
Active Co-Analysis of a Set of Shapes

Yunhai Wang∗ Shmulik Asafi† Oliver van Kaick‡ Hao Zhang‡ Daniel Cohen-Or† Baoquan Chen∗
∗Shenzhen VisuCA Key Lab/SIAT †Tel-Aviv University ‡Simon Fraser University

(a) (b) (c)

Figure 1: Overview of our active co-analysis: (a) We start with an initial unsupervised co-segmentation of the input set. (b) During active
learning, the system automatically suggests constraints which would refine results and the user interactively adds constraints as appropriate.
In this example, the user adds a cannot-link constraint (in red) and a must-link constraint (in blue) between segments. (c) The constraints are
propagated to the set and the co-segmentation is refined. The process from (b) to (c) is repeated until the desired result is obtained.

Abstract

Unsupervised co-analysis of a set of shapes is a difficult problem
since the geometry of the shapes alone cannot always fully de-
scribe the semantics of the shape parts. In this paper, we propose
a semi-supervised learning method where the user actively assists
in the co-analysis by iteratively providing inputs that progressively
constrain the system. We introduce a novel constrained clustering
method based on a spring system which embeds elements to better
respect their inter-distances in feature space together with the user-
given set of constraints. We also present an active learning method
that suggests to the user where his input is likely to be the most
effective in refining the results. We show that each single pair of
constraints affects many relations across the set. Thus, the method
requires only a sparse set of constraints to quickly converge toward
a consistent and error-free semantic labeling of the set.

Keywords: semi-supervised learning, active learning

Links: DL PDF WEB VIDEO DATA

1 Introduction

Recently, there is an increasing interest in the co-analysis of sets
of shapes, since current works have shown that more information
can be extracted by simultaneously analyzing a set, rather than ana-
lyzing each shape individually [Golovinskiy and Funkhouser 2009;
Xu et al. 2010; Sidi et al. 2011]. The main task in co-analysis is to
simultaneously segment all the shapes in the set in a consistent man-
ner, which is of great utility for modeling and texturing [Kaloger-
akis et al. 2010; Xu et al. 2011]. That is, besides partitioning the

shapes into segments, we also obtain a labeling of the segments
across the set, where the parts with the same label serve the same
semantic purpose, albeit possibly being geometrically dissimilar.

Previous attempts to co-analyze a set of shapes can be classified into
supervised and unsupervised. In the supervised setting [Kaloger-
akis et al. 2010; van Kaick et al. 2011], a training set with enough
pre-analyzed shapes is assumed to be given. The training set is then
used to probabilistically label a set of unknown shapes. Although
supervised methods are not strictly speaking a co-analysis (since the
shapes are not simultaneously analyzed), the result of the labeling
is a consistent segmentation of the set. The unsupervised setting is
more challenging, since no prior information is given and the entire
knowledge must be extracted from the input set [Golovinskiy and
Funkhouser 2009; Xu et al. 2010; Sidi et al. 2011]. In general, su-
pervised methods have superior performance, but their performance
hinges upon the relevance and quality of the training set.

In this paper, we consider the use of semi-supervised learning
(SSL) for co-analysis. Semi-supervised methods [Zhu 2005] can
be viewed as supervised methods with a rather small training set,
but which also consider the latent information in the entire set. Al-
ternatively, SSL methods can also be viewed as unsupervised meth-
ods assisted by rather minimal input coming out of the set (which
we call external input). Viewed as augmented unsupervised meth-
ods, SSL methods outperform unsupervised methods at the minimal
cost of requiring some educated external input. At the same time,
an effective SSL method should outperform supervised methods in
cases where the training set is too small, or poorly suited to the input
shapes. Note that no method, be it supervised or unsupervised, can
guarantee a perfect co-analysis of a set, since the geometry alone
cannot always fully convey the semantics of parts. In particular, no
descriptors can capture all possible geometric variations of a part.

Our contribution is the introduction of an SSL technique where the
user interactively provides the external input as a means to itera-
tively correct and improve the result of the co-analysis (Figure 1).
The external input consists of a sparse set of pairs of segments that
the user marks as must-link or cannot-link constraints. Our SSL
system is based on two main components. Firstly, we introduce
a novel constrained clustering method based on a spring system
which embeds elements to better respect both their inter-distances
in a feature space and a given set of constraints. In our interactive
setting, the user marks a few pairs of segments at each refinement

http://doi.acm.org/10.1145/2366145.2366176
http://portal.acm.org/ft_gateway.cfm?id=2366176&type=pdf
http://web.siat.ac.cn/~yunhai/ssl/ssl.htm
http://web.siat.ac.cn/~yunhai/ssl/video.avi
http://web.siat.ac.cn/~yunhai/ssl/ssd.htm


(a) (b) (c) (d)

Figure 2: Effectiveness of semi-supervised learning: (a) Consider two classes (red and green), where the data naturally forms four anisotropic
clusters in a descriptor space. The sparse user-given training data is circled in blue. (b) A supervised method uses only the training data
and finds the hyperplane that gives the maximum separation between training samples. Note that the classifier splits the clusters without
taking their natural structure into account. (c) An unsupervised method takes the clusters into account but is oblivious to the training data.
Thus, when asked for two clusters, the unsupervised method splits the samples to give the maximum cluster separation. (d) A semi-supervised
method takes into account both the sparse training data and cluster structure, providing the correct result.

step to progressively constrain the system. We show that each single
pair of constraints affects many relations across the set. Thus, our
proposed spring-based clustering makes efficient use of sparse con-
straints, as opposed to methods based on modifying only the simi-
larities between elements, which typically require a higher number
of constraints. Secondly, we develop a method that indicates to the
user where his input is likely to be the most effective in refining the
results. The method analyzes the clustering and identifies elements
with low confidence regarding their cluster membership.

By combining these two components, we show that our SSL system
makes the result quickly converge toward a consistent and error-
free co-segmentation of the set. We show that this automatic anal-
ysis makes efficient use of user input, and that a sparse set of con-
straints typically suffices to yield a suitable co-analysis of the set.
We present results on various sets of shapes exhibiting interesting
geometric variations, and especially on large sets with 200 or more
shapes, which would be challenging to manually segment or refine.

2 Background and related work

Our work is motivated by the strength of semi-supervised learning,
as illustrated in Figure 2. In this section, we briefly present the
background for this work and related research.

Semi-supervised learning. In supervised methods, a classifier
is learned from labeled data (often referred to as the training set)
and used to label unknown data. Often, labeled data is not available,
and in general, it is expensive to create an effective training set.
When the training set is rather small, as shown in Figure 2 (b), su-
pervised methods typically yield poor results. Unsupervised meth-
ods, on the other hand, discover the latent structure of unlabeled
data and analyze it by means of clustering. Since these methods
are limited to the knowledge present in the unlabeled data, they are
often unaware of any semantics, and thus do not necessarily convey
the results expected by the user, as shown in (c). Semi-supervised
learning (SSL) methods can be seen as a hybrid between the above
two schemes, where the classification and analysis are performed
based both on the labeled data and the structure of the unlabeled
data. In semi-supervised methods, minimal user input can lead to
a more meaningful classification of unknown data, as illustrated in
(d). In many real-life problems, there is a large amount of unla-
beled data, but only limited labeled data. Thus, SSL methods have
become a topic of much interest [Zhu 2005].

Constrained clustering. SSL improves the performance of un-
supervised clustering by considering only a small amount of la-
beled data or some constraints on the data. Clustering techniques
where the external input is provided by constraints are referred
to as constrained clustering. These techniques typically consider
two types of constraints: must-link constraints, which specify that
two samples should be in the same cluster, and cannot-link con-
straints, which specify that two samples must be in different clus-
ters [Wagstaff and Cardie 2000]. These constraints have been in-
corporated into many clustering algorithms, such as K-means clus-
tering [Wagstaff and Cardie 2000], hierarchical clustering [Klein
et al. 2002], and clustering with Gaussian mixture models [Shental
et al. 2004]. Since spectral clustering has gained much popularity in
recent years [Shi and Malik 2000], adapting constraints to spectral
clustering has also attracted considerable attention in the literature.

Many existing techniques directly modify the similarity matrix ac-
cording to the given constraints and then perform spectral cluster-
ing [Kamvar et al. 2003; Kulis et al. 2005; Lu and Carreira-Perpinán
2008]. Rather than treating the constraints as hard constraints, Yu
and Shi [2004], Coleman et al. [2008], and Li et al. [2009] treat
them as soft constraints. By incorporating constraints into the ob-
jective function of spectral clustering, Wang and Davidson [2010b]
propose a flexible constrained spectral clustering method, which
can handle both binary and real-valued constraints.

Metric learning. Another important set of techniques for con-
strained clustering is based on metric learning, where the goal is
to learn a distance metric that best fits a known set of data proper-
ties (such as pairwise constraints). Learning a meaningful distance
metric is important to many data mining and computer vision tasks,
such as content-based image retrieval, image tagging, and handwrit-
ing recognition. A complete review of the existing metric learning
methods and their applications can be found in the survey of Yang
and Jin [2006]. Here, we briefly describe a few representative works
that are closely related to our method.

In the context of learning distances between high-dimensional fea-
tures, traditional distance learning algorithms cannot be used due to
overfitting and high computational complexity. Thus, Weinberger
et al. [2006] make the problem tractable by first using Principal
Component Analysis (PCA) to reduce the dimensionality of the
data and then learning a metric in the resulting low-dimensional
subspace. Torresani and Lee [2007] propose a method that unifies
the objectives of dimensionality reduction and metric learning to
achieve better learning accuracy.



Recently, semi-supervised metric leaning has been proposed, which
exploits both the pairwise constraints and the structure of the unla-
beled data [Hoi et al. 2008]. This method seeks to learn a linear
mapping from the original feature space to a low-dimensional sub-
space. Our method follows a similar idea, but does not explicitly
learn a mapping, which allows us to go beyond the linear case. Our
method directly embeds the data into a new subspace where the
(possibly non-linear) constraints are satisfied.

Active learning. In cases where it is expensive to obtain labeled
data, active learning techniques were developed to query the user
to label the most informative entries [Settles 2009]. Similarly, to
minimize user effort, active constrained-clustering has been stud-
ied for suggesting pairwise constraints in order to maximize perfor-
mance [Klein et al. 2002; Basu et al. 2004]. To build an active spec-
tral clustering framework, Wang and Davidson [2010a] propose to
choose the constraint with the largest expected error between the
current cluster assignment and the user-specified input. With the
assumption that the underlying clusters are nearly separated, Xu et
al. [2005] identify points on the boundaries of clusters by examin-
ing the spectral clustering eigenvectors. Note that the two methods
above are limited to two-class problems.

Learning from sets of shapes. Learning methods use the
knowledge present in sets of shapes to solve classical problems,
such as shape segmentation [Shamir 2008; Chen et al. 2009].

A variety of supervised methods have been developed in recent
years and applied in many fields. In particular, the graphics commu-
nity used supervised methods to segment shapes [Kalogerakis et al.
2010], establish a correspondence between two shapes [van Kaick
et al. 2011], and detect geometrical features [Sunkel et al. 2011]. In
these methods, the external user knowledge is captured by means
of a training set. The training set is then used to learn models or
classifiers that allow the method to reapply the knowledge.

Unsupervised methods for co-segmentation and co-analysis of a set
have been presented in [Golovinskiy and Funkhouser 2009; Xu
et al. 2010; Sidi et al. 2011; Hu et al. 2012]. Golovinskiy and
Funkhouser [2009] pre-align all the shapes in the set and then clus-
ter the shape faces according to an underlying graph. The graph
links faces that are adjacent in the models and faces that are close-
by after the alignment. The resulting clusters provide a natural
co-segmentation of the shapes. Xu et al. [2010] factor out the
scale variation in the shape parts by first classifying the shapes
into different styles. In this manner, they are able to co-segment
shapes with a higher level of variability. Sidi et al. [2011] pose
the co-segmentation problem as that of clustering in a descriptor
space, which allows their method to handle shapes with rich vari-
ations in part composition and geometry, where a rigid alignment
scheme would not lead to a proper co-segmentation. Recently, Hu
et al. [2012] present an alternative unsupervised co-segmentation
method based on subspace clustering. Huang et al. [2011] also
present a method where a set is used to assist in the segmentation of
individual shapes. They can handle rich shape variations by using
shape descriptors, without aiming at a consistent segmentation of
the entire set. Note that, since the analysis is unsupervised in all of
the methods above, it is entirely determined by the cluster structures
either in the primal shape space or in a descriptor space.

3 Overview

We present an active SSL technique for co-analyzing a set of
shapes, based on constrained clustering. The user interactively
adds must-link or cannot-link constraints between segments, assist-
ing the correction of the cross-shape segment clustering towards an

Figure 3: Each super-face lives in two spaces: over the surface of
the shapes (the primal space, shown on the shapes to the left and
right) and in the feature space (the dual space, shown in the center).

error-free co-analysis of the set. The goal of the co-analysis is to
obtain a segmentation and labeling of the shapes that is consistent
across the set. The input shapes have a similar part composition and
thus share a common label set. By clustering segments extracted
from the shapes, we obtain a co-segmentation, since the segments
are grouped into classes that represent the types of parts that exist
in the set, where the number of clusters is provided by the user.

We assume that an unsupervised method already computed and la-
beled an initial segmentation of the given set (Figure 1 (a)). Each
shape is then partitioned with K-means clustering into smaller seg-
ments, which we refer to as super-faces. Each such super-face is
associated with a vector of shape descriptors. Thus, each super-
face can also be seen as a point in a high-dimensional descriptor
space. With the aid of multi-dimensional scaling (MDS), we re-
duce the high-dimensional descriptor space to a lower-dimensional
feature space where our active SSL is carried out (Figure 3).

As shown in Figure 3, each super-face lives in two spaces: over the
surface of the shapes (the primal space) and in the feature space
(the dual space). The clustering is carried out in the feature space,
while the primal space is where the user marks the constraints. Note
that Figure 3 displays a real embedding in 2D. We see that although
similar types of parts tend to be grouped together, the embedding
does not form simple cluster arrangements. Thus, it is unlikely that
an unsupervised method can provide an error-free analysis of the
set. Since we aim at a semantic labeling of the parts, even ideal ge-
ometric descriptors cannot always fully capture the part semantics,
and an active learning scheme is thus sought.

In the core component of our technique, the user interactively adds
must-link or cannot-link constraints between super-faces. The in-
troduction of every new constraint refines the clustering in the fea-
ture space and thus also the co-segmentation of the set (Figure 1
(b) and (c)). This interactive process is repeated until the user is
satisfied with the result. The key challenges of this work are: (i)
to maximize the effect of a single user input; and (ii) to ease the
user on the task of identifying where his or her input is likely to
be the most effective. To address these two challenges, we intro-
duce: (i) a constraint re-embedding technique where the effect of
adding a constraint (either must-link or cannot-link) is propagated
to its environment in feature space and consequently improves the
clustering (described in Section 4); and (ii) a method that analyzes
the feature space and identifies elements that have high potential
of being misclassified (discussed in Section 5). These elements are
promptly highlighted to the user (as shown in Figure 1 (b)).

4 Sparsely-constrained re-embedding

The input to our active co-analysis is a set of super-faces extracted
from the input shapes. Our method can start with the segments
generated by any unsupervised co-segmentation algorithm. Specif-
ically in our experiments, we use an algorithm similar to that of Sidi



(a) (b) (c)

Figure 4: Comparison between linear and non-linear spring sys-
tems: (a) Dataset with two cannot-link constraints (red lines). (b)
Result of a linear spring-system, where constraint springs act like
metric springs with higher spring constants. (c) Result of our non-
linear spring-system, which better separates the clusters.

Figure 5: The four types of springs used in our system: metric
springs are shown in brown, must-link constraint springs in blue,
cannot-link constraint springs in red, and repulsion springs in gray.

et al. [2011], however, we break the segments into smaller super-
faces. First, we cluster faces with K-means according to shape
descriptors, where K = 5 × number of labels, to obtain an over-
segmentation of the shapes. Next, we use graph cuts [Boykov et al.
2001] to refine the super-face borders. This procedure ensures that
if a single segment incorporates parts that should be labeled dif-
ferently, these will be split into separate super-faces (a situation
that appears in the results of Sidi et al. [2011]). Thus, the user
will not need to split super-faces when adding constraints. If we
are given a different initial segmentation, we also break the seg-
ments into smaller super-faces with K-means. Finally, we cluster
the super-faces into several classes of parts by using the descriptor-
space spectral clustering approach [Sidi et al. 2011] to obtain the
initial co-segmentation. The number of clusters is user-specified.

For the K-means clustering step, we use the same shape descriptors
as Sidi et al. [2011], which are based on the position and orien-
tation of faces, and also on the shape diameter function [Shapira
et al. 2008]. As in Sidi et al., the descriptors are histograms that
capture the distribution of these face-level descriptors across the
super-faces. For computing the descriptors, we assume the shapes
are in their upright orientation [Fu et al. 2008; Jin et al. 2012].

In the active co-analysis, we also use the same super-face descrip-
tors, which result in a high-dimensional descriptor space. However,
the high dimensionality of this space may result in overfitting and
high computational complexity when performing the constrained
clustering [Weinberger et al. 2006]. Hence, the super-faces are em-
bedded into a feature space of reduced dimensionality with the use
of multi-dimensional scaling (MDS), simplifying the complexity of
the constrained clustering. We verified that the choice of dimension
d for this space does not significantly affect the results of the algo-
rithm, as long as the selected d is not too small. Thus, we choose
d = 5 so that the space possesses enough degrees of freedom to
allow for the convergence of the constrained-embedding algorithm.

Finally, at each iteration of the active co-analysis, the user inter-
actively adds must-link (ML) or cannot-link (CL) constraints be-

tween two super-faces. This is carried out in an interface where the
user clicks on two selected super-faces on the shapes. The interface
also suggests pairs of super-faces that should receive a constraint
to improve the clustering (described in Section 5). After new con-
straints are added to the current set of constraints, we execute the
constrained-clustering algorithm on the feature space. The result of
the clustering directly provides a co-segmentation of the set.

To perform the clustering, we first re-embed the super-faces into a
space that better reveals the cluster structures and constraints. Our
re-embedding method is based on the relaxation of a spring system,
which moves the super-faces to new locations in this space. The
new locations ensure that the result of applying an unconstrained
clustering algorithm on the re-embedded super-faces will satisfy the
constraints. Thus, we can apply any clustering algorithm on this
space to obtain the final grouping of super-faces. In our case, we
use the K-means algorithm with the number of clusters provided by
the user. The details of our spring system follow next.

Spring system. The embedding of the super-faces is posed as
the relaxation of a spring system. The spring system models the
inter-element distances together with the constraints directly in the
embedded space. The input to the system is a set of constraints and
a matrix of pairwise distances between elements, which is derived
from the positions of super-faces in the aforementioned 5D feature
space. The spring system re-embeds the elements to better respect
the given set of constraints. Then, any clustering algorithm (such as
K-means) can be applied to obtain the final grouping of elements.

Each super-face is represented by a vertex in a fully-connected
undirected graph G. The edges of the graph (E) model springs,
whose relaxed lengths are set to the distance between the corre-
sponding elements in the 5D feature space. These springs are called
metric springs since they model the original feature space. This set-
ting results in a spring system where each spring exerts a force when
it is longer or shorter than its relaxed length (i.e., when it contains
potential energy). Intuitively, a spring system “aims” to re-embed
vertices in such a way that minimizes the total sum of potential en-
ergy; this re-embedding is called a stationary state.

Constraints are modeled by special constraint springs between the
two constrained vertices. Cannot-link springs are set with a long re-
laxed length (the maximum distance between any two elements in
the feature space) and they only exert a force when they are shorter
than the relaxed length; Must-link springs are set with a short re-
laxed length (the minimum distance in the feature space) and they
only exert a force when they are longer than their relaxed length.

Constraint springs must be persistent enough to overcome many
metric springs and have a significant effect on the stationary state.
To achieve this, we assign proper spring constants to each spring.
The spring constant κ is a measure of how much force F a spring
exerts when displaced one unit length from its relaxed length. Ac-
cording to Hooke’s Law, F = κ∆x, where ∆x is the spring dis-
placement. We assign the arbitrary value κmetric = 1 to metric
springs; and assign a higher value of κconstraint = 10, 000 to con-
straint springs. This difference allows the constraints to have a sig-
nificant effect on the stationary state of the spring system.

The objective function of the minimization can be written as a sum
of the potential energy stored in each spring:

Obj(G) =
∑

〈u,v〉∈M

κ(u,v) · (dis(u, v)−D(u, v))2

+
∑

〈u,v〉∈CL

κ(u,v) · (max (0, D(u, v)− dis(u, v)))2

+
∑

〈u,v〉∈ML

κ(u,v) · (max (0, dis(u, v)−D(u, v)))2,

(1)



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Example of applying our spring-embedding clustering: (a) Input set of points, where the ground-truth is shown by the colors.
(b)-(d) Four constraints are sequentially added to the spring system (must-link in blue and cannot-link in red). The number of misclassified
points drastically reduces at the insertion of each new constraint. After adding four constraints in (d), the cluster assignment is close to error-
free. The same steps are shown from a different viewpoint in (f)-(h). For reference, (e) shows the clustering obtained without any constraints,
providing an imperfect result. Note that the line color of a point denotes the ground-truth, while the fill color indicates the clustering result.

where dis(u, v) is the distance between the positions of vertices u
and v in the new embedded space; D(u, v) is their distance in the
original feature space; κ(u,v) is the constant of the spring between
u and v; M is the set of metric springs, CL is the set of cannot-link
springs, and ML is the set of must-link springs.

The conditional exertion of a force by constraint springs in (1),
which can also be represented as a conditional potential energy
function, makes the system non-linear and allows for a significantly
greater degree of flexibility than a linear system. It also leads to a
stationary state that is better at satisfying the constraints without
damaging the local structure of the graph near the constrained ver-
tices; this effect is key in achieving a successful clustering with a
sparse set of constraints. This is exemplified in Figure 4: the linear
system tries to exactly satisfy the constraints, so the result is more
rigid (the shape of the clusters remains closer to the original), while
the non-linear case allows more flexibility (the clusters are more
deformed while still satisfying the metric and linking constraints).

Relaxation. The solution of the objective function is achieved by
a series of relaxation iterations, where we calculate the force being
exerted on the vertices by each spring according to Hooke’s Law.

In order to avoid the quadratic time complexity of calculating the
forces between all pairs of vertices, we build a sparse graph in
which every vertex is connected to its K-nearest neighbors (KNN).
We also add O(N) randomly-chosen metric springs that are not
included in the KNN sub-graph, which we call repulsion springs.
We set κrepulsion = κmetric = 1, since the goal of these springs
is to capture the overall interactions between distant vertices and
avoid that they accidentally end up close to each other. We find
this approximation effective since in a clustering problem we are
interested in capturing exact distances mainly between proximal
vertices, while the exact interactions between distant vertices are
less important. Thus, the relaxation has overall time complexity
O(N)× number of iterations, where there are N super-faces in the
set. The types of springs used in our system are shown in Figure 5.

Note that we do not use the spring constants as “physical” factors,
but rather employ them as weights in a weighted sum expressing

the force exerted on each vertex v:

Fv =
∑

〈u,v〉∈E

κ(u,v) · (dis(u, v)−D(u, v)) /
∑

〈u,v〉∈E

κ(u,v).

(2)
Moreover, since κmetric # κconstraint, it appears that the displacement
of vertices affected only by metric springs is insignificant. How-
ever, in fact, if a vertex is not influenced directly by a constraint
spring, then it is significantly displaced by the metric springs.

The relaxation iterations are stopped either when all the vertex dis-
placements are below a constant threshold (convergence to a local
minimum), or when the system has reached 1,000 iterations with-
out convergence. We observed that this number of iterations is suf-
ficient to yield good results for the co-analysis of small and large
sets (Section 6), demonstrating the scalability of the relaxation. An
example of the full execution of our spring embedding is shown
in Figure 6. Note in (b)-(d) that, as more and more constraints
are added to the spring system, the number of misclassified points
drastically decreases. With four constraints, as shown in (d), the ac-
curacy is close to error-free. On the other hand, clustering without
constraints yields far from accurate results, as shown in (e).

Comparison with previous work. Previous work on constrained
clustering has proposed methods that modify the matrix of pairwise
similarities according to the input constraints, or methods that re-
strict the space of feasible solutions [Wang and Davidson 2010b].
The first class of methods provides a new similarity matrix that can
be used with any clustering algorithm, while the second class re-
stricts the choice of possible clustering solutions.

Our spring embedding clustering incorporates the constraints di-
rectly as requirements that the spring system, and thus the resulting
clustering, have to satisfy. The advantage of such a re-embedding of
the elements is that a small number of constraints is able to greatly
improve the clustering result, while previous methods would re-
quire a larger number of constraints (on the order of hundreds for
small inputs) to achieve a similar result. This advantage in the
sparsity of the constraints helps to fulfill one of our design goals:
minimize user effort in guiding the result toward an error-free co-
segmentation. Figure 7 demonstrates the advantage of our spring



(a) (b) (c)

Figure 7: Comparison between constrained-clustering techniques: (a) Dataset to which we add four constraints (highlighted by the arrows).
Must-link constraints are colored blue and cannot-link constraints are red. (b) Spectral learning result (part of the green cluster is mis-
classified). (c) Our spring embedding result, which is more consistent with the ground-truth. Note that the line color of a point denotes the
ground-truth, while the fill color indicates the clustering result.

embedding method in comparison to the result of an alternative
method (the spectral learning of Kamvar et al. [2003]).

5 Active Learning

By interactively adding constraints, the user refines the co-analysis
towards an error-free co-segmentation of the set. At every itera-
tion, new constraints are added, the spring-embedding is updated,
and the super-faces are re-clustered. Moreover, to minimize the ef-
fort required from the user, at the beginning of each iteration, the
system suggests pairs of points that when constrained are likely to
improve the co-segmentation. The suggestions involve points that
are far from their cluster centers, and which have a low confidence
of belonging to their clusters, since their corresponding super-faces
reside in regions of the embedding where the part class is more un-
certain. The confidence is given by the silhouette index of a point.

Silhouette index. Let us assume that x is a point in the embed-
ding which was assigned to the cluster Ck, and nk is the number of
points in this cluster, while K is the total number of clusters. Then,
the silhouette index of x is defined as [Brun et al. 2007]:

S(x) =
b(x)− a(x)

max[b(x), a(x)]
, (3)

where a(x) is the average distance between x and all other points
in its cluster Ck, defined as

a(x) =
1

nk − 1

∑

y∈Ck,y $=x

d(x,y), (4)

and b(x) is the minimum of the average distances between x and
the points in other clusters, given by

b(x) = min
h = 1, . . . , K

h "= k



 1
nh

∑

y∈Ch

d(x,y)



 . (5)

The silhouette index S(x) is a value in the range [0, 1] when the
clustering results are produced by the K-means algorithm. S(x)
values close to 0 represent points with less confidence, since the
points are located near to the cluster boundary and their member-
ship is thus more uncertain.

Constraint suggestion. Now, given the silhouette index of each
point, we can find points in the current clustering that have a low
or high confidence of belonging to their assigned cluster. So, when

suggesting constraints, the system asks the user to establish a link
between a low-confidence point and a high-confidence point. How-
ever, some of the low-confidence points do not represent good sug-
gestions since they already possess the correct label. This can hap-
pen when the point is far on average from the points in its cluster,
but is close to its cluster center in the original feature space. So,
we select as suggestions the low-confidence points that are closest
to another cluster center in the original feature space. By connect-
ing low-confidence to high-confidence points, the user can add a
constraint which will connect an uncertain and incorrectly labeled
region of the embedding with a region that has a definite label.

More specifically, this is carried out by sorting all the points accord-
ing to their confidence S(x). First, we select K points with high
confidence (points with S(x) values close to 1), where each point
belongs to a different cluster. Next, we obtain the distances in the
original feature space from all the points to the K selected points,
and remove those points that are closest to their own clusters. Fi-
nally, we select several uncertain points (S(x) values close to 0).
The system then presents the shapes that contain these super-faces
in the interface and asks the user to add must-link or cannot-link
constraints by marking the super-faces. Notice that the user can
add as many constraints as desired before re-clustering. However,
since the spring embedding is fast, executing in less than 15 sec-
onds for 3,000 super-faces, it is practical to re-cluster after adding
only one or two constraints to the current set of constraints.

Interface and interactivity. In the interface, we present all the
suggested super-faces organized by their confidence. We present
the K certain super-faces in the center of a 4 × 4 grid, along with
16 − K uncertain super-faces disposed around the center. In this
manner, the user can add must-link or cannot-link constraints be-
tween any desired pairs of super-faces and then update the cluster-
ing. The super-faces are shown highlighted on their shapes, while
the shapes are colored according to the current labeling, so that the
user can easily identify mislabeled super-faces. The accompanying
video demonstrates the interface in more detail.

6 Results

In this section, we demonstrate the effectiveness of our active co-
analysis in converging towards an error-free co-segmentation. We
evaluate our spring-embedding clustering and also the active learn-
ing component of the algorithm. Furthermore, we compare to the
results of both a supervised and an unsupervised method.

Datasets and ground-truth. We evaluate our active co-analysis
on 11 sets of shapes which possess a ground-truth segmentation and



(a) Candelabra: 28 shapes, 164 super-faces, 24 constraints

(b) Four-legged animals: 20 shapes, 264 super-faces, 69 constraints

(c) Large tele-alien set: 200 shapes, 1,869 super-faces, 106 constraints

(d) Large vase set: 300 shapes, 1,527 super-faces, 44 constraints

Figure 8: Results of our active co-analysis on various sets. For each set, we show the initial unsupervised co-segmentation (middle) and then
the refined close to error-free co-segmentation (right), along with the minimal number of constraints needed to co-segment these sets. Note
how the co-segmentations are consistent across the sets and how only a small number of constraints is necessary to achieve these results. For
comparison, we also show the results of applying the method of Sidi et al. 2011 on these sets (left).

labeling (Table 1). We used all the seven sets from the dataset of
Sidi et al. [2011], where the labeling for the four-legged animals
was prepared by Kalogerakis et al. [2010]. Note that, although
our descriptors are designed for man-made shapes, our active co-
analysis can still generate reasonable results for organic shapes
when enough constraints are provided. We created three additional
large sets, since we consider the labeling of large sets as one of
the main motivations of our work, and we also created a small but
challenging set of irons. The full dataset can be downloaded at
http://web.siat.ac.cn/˜yunhai/ssl/ssd.htm.

To compare to the ground-truth, similarly to Kalogerakis et al. and
Sidi et al., we use a measure that captures the extent of a shape’s
area that is labeled correctly:

Accuracy(r, g) =
∑

i

ai δ(ri = gi) /
∑

i

ai, (6)

were r are the labels assigned to the faces by the co-segmentation, g
is the ground-truth labeling, ai is the area of face i, and δ(x = y) is
1 only if x = y. The face labels r can be directly derived from the
labeling of the super-faces. Next, we average the accuracies for all
the shapes in the set to obtain the accuracy of the co-segmentation.

However, notice that the resulting labels do not carry a semantic
meaning as in the ground-truth. Thus, first we find a one-to-one
mapping between the ground-truth labels and the resulting labels.
This is achieved by selecting the mapping that is coherent for the
whole set and gives the highest accuracy.

Active co-analysis. Figure 8 shows visual results of our active
co-analysis on sets of shapes with rich geometric variations. For
each set, we display the best co-segmentation obtained by one user,
along with the minimal number of constraints needed to obtain the
result (the best number of constraints achieved by one user in 10
trials). The results for the remaining sets as well as an enlarged
view of the large sets are available in the supplementary material.
Notice how close to error-free co-segmentations are obtained after
adding only a small number of constraints, implying a small num-
ber of user interactions. More particularly, the results of our active
co-analysis are more pronounced on large sets like the large chairs,
tele-aliens and large vases. It would be challenging to manually
segment and label these sets over 200 shapes, but they were refined
in our SSL with respectively only 162, 106 and 44 constraints. The
vases required only 44 constraints since, once the user added the
key constraints linking the most dissimilar parts, the shape descrip-

http://web.siat.ac.cn/~yunhai/ssl/ssd.htm


Figure 9: Two iterations in the active co-analysis of a set, starting from the unsupervised result in (a). Notice how the constraints added by
the user in (b) and (d) have a significant effect and refine the segmentation for several shapes (refined segments are marked in red).

tors established the remaining part links. Note also that the set of
tele-aliens is unfamiliar and so does not have immediate semantic
labels that a user could employ to train a supervised method. On
the other hand, the co-analysis does not have this semantic require-
ment and is able to automatically infer the common structure of the
shapes. The experiments for all the sets are summarized in Table 1.

For comparison, Figure 8 also shows the co-segmentations obtained
with a state-of-the-art unsupervised method [Sidi et al. 2011]. Note
that, although the results of this method are superior to our initial
segmentation in some cases, they are still far from error-free and
are also surpassed by the results of the active co-analysis.

Moreover, Figure 9 presents two example iterations in our active
co-analysis. Every constraint that is added by the user has a signifi-
cant effect in improving the co-analysis of the set, refining the seg-
mentation of several shapes in each iteration. In the supplementary
material, we present example iterations for the large set of vases.

User study. To demonstrate the effectiveness of the active co-
analysis independently of the specific user input, we performed a
study where we asked 15 participants to co-segment two sets: can-
delabra (28 shapes) and a large set of vases (300 shapes). The users
in our study were research assistants from diverse science back-
grounds, who were never involved in this work. Before the test, we
explained the goal of the co-segmentation and demonstrated how
to use our system. Next, we asked the users to co-segment each
set of shapes with and without suggestions. Each user repeated the
two experiments for three times, without any time limit. The test
did not start until the users successfully segmented the Goblet set,
where four correct constraints can achieve the ground-truth. For
the interface without suggestions, the users had to scroll through
the models to find mislabeled segments and add appropriate con-
straints. However, the interface provided hints for good constraint
candidates by highlighting the super-faces that are cluster centers.

Figure 10 shows the accuracy of the co-segmentation at each con-
straint added, averaged for all the user sessions. We see in the graph
that our active learning with suggestions has a faster convergence
rate than when no suggestion mechanism is used. Thus, given the
faster convergence, the active learning component reduces the time
needed to improve the co-segmentation. For the candelabra, the
average time needed by the users to co-segment the set with sug-
gestions was 7 minutes, while the time was 11 minutes without
suggestions. For the large vase set, the users needed 20 minutes

Table 1: Characteristics of the test sets and minimal number of
constraints needed to achieve a close to error-free co-segmentation.

Set #shapes #super-fcs. #constr.
Candelabra 28 164 24
Chairs 20 236 36
Four-legged 20 264 69
Goblets 12 49 4
Guitars 44 330 6
Lamps 20 97 2
Vases 28 169 34
Irons 18 138 26
Large chairs 400 2,832 162
Large tele-aliens 200 1,869 106
Large vases 300 1,527 44

with suggestions and 28 minutes without.

Effectiveness of the spring embedding. In Figure 10, we also
show the average co-segmentation accuracy obtained by using the
same sets of input constraints, but replacing the spring embedding
with the spectral learning algorithm of Kamvar et al. [2003]. In this
manner, we compare our spring-embedding clustering to an alter-
native algorithm, and evaluate the contribution of the spring embed-
ding to the convergence of the co-analysis. By contrasting the four
curves, we see that when spectral learning is used, the introduction
of a constraint has a more subtle effect on the result, while in the
spring embedding, each constraint has a pronounced effect on the
co-segmentation. Thus, the spring embedding also contributes to
the faster convergence of our active co-analysis, since it is able to
use the constraints more effectively.

Comparison to an unsupervised method. Figures 8 and 10
also allow us to compare our SSL directly to an unsupervised
learning (USL) method. On the left of Figure 8, we see the co-
segmentation obtained with the descriptor space clustering of Sidi
et al. [2011]. In the middle, we show our initial segmentation which
is also based on a similar algorithm. We can see that these results
contain errors, although our initial segmentation is then corrected
by the active co-analysis. As discussed in Section 1, an unsuper-
vised method cannot guarantee a perfect co-analysis of a set, since
the geometry alone cannot always convey the semantics of parts,
a fact that is demonstrated by the non-trivial cluster arrangements
that appear in the feature space (Figure 3). One exception is the set



(a) Candelabra

(b) Large vases

Figure 10: Convergence rate of the active co-analysis averaged for
several users: the x-axis corresponds to the number of constraints,
while the y-axis denotes the accuracy of the co-segmentation. The
curves show the different constrained-clustering algorithms com-
bined or not with the suggestion mechanism. Note that our spring
embedding with suggestions displays the fastest convergence.

(a) Large vases (b) Large tele-aliens

Figure 11: Convergence rate of the spring-embedding clustering
compared to the supervised learning, on two sets: the x-axis corre-
sponds to the number of shapes used for training, while the y-axis
denotes the co-segmentation accuracy measured only on the test
shapes. Note the better performance of the spring embedding.

of lamps which have a simpler structure, where the USL already
reaches a satisfactory result. Moreover, in Figure 10, we explic-
itly contrast the accuracy obtained by Sidi et al. [2011] to our co-
analysis on two sets. We see that, although the results of Sidi et
al. are better than our initial segmentation, the active co-analysis
quickly surpasses the USL accuracy with only a few constraints.
Overall, the unsupervised co-segmentations have an accuracy of at
most 85% for many sets, implying that they still require improve-
ment to reach higher accuracies.

Comparison to a supervised method. Figure 11 shows the
convergence rate of a supervised learning (SL) method compared to
the spring-embedding. In this experiment, we use the same descrip-
tors as in the active co-analysis to train classifiers that distinguish
the different types of labels. Next, these classifiers can be used to

label the super-faces of test shapes in a consistent manner. Simi-
larly to Kalogerakis et al. [2010], we utilize the boosting algorithm
for training. More specifically, we train a gentleBoost classifier for
each possible label, where the number of training iterations is set
to 150. We learn the classifiers on training sets of different sizes
composed of shapes randomly selected from the set, and test the
accuracy of the labeling on the remaining shapes. Such experi-
ments are averaged over ten runs for each set size. To perform a
direct comparison, we run the spring embedding with constraints
derived from the same training sets. By taking the labels from
all the training shapes, we can derive constraints from all possible
combinations of super-faces. Then, we also measure the accuracy
on the test shapes. For the vases, the accuracy remains constant
when adding more than 50 training shapes, so we omit this por-
tion of the graph. We see that the constrained clustering converges
faster towards an error-free segmentation, exemplifying the useful-
ness of semi-supervised learning, which takes advantage of both the
labeled data and the structure of the unlabeled data.

7 Conclusions

We have presented a semi-supervised learning method for the co-
analysis of sets of shapes. The method augments the clustering in a
feature space with supervised data that a user provides interactively.
We introduced a graph-based technique for embedding distances
while respecting prescribed constraints. The embedding technique
is based on the relaxation of a spring-system that reflects the ge-
ometric knowledge latent in the set of shapes together with con-
straints. The technique allows for an active learning setting, where
the system analyzes the embedding space and offers suggestions to
the user as to where his input is likely to be effective. We have
shown through extensive experiments on various sets, the effective-
ness of the active learning spring-based embedding as a means to
quickly converge towards an error-free consistent part labeling.

Limitations. Although the system accelerates the convergence
towards an error-free co-analysis, the system has no means of
knowing the ground truth, so it is not possible to guarantee con-
vergence unless the user exhaustively constrains all possible pairs.
After enough constraints have been added, the system can sense the
cluster-membership confidence of points by computing their silhou-
ette indices. These provide an empirical measure that suggests con-
vergence. Moreover, our active learning is limited. As said above,
the ground truth is unknown, and the technique that we presented is
based on heuristics that rely on the embedding of the super-faces.
The embedding space, of course, is subject to various errors due to
the a priori imperfect descriptive power of the descriptors and also
distortion introduced by the dimensionality reduction.

Future work. Our system analyses a static set. It will be interest-
ing to investigate a dynamic setting where new shapes are integrated
into the system in an incremental way. Likewise, the active learning
framework can be applied in a collaborative setting where multiple
users are involved, so that much larger sets can be handled. Another
interesting research avenue is to go beyond the analysis of the fea-
ture distances, and consider also the inter-relation among the labels,
maybe in the form of a smoothness term, or other means to regu-
late their configurations in the embedding space. Here, it is also
of interest the design of new types of constraints beyond must-link
and cannot-link, considering partially-labeled data or even possibly
incorporating constraints at the cluster-level. Verifying the consis-
tency of the constraints added by the users would also be a possible
improvement to the method. Finally, we believe that our spring-
based embedding technique can be useful for other learning appli-
cations, not necessarily in geometry analysis.



Acknowledgements

The authors would like to thank all the reviewers for their valu-
able comments. This work is supported in part by grants from
NSFC (61202222, 61232011, 61025012), Guangdong Science
and Technology Program (2011B050200007), National 863 Pro-
gram (2011AA010503), Shenzhen Science and Innovation Program
(CXB201104220029A, JC201005270329A), NSERC (611370)
and the Israel Science Foundation.

References

BASU, S., BANERJEE, A., AND MOONEY, R. 2004. Active semi-
supervision for pairwise constrained clustering. In Proc. SIAM
Int. Conf. on Data Mining (SDM), 333–344.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approx-
imate energy minimization via graph cuts. IEEE Trans. Pattern
Anal. Mach. Intell. 23, 11, 1222–1239.

BRUN, M., SIMA, C., HUA, J., LOWEY, J., CARROLL, B., SUH,
E., AND DOUGHERTY, E. R. 2007. Model-based evaluation of
clustering validation measures. Pattern Recogn. 40, 3, 807–824.

CHEN, X., GOLOVINSKIY, A., , AND FUNKHOUSER, T. 2009. A
benchmark for 3D mesh segmentation. ACM Trans. on Graphics
(Proc. SIGGRAPH) 28, 3.

COLEMAN, T., SAUNDERSON, J., AND WIRTH, A. 2008. Spectral
clustering with inconsistent advice. In ICML, 152–159.

FU, H., COHEN-OR, D., DROR, G., AND SHEFFER, A. 2008. Up-
right orientation of man-made objects. ACM Trans. on Graphics
(Proc. SIGGRAPH) 27, 3.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent seg-
mentation of 3D models. Computers & Graphics (Proc. of SMI)
33, 3, 262–269.

HOI, S., LIU, W., AND CHANG, S. 2008. Semi-supervised dis-
tance metric learning for collaborative image retrieval. Proc.
IEEE Conf. on CVPR.

HU, R., FAN, L., AND LIU, L. 2012. Co-segmentation of
3D shapes via subspace clustering. Computer Graphics Forum
(Proc. SGP) 31, 5, 1703–1713.

HUANG, Q., KOLTUN, V., AND GUIBAS, L. 2011. Joint shape
segmentation with linear programming. ACM Trans. on Graph-
ics (Proc. SIGGRAPH Asia) 30, 6.

JIN, Y., WU, Q., AND LIU, L. 2012. Unsupervised upright orien-
tation of man-made models. Graphical Models 74, 4, 99–108.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010.
Learning 3D mesh segmentation and labeling. ACM Trans. on
Graphics (Proc. SIGGRAPH) 29, 3.

KAMVAR, S. D., KLEIN, D., AND MANNING, C. D. 2003. Spec-
tral learning. In International Joint Conference on Artificial In-
telligence, 561–566.

KLEIN, D., KAMVAR, S., AND MANNING, C. 2002. From
instance-level constraints to space-level constraints: Making the
most of prior knowledge in data clustering. In ICML, 307–314.

KULIS, B., BASU, S., DHILLON, I., AND MOONEY, R. 2005.
Semi-supervised graph clustering: a kernel approach. In ICML,
457–464.

LI, Z., LIU, J., AND TANG, X. 2009. Constrained clustering via
spectral regularization. In Proc. IEEE Conf. on CVPR, 421–428.

LU, Z., AND CARREIRA-PERPINÁN, M. 2008. Constrained spec-
tral clustering through affinity propagation. In Proc. IEEE Conf.
on CVPR.

SETTLES, B. 2009. Active learning literature survey. Tech. Rep.
1648, Univ. of Wisconsin-Madison.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6, 1539–1556.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonization using the shape diam-
eter function. The Visual Computer 24, 4, 249–259.

SHENTAL, N., BAR-HILLEL, A., HERTZ, T., AND WEINSHALL,
D. 2004. Computing Gaussian mixture models with EM using
equivalence constraints. In Proc. NIPS, 465–472.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image seg-
mentation. IEEE PAMI 22, 8, 888–905.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set
of shapes via descriptor-space spectral clustering. ACM Trans.
on Graphics (Proc. SIGGRAPH Asia) 30, 6.

SUNKEL, M., JANSEN, S., WAND, M., EISEMANN, E., AND SEI-
DEL, H. 2011. Learning line features in 3D geometry. Computer
Graphics Forum (Proc. EUROGRAPHICS) 30, 2, 267–276.

TORRESANI, L., AND LEE, K. 2007. Large margin component
analysis. In Proc. NIPS, vol. 19, 1385–1392.

VAN KAICK, O., TAGLIASACCHI, A., SIDI, O., ZHANG, H.,
COHEN-OR, D., WOLF, L., AND HAMARNEH, G. 2011. Prior
knowledge for part correspondence. Computer Graphics Forum
(Proc. EUROGRAPHICS) 30, 2, 553–562.

WAGSTAFF, K., AND CARDIE, C. 2000. Clustering with instance-
level constraints. In ICML, 1103–1110.

WANG, X., AND DAVIDSON, I. 2010. Active spectral clustering.
In ICDM, IEEE, 561–568.

WANG, X., AND DAVIDSON, I. 2010. Flexible constrained spectral
clustering. In SIGKDD, 563–572.

WEINBERGER, K., BLITZER, J., AND SAUL, L. 2006. Distance
metric learning for large margin nearest neighbor classification.
In Proc. NIPS, vol. 18, 1473–1480.

XU, Q., DESJARDINS, M., AND WAGSTAFF, K. 2005. Active
constrained clustering by examining spectral eigenvectors. In
Discovery Science, 294–307.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z. 2010. Style-content separation by anisotropic part
scales. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 29, 5.

XU, K., ZHENG, H., ZHANG, H., COHEN-OR, D., LIU, L., AND
XIONG, Y. 2011. Photo-inspired model-driven 3D object mod-
eling. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4.

YANG, L., AND JIN, R. 2006. Distance metric learning: A com-
prehensive survey. Tech. rep., Michigan State Universiy.

YU, S., AND SHI, J. 2004. Segmentation given partial grouping
constraints. IEEE PAMI 26, 2, 173–183.

ZHU, X. 2005. Semi-supervised learning literature survey. Tech.
Rep. 1530, Univ. of Wisconsin-Madison.


