compared. Note the comparison of boundary tets
(highlighted in red) especially.

badly shaped to obtain an accurate MAT. To remedy this, we
first use Eq. 9 to pre-optimize the initial mesh to obtain a mesh
with adequate quality, on which a satisfactory MAT can be eval-
uated. The approximate medial axes computed using the above
process are sufficient for our task.

Figure 6 gives the cut-away view of two tetrahedral meshes
to compare the effect boundary optimization of our method
with and w/o harmonic field guidance. The boundaries of these
meshes are firstly faired using Laplacian smoothing, which is
not a feature-preserving method and can introduce much sur-
face degradation. We use this method for surface fairing only
for a more obvious demonstration. It can be observed from the
figure that, with the guidance of harmonic fields, our method
can better optimize the squished boundary tets.

6. Numerics

This section discusses some details on solving the QDC-
based variational problem. Since QDC depends nonlinearly
on vertex coordinates, minimization of the energy function
(Eq. 10) is a nonlinear least squares (NLS) problem. We de-
rive a robust and efficient solver based on the gradient flow ap-
proach [3]. In order to achieve robustness for low quality input
meshes, the quality metric in computing the QDC should satisfy
the smoothness conditions, which we discuss in this section.

6.1. Semi-implicit Gradient Flow Solver
The main difficulty of using the standard methods, e.g.,

Gauss-Newton (GN) and Levenberg-Marquardt (LM), to solve
our problem lies in the estimation of the Jacobian of the residual
vector r(x) = G(x)x − g(x). The derivatives of QDC with re-
spect to vertex Cartesian coordinates are hard to compute since
the estimation of the optimal weights for QDC adopts a sub-
optimization (line search) and hence QDC cannot be expressed
analytically as a function of vertex coordinates.

We linearize our problem and derive an inexact solver from
the point of view of gradient flow. The gradient flow method [3]
solves the NLS problem by means of integration of a first or-
der ordinary differential equation (ODE). A necessary condi-
tion for point x∗ to be an optimal solution for the NLS problem
min
x∈<n

F(x) = 1/2 · r(x)Tr(x) is:

∇F(x∗) = JT
r (x∗) · r(x∗) = 0, (11)

where Jr is the Jacobian of r(x). To fulfill this optimality condi-
tion, we rely on a reformulation of the continuous gradient flow
of the NLS problem. Specifically, we solve the ODE

dx(t)
dt
= −∇F(x(t)), (12)

with the initial condition

x(0) = x0. (13)

The optimal solution can be obtained by following the tra-
jectory of a system of ODEs. We employ a semi-implicit
scheme to discretize the right hand side of Eq. 12, where we
use Gk · xk+1 − gk to approximate r(xk+1). Thus Jr(xk+1) is ap-
proximated by Gk. The resulting discretized form of Eq. 12 is:

(GT
k Gk + I) · xk+1 = GT

k gk + xk. (14)

The computation for each iteration only amounts to solving
a sparse linear system and no evaluation of the Jacobian ma-
trix is needed. The approximation to Jr(xk+1) with Gk is valid
only when r(x) is quasi-linear with respect to x, where the two
following conditions hold: (1) G(x) is a nearly constant matrix
which changes slowly at each iteration and (2) g(x) is a vector
whose Jacobian is small, i.e.,

∥∥∥Jg
∥∥∥ � ‖G‖.

The first condition reveals that the success of the semi-
implicit solver highly depends on the changes between Gk and
Gk+1. We give a simple analysis for the accuracy of our lin-
earization by estimating the matrix variance ‖Gk+1 −Gk‖. Ac-
cording to the Mean Value theorem in calculus, the variance
satisfies the following inequality:

‖Gk+1 −Gk‖ ≤
∥∥∥G′(ξ)

∥∥∥ ‖xk+1 − xk‖ ,

where G′(x) is the derivative of the matrix function G(x) and
ξ = (1 − λ)xk+1 + λxk (0 < λ < 1) is the mean value vector. To
ensure that the solver converges with a relatively large step size,
G′(x) must have a small upper bound. Although the derivative
of G(x) is hard to compute analytically, it is sufficient to evalu-
ate it along the direction of the vector xk+1 − xk as we only need
to know how fast G(x) changes along that direction. We use the
finite difference method to evaluate the directional derivative.
In particular, we solve for xk in each iteration and compute the
difference quotient using the forward Euler scheme:∥∥∥G′k

∥∥∥ ≈ ‖Gk+1 −Gk‖

‖xk+1 − xk‖
.

We find in the numerical experiments that for any given ini-
tial unknown x0, the directional derivative converges to 0 as the
iterations proceed. Table 1 shows the numerical results.

7

Input mesh Iteration Steps
Name |V| k=0 k=1 k=2 k=3 k=4

dk 1.24e−1 2.03e−3 2.89e−5 4.75e−7 3.01e−7
Fertility 21,213 rk 3.96e−3 5.10e−5 2.21e−6 1.93e−7 1.15e−7

dk 3.19e−1 2.44e−3 6.47e−5 1.08e−6 7.91e−7
Pegasus 46,212 rk 2.12e−2 1.52e−4 8.95e−5 6.25e−6 3.73e−6

Table 1: Values of dk = ‖G
′
(xk)‖ and rk = ‖Jg(xk)‖/‖Gk‖ at the first 4 iterations

of Eq. 14. Although ‖G′ ‖ and ‖Jg‖/‖G‖ are initially large, they decrease to no
more than 1.0 × 10−6 and 1.0 × 10−5 respectively within 4 iterations.

The second condition can also be satisfied asymptotically for
our problem:

∥∥∥Jg
∥∥∥ (evaluated with the finite difference method)

becomes small as compared to ‖G‖ after 2 to 3 iterations of
Eq. 14 (Table 1). This is owed to the smooth definition of QDC:
the weighted sum definition of the weights in Eq. 6 and the
smoothness of the quality metric adopted (Section 4.1). Our
experiment shows that the latter factor is more crucial to the
second condition and numerical convergence. If a nonsmooth
quality metric, e.g., the minimum sine of dihedral angles [32],
is used in QDC, our solver can hardly converge for low quality
meshes. Moreover, the rate of change of g(x) with respect to x
decreases rapidly during the first few iterations (Table 1). This
is because our QDC-based optimization behaves like a Lapla-
cian smoother on a low quality mesh at the beginning of op-
timization (recall the analysis in Section 4.2), which helps to
reduce the nonlinearity of QDC.

A key factor to the numerical stability of an iterative solver is
the finite condition number of the associated system matrix, de-
noted by κ(•); it is the ratio between the largest and the smallest
non-zero eigenvalues of the matrix. Compared to explicit inte-
gration of Eq. 12, which results an inexact variant of the GN
solver whose system matrix is GTG, our semi-implicit method
is more robust as κ(GTG+I) is much smaller than κ(GTG). Note
that κ(GTG) is dominated by κ(QTQ) = (λQ

max

/
λQ

min)2, where

Q is QDC matrix with λQ
max and λQ

min as its the largest and the
smallest non-zero eigenvalues, respectively. Following [32], the
lower bound of λQ

min is proportional to the volume of the small-
est tet and λQ

max to lmax/sin(θmin), where lmax is the length of the
longest edge and θmin is the smallest dihedral angle in the tetra-
hedral mesh. For a mesh of low quality, λQ

min is small and λQ
max

is large. It follows that
(
(λQ

max + 1)
/
(λQ

min + 1)
)2
� (λQ

max

/
λQ

min)2,
indicating that κ(GTG + I) � κ(GTG). In addition, the condi-
tioning of GTG+I can be further improved by quality improve-
ment as the iterations proceed (see Table 2).

To obtain a better-conditioned system matrix, we can intro-
duce a reasonably chosen parameter to GTG + I and solve the
following linear system instead:

(GT
k Gk + µkI) · xk+1 = GT

k gk + µkxk, (15)

where µk is a positive parameter. Eq. 15 is essentially an inex-
act variant of the LM method, where Jr(xk+1) is approximated
with Gk under the aforementioned quasi-linear conditions. To
improve the conditioning of the system matrix, µk should be set
to a large value for a mesh with low quality as κ(GT

k Gk + µkI) is

Input mesh Iteration Steps
Name |V| k=0 k=1 k=2 k=3 k=4

κex
k 5.72e+4 1.61e+4 5.67e+3 4.93e+3 1.23e+3

Cube 379
κsi

k 2.19e+2 6.35e+1 4.22e+1 3.35e+1 1.67e+1
κex

k 2.73e+6 9.35e+5 6.18e+5 3.79e+5 7.20e+4
Sphere 993

κsi
k 1.91e+3 4.63e+2 3.16e+2 1.37e+2 4.03e+1

Table 2: Comparison of the conditioning of the system matrix using explicit
and semi-implicit methods in their first 4 iterations. The condition number of
our semi-implicit method, denoted by κsi

k , is smaller than that of the explicit
method, denoted by κex

k , throughout the iteration steps.

non-increasing with respect to µk. We follow the choice of [36]
and use µk =

∥∥∥GT
k gk

∥∥∥2
(with the same approximation as above),

which has all of our desirable features. If xk is far away from
the optimal solution, which is the case when the mesh quality
is low, µk is large and thereby κ(GT

k Gk + µkI) is small. When
the mesh quality is improved and xk is close to the optimal so-
lution, µk can be quite small while GT

k Gk + µkI remains well-
conditioned since a high quality mesh has a small κ(GT

k Gk).
At each iteration, we solve Eq. 15 using Cholesky factoriza-

tion. Although the system matrix is sparse, it depends on x and
thus changes at each iteration. Therefore, the full factorization
cannot be reused. However, the non-zero structure remains un-
changed since our optimization dose not change the mesh con-
nectivity. As a result, a fill-reducing permutation of the system
matrix and symbolic factorization based only on its non-zero
structure can be precomputed and reused [35].

7. Results and Discussions

We have implemented our algorithm with the three quality
metrics described in Section 3.1. We find that the MIMR and
MICN metrics have similar optimization behavior, e.g., in their
resulting distribution of dihedral angles. The MIVL metric,
however, works somewhat differently. The running times pre-
sented are recorded on a PC with 1.83 GHz AMD Sempron
processor and 512MB RAM.

7.1. Different Metrics on Different Kinds of Meshes

First, we test our algorithm on meshes generated by three
different meshing algorithms. Table 5 shows the meshes be-
fore and after quality improvement by our variational optimiza-
tion using the MIMR and MIVL metrics, respectively. His-
tograms of dihedral angle distributions are also shown. Meshes
1 and 2 are generated using the Nuages software [20] which
takes parallel cross sectional contours as input. Tetrahedral
meshes reconstructed from cross sectional data are widely used
in biomedicine since the 3D data of human organs are often ob-
tained from CT and MRI data. Since any two adjacent contours
can be arbitrarily different in shape and/or vertex distribution,
this approach usually generates boundary tets of very low qual-
ity. The tetrahedral meshes 1 and 2 are obtained by cutting a
surface mesh into a stack of cross sectional contours and then

8

Figure 7: Mesh quality measures and boundary error (symmetric Hausdorff)
plotted against the ratio between interior and boundary weights.

feeding them to the Nuages software. Meshes 3 and 4 are gen-
erated with the variational tetrahedral meshing algorithm of Al-
liez et al. [2]. They produce better boundary tets due to a global
optimization of mesh connectivity (including boundary connec-
tivity). However, sliver tets can still appear in these meshes due
to boundary conformation. Isosurface stuffing [25] can provide
tetrahedral meshes with guaranteed good dihedral angles. For
the resulting meshes, 5 and 6, the tets with the worst dihedral
angles are also the boundary ones.

The boundaries of the meshes generated by Nuages are often
noisy and of pool quality. We first perform a feature-preserving
surface fairing on the boundaries. Note that not all feature-
preserving fairing algorithms are suitable for this task. For ex-
ample, fairing via mean curvature flow [9] can remove surface
noise along the normal direction while not attempting to im-
prove the quality of the triangles; the latter would require tan-
gential movement of the mesh vertices. We have found by ex-
periments that Taubin’s λ|µ filtering [34] and the Min-Dist flow
algorithm [37] are more suitable and they have been applied to
meshes 1 and 2, respectively.

As shown in Table 5, our method significantly improves the
dihedral angles of the meshes generated with Nuages. Dihedral
angles of the high-quality meshes generated by the variational
tetrahedral meshing and the isosurface stuffing algorithms can
be further improved by our algorithm thanks to our harmonic-
guided optimization step. Another observation is that our vari-
ational approach presents different optimization behavior when
different quality metrics are integrated. The MIMR metric of-
ten leads to more centralized distribution of dihedral angles and
a sharper peak near 60◦ in the histograms than the MIVL met-
ric, indicating the tet shapes in the resulting meshes are more
regular. However meshes by MIVL have better minimum and
maximum dihedral angle bounds. This can be explained intu-
itively as follows. Mean-ratio directly measures the deviation
of a tet from a regular one. As a result, the energy built with
MIMR penalizes more the deviation while pays relatively less
attention on improving dihedral angles. On the contrary, MIVL
penalizes more the tets with undesirable dihedral angles.

7.2. Comparison with Other Methods
Table 3 compares our algorithm with three other optimization

techniques. The first one is the Opt-MS package developed by
Freitag [15]. This software adopts a local optimization algo-
rithm and uses a two-stage method to smooth and untangle a

Figure 8: Color-coded illustration of boundary quality (mean-ratio metric) for
both input (left) and optimized meshes (middle), as well as that of boundary
error (right) introduced. The latter is again measured by symmetric Hausdorff
distance using the Metro tool.

mesh. The second one, which we refer to as SUS, is proposed
by Escobar et al. [13]. SUS is also a local algorithm, using
steepest descent for optimization. In addition, we extend SUS
and implement a global version by building a global objective
function based on the modified quality measurements proposed
in [13]. Wherein, the inexact Newton method is employed to
perform an all-vertex global optimization. Note that all of the
three methods achieve smoothing and untangling. In our algo-
rithm, the MIVL metric is used. To speed up the optimization
on large meshes, we utilize the out-of-core factorization pro-
vided by TAUCS [35]. For each method, iteration continuous
until convergence or the maximum execution time (200 min.)
is exceeded. We use the mean-ratio metric to measure the qual-
ities of meshes. Both the mean and standard deviation of the
quality measures are computed for comparison.

As all-vertex algorithms, QDC and global SUS can obtain
better mesh quality than Opt-MS and local SUS. Our algorithm
can achieve even better quality measures than global SUS due
to improved boundary optimization. Also shown in Table 3, al-
though the global SUS improves the convergence rate (obtain-
ing better mesh quality with much fewer iterations in contrast to
Opt-MS and SUS), it does not save the computational cost since
each iteration is more costly. Our method, however, is more ef-
ficient thanks to not only the fast convergence but also the low
computational cost per iteration. In addition, we obtain smaller
standard deviation of the quality measures than global SUS and
hence more uniform tet shapes in the resulting meshes.

7.3. Simultaneous Untangling and Smoothing

To compare the mesh untangling behavior of our QDC algo-
rithm with Opt-MS and SUS, we show in Table 4 the minimum
execution time needed to untangle all the tangled tets in the in-
put meshes and the resulting quality measures. By observing
the quality measures, it can be found that our algorithm can im-
prove the mesh quality during untangling. Therefore, our algo-

9

rithm achieves simultaneous smoothing and untangling as SUS
since the QDC-based energy function penalizes tangled tets.

7.4. Boundary Optimization and Boundary Error

Our algorithm does not ensure exact boundary conformation,
since boundary preservation is achieved only in a least-square
sense. As we pointed out in Section 5.1, the ratio between in-
terior and boundary weights can be used to tradeoff between
mesh quality and boundary error. The larger the ratio, the
higher the mesh quality, while larger boundary errors can be
introduced at the same time. This is confirmed by Figure 7, in
which we plot the mesh quality (measured by both the mean-
ratio and condition number) against the weight ratio, as well
as a color-coded illustration of the boundary error, computed
by the Metro tool [8]. Note that the boundary errors shown in
Figure 7 does not include those introduced by surface fairing.

Figure 8 demonstrates the boundary optimization results of
our method. To visualize the quality of boundary tets, we
compute for each boundary vertex the average quality mea-
sures of its 1-ring tets and color-code the average measures
on the boundary. The figure shows that our method signif-
icantly improves the quality of boundary tets with only very
small boundary error introduced. Regions with large boundary
errors roughly agree to those with low boundary quality. Since
the distribution of boundary errors does not appear to depend
on surface geometry, our method typically do not lead to more
shape degradation at sharp features than over flat regions.

Other limitations. Another limitation of our current method is
that it does perform well on tetrahedral meshes with many thin
regions where almost all the tets are boundary ones. Since most
vertices in these regions serve as the boundary condition, little
or no optimization can be performed. This case necessitates an
optimization for mesh connectivity.

8. Conclusion

We have presented a variational tetrahedral optimization ap-
proach based on per-vertex quality encoding. Our approach
leaves the boundary smoothing to feature-preserving surface
fairing and focuses on how to improve the boundary and inte-
rior tets consistently. The QDC-based representation provides
our method with robustness (for optimizing meshes of very low
quality, effectiveness (for respecting dihedral angle and other
quality measures), efficiency (fast convergence rate and low
computational cost per iteration) and flexibility (allowing for
different optimization behavior with different quality metrics
integrated). Our method also significantly improves the quality
of boundary tets through harmonic-guided optimization.

Our optimization procedure is performed through vertex
repositioning without considering topological transformation,
such as mesh connectivity. We believe that even higher mesh
quality can be achieved by coupling topology transformation
with our energy minimization, at the expense of higher compu-
tational cost. We wish to investigate this in future work.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their helpful comments. We are also grateful to Andrea
Tagliasacchi for proofreading the manuscript. Meshes 3 and 4
in Table 5 are taken from the AIM@SHAPE shape repository,
5 and 6 are courtesy of Bryan Matthew Klingner. This work
was supported in part by grants from the 863 program of China
(No. 2007AA01Z313 and No. 2008AA09Z124049), National
Natural Science Foundation of China (No. 60773022 and No.
60707030) and NSERC (No. 611370).

References

[1] Alexa, M., 2001. Local control for mesh morphing. In: Proc. IEEE Conf.
on Shape Modeling and Applications. pp. 209–215.

[2] Alliez, P., Cohen-Steiner, D., Yvinec, M., Desbrun, M., 2005. Variational
tetrahedral meshing. ACM Trans. on Graphics 24 (3), 617–625.

[3] Andrei, N., 2004. Gradient flow method for nonlinear least squares mini-
mization.

[4] Botsch, M., Pauly, M., Rössl, C., Bischoff, S., Kobbelt, L., 2006. Geomet-
ric modeling based on triangle meshes. Course Notes ACM SIGGRAPH
2006.

[5] Botsch, M., Sorkine, O., 2008. On linear variational surface deformation
methods. IEEE Trans. Vis. & Comp. Graphics 14 (1), 213–230.

[6] Chen, L., 2004. Mesh smoothing schemes based on optimal delaunay tri-
angulations. In: Proceedings of 13th International Meshing Roundtable.
pp. 109–120.

[7] Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-
H., 1999. Sliver exudation. In: Proc. 15th Annu. ACM Sympos. Comput.
Geom. pp. 1–13.

[8] Cignoni, P., Rocchini, C., Scopigno, R., 1998. Metro: measuring error on
simplified surfaces. Computer Graphics Forum 17 (2), 167–174.

[9] Desbrun, M., Meyer, M., Schröder, P., Barr, A. H., 1999. Implicit fairing
of irregular meshes using diffusion and curvature flow. In: Proceedings of
ACM SIGGRAPH 99. pp. 317–324.

[10] Du, Q., Wang, D., 2003. Tetrahedral mesh generation and optimization
based on centroidal voronoi tessellations. International Journal on Nu-
merical Methods in Engineering 56 (9), 1355–1373.

[11] Elcott, S., Tong, Y., Kanso, E., Schröder, P., Desbrun, M., 2007. Stable,
circulation-preserving, simplicial fluids. ACM Trans. on Graphics 26 (1),
4:1–4:12.

[12] Eppstein, D., 2001. Global optimization of mesh quality. In: Tutorial at
10th International Meshing Roundtable.

[13] Escobar, J. M., Rodrı̀guez, E., Montenegro, R., Montero, G., Gonzàlez-
Yuste, J. M., 2003. Simultaneous untangling and smoothing of tetrahedral
meshes. Comput. Methods Appl. Mech. Engrg. 192 (25), 2775–2787.

[14] Fleishman, S., Drori, I., Cohen-Or, D., 2003. Bilateral mesh denoising.
ACM Trans. on Graphics 22 (3), 950–953.

[15] Freitag, L. A., 1999. Users manual for opt-ms: local methods for sim-
plicial mesh smoothing and untangling. Tech. Rep. ANL/MCS-TM-239,
Argonne National Laboratory, Argonne, IL.

[16] Freitag, L. A., Knupp, P. M., 2002. Tetrahedral mesh improvement via
optimization of the element condition number. International Journal for
Numerical Methods in Engineering 53 (6), 1377–1391.

[17] Freitag, L. A., Knupp, P. M., Munson, T., Shontz, S., 2006. A comparison
of inexact newton and coordinate descent mesh optimization techniques.
Engineering with Computers 22 (2), 61–74.

[18] Freitag, L. A., Ollivier-Gooch, C., 1996. A comparison of tetrahe-
dral mesh improvement techniques. In: Proceedings of 5th International
Meshing Roundtable. pp. 87–106.

[19] Freitag, L. A., Ollivier-Gooch, C., 1997. Tetrahedral mesh improve-
ment using swapping and smoothing. International Journal for Numerical
Methods in Engineering 40 (21), 3979–4002.

[20] Geiger, B., 1996. Nuages: a package for 3d reconstruction.
URL ftp://ftp-sop.inria.fr/prisme/NUAGES/

[21] Jones, T. R., Durand, F., Desbrun, M., 2003. Non-iterative, feature-
preserving mesh smoothing. ACM Trans. on Graphics 22 (3), 943–949.

10

Input Tetrahedral mesh Initial Quality Optimized Quality Cost
Name |V| |T | qη ση

Optimization Method qη ση I T (min.)
Opt-MS 0.796 0.113 5 3.1

SUS 0.878 0.102 6 8.7
Global SUS 0.938 0.100 4 10.7Fertility 21,213 108,120 0.417 0.280

QDC 0.945 0.065 3 0.5
Opt-MS 0.761 0.233 12 8.9

SUS 0.842 0.203 15 19.7
Global SUS 0.916 0.121 7 41.9Pegasus 46,212 234,512 0.635 0.401

QDC 0.923 0.089 3 1.7
Opt-MS 0.722 0.318 26 58.2

Stanford SUS 0.853 0.197 28 138.7
Dragon Global SUS — — – >20091,201 483,394 0.701 0.455

QDC 0.892 0.174 4 12.4
Opt-MS 0.628 0.300 37 140.2

Chinese SUS — — – >200
Dragon Global SUS — — – >200108,596 601,355 0.577 0.413

QDC 0.867 0.136 4 29.5

Table 3: Comparing quality (measured by the mean-ratio metric) improvements of four algorithms: Opt-MS [15], SUS [13], Global SUS and our QDC. qη and
ση denote the average and standard deviation of the mean-ratio measures, respectively. I and T are the number of iterations and total running time (in minutes),
respectively.

Input Tetrahedral mesh Opt-MS SUS ODC
Name qη Ntangle qη T (min.) qη T (min.) qη T (min.)
Fertility 0.437 3,555 0.441 1.74 0.807 4.62 0.812 0.17
Pegasus 0.537 6,754 0.534 3.87 0.761 15.6 0.758 0.57
Happy Buddha 0.353 9,801 0.358 8.96 0.713 38.7 0.693 0.75

Table 4: Comparison of mesh untangling of Opt-MS [15], SUS [13] and our QDC. Ntangle is the number of tangled tets in the input mesh. T is the minimum running
time (in minutes) needed to untangle all the tangled tets present in the input meshes. q̄η is the average of mean-ratio quality measure at time T .

[22] Klingner, B. M., Shewchuk, J. R., 2007. Aggressive tetrahedral mesh im-
provement. In: Proceedings of 16th International Meshing Roundtable.
pp. 3–23.

[23] Knupp, P. M., 2000. Achieving finite element mesh quality via optimiza-
tion of the jacobian matrix norm and associated quantities. part ii: a
framework for volume mesh optimization and the condition number of
the jacobian matrix. International Journal for Numerical Methods in En-
gineering 48 (8), 1165–1185.

[24] Knupp, P. M., 2001. Algebraic mesh quality metrics. SIAM Journal on
Scientific Computing 23 (1), 193–218.

[25] Labelle, F., Shewchuk, J. R., 2007. Isosurface stuffing: fast tetrahedral
meshes with good dihedral angles. ACM Trans. on Graphics 26 (3), 57:1–
57:10.

[26] Liu, L., Tai, C.-L., Ji, Z., Wang, G., 2007. Non-iterative approach for
global mesh optimization. Computer-Aided Design 39 (9), 772–782.

[27] Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B., 2002. Stable
real-time deformation. In: Proc. ACM SIGGRAPH/Eurographics Symp.
on Computer Animation. pp. 49–54.

[28] Munson, T. S., 2004. Mesh shape-quality optimization using the inverse
mean-ratio metric: tetrahedral proofs. Tech. Rep. ANL/MCS-TM-275,
Argonne National Laboratory, Argonne, IL.

[29] Nealen, A., Igarashi, T., Sorkine, O., Alexa, M., 2006. Laplacian mesh
optimization. In: Proceedings of ACM GRAPHITE. pp. 381–389.

[30] Parthasarathy, V. N., Graichen, C. M., Hathaway, A. F., 1994. A com-
parison of tetrahedron quality measures. Finite Elements in Analysis and
Design 15 (3), 255–261.

[31] Sherbrooke, E. C., Patrikalakis, N. M., Brisson, E., 1996. An algorithm
for the medial axis transform of 3d polyhedral solids. IEEE Trans. Vis. &
Comp. Graphics 2 (1), 44–61.

[32] Shewchuk, J. R., 2002. What is a good linear finite element? interpola-

tion, conditioning, anisotropy, and quality measures. In: Proceedings of
11th International Meshing Roundtable. pp. 115–126.

[33] Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel,
H.-P., 2004. Laplacian surface editing. In: Proc. Eurographics Symp. on
Geometry Processing. pp. 179–188.

[34] Taubin, G., 1995. A signal processing approach to fair surface design. In:
Proceedings of ACM SIGGRAPH 95. pp. 351–358.

[35] Toledo, S., 2003. Taucs: a library of sparse linear solvers, version 2.2.
URL http://www.tau.ac.il/˜stoledo/taucs/

[36] Yamashita, N., Fukushima, M., 2000. On the rate of convergence of the
levenberg-marquardt method. Tech. rep., Department of Applied Mathe-
matics and Physics, Graduate School of Informatics, Kyoto University.

[37] Zhang, H., Fiume, E. L., 2002. Mesh smoothing with shape or feature
preservation. In: Advances in Modeling, Animation, and Rendering. pp.
167–182.

[38] Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.-
Y., 2005. Large mesh deformation using the volumetric graph laplacian.
ACM Trans. on Graphics 24 (3), 496–503.

11

Horse 25,492 vertices 132,902 tets Pegasus 46,212 vertices 234,512 tets

3 iterations 44.0 sec. 1 2 3 iterations 100.0 sec.

Hand 28,796 vertices 125,127 tets Skull 37,813 vertices 156,135 tets

3 iterations 37.1 sec. 3 4 3 iterations 139.5 sec.

Stanford Dragon 7,759 vertices 32,959 tets Cow 10,353 vertices 42,053 tets

3 iterations 8.1 sec. 5 6 3 iterations 14.3 sec.

Table 5: Six meshes before and after quality improvement. In each box, the left mesh is the input, the middle mesh is optimized with the MIMR metric integrated,
and the right one with the MIVL metric. Red tets have dihedral angles under 5◦ or over 175◦, orange ones have angles under 15◦ or over 165◦, yellow ones have
angles under 30◦ or over 150◦, green ones have angles under 40◦ or over 140◦, and the remaining tets are not colored. The histograms (in 1◦ intervals) show
the distributions of dihedral angles in each mesh, where the minimum and maximum angles are indicated at the two top corners. Note that in order to plot the
distributions in the same scale while revealing them better, we down-scale the plot over certain intervals. Specifically, each red bar should have its height multiplied
by 20 to reflect the true distribution.

12

