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Abstract We introduce a novel approach to measur-

ing similarity between two shapes based on sparse re-

construction of shape descriptors. The main feature of

our approach is its applicability in situations where ei-

ther of the two shapes may have moderate to signifi-

cant portions of its data missing. Let the two shapes

be A and B. Without loss of generality, we character-

ize A by learning a sparse dictionary from its local de-

scriptors. The similarity between A and B is defined by

the error incurred when reconstructing B’s descriptor

set using the basis signals from A’s dictionary. Bene-

fits of using sparse dictionary learning and reconstruc-

tion are twofold. First, sparse dictionary learning re-

duces data redundancy and facilitates similarity com-

putations. More importantly, the reconstruction error

is expected to be small as long as B is similar to A, re-
gardless of whether the similarity is full or partial. Our

proposed approach achieves significant improvements

over previous works when retrieving non-rigid shapes
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with missing data, and it is also comparable to state-of-

the-art methods on the retrieval of complete non-rigid

shapes.

Keywords Full and partial shape similarity · In-

complete shapes · Shape retrieval · Sparse dictionary

learning · Sparse reconstruction

1 Introduction

One of the recurring questions in shape analysis is how

to deal with missing data. Methods designed to han-

dle complete shapes may still be applicable if the miss-

ing data is insignificant and the shape interpolation re-

mains effective. However, with significant amounts of

missing data, the shape analysis problem becomes quite

challenging, as testified by previous works on incom-

plete shape retrieval [1] and segmentation [2].

In this paper, we are interested in the fundamen-

tal problem of measuring similarity between two 3D

shapes. More specifically, we seek an approach that is

effective at handling moderate to significant amounts

of missing data in either or both non-rigid shapes.

Some shape similarity measures rely on one or more

global shape descriptors [3,4]. However, by design, these

global descriptors are unlikely to be suitable for highly

incomplete shapes. Local shape descriptors, including

the well known shape context [5] and heat kernel sig-

nature (HKS) [6], encode geometry at or from the per-

spective of a point over a shape’s surface. These local

descriptors are commonly pooled to form a global de-

scriptor by some statistical strategies such as bag-of-

words [7–9] and sparse coding [10,11]. As a result, the

statistics are collected over the entire shape, decreasing

the accuracy of shape similarity when the input shapes
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have missing data. In this work, we propose a novel ap-

proach to organizing the entire set of local descriptors

properly for two shapes, incomplete or not, to achieve

a sensible comparison between them.

Sparse dictionary learning aims at finding a set of

basis elements which compose a dictionary. With the

dictionary, each input signal can be represented as a

sparse linear combination of these basis elements. Sparse

dictionary learning has achieved great success in signal

processing and image processing [12]. In recent years,

it has also attracted some researchers in the field of 3D

shape analysis [10,11,13].

Our key observation is that local descriptors of a

shape are largely redundant because the descriptors on

nearby vertices are very close to each other. Sparse dic-

tionary learning is especially appropriate to deal with

this kind of information [14]. Each local descriptor is

regarded as a signal, and a dictionary, including a set

of basis signals, can therefore be learned. The dictio-

nary is capable of reconstructing all the given signals

by sparse linear combinations of these basis signals.

Then, we make a connection between the shape sim-

ilarity measure and sparse reconstruction of local de-

scriptors. More specifically, for comparing two shapes

A and B, we characterize A, without loss of general-

ity, as a set of basis signals from A’s dictionary, and

sparsely reconstruct B’s local descriptors. The similar-

ity between A and B is therefore defined using these

reconstruction errors. An overview of our approach is

shown in Figure 1.

Our approach requires local shape descriptors that

are insensitive to pose changes and missing shape parts.

To achieve this, we modify the computation of HKS.
And meanwhile, the dimension of the descriptor is cho-

sen to fit for sparse dictionary learning.

The solution of shape similarity measure can be

greatly beneficial to incomplete shape retrieval. First,

dictionaries are computed for each shape in the dataset.

Next, for a query, the shape similarities can be obtained

by using these dictionaries respectively to reconstruct

its local shape descriptors. Such a retrieval application

may be needed in practice when a modeler wants to

create a new 3D shape via part composition and needs

to search for one or more missing parts for a partially

created shape, which is incomplete. In 3D model recon-

struction amid significant missing data, a partial recon-

structed shape, which is again incomplete, may be used

to query a database for data-driven model completion.

For these scenarios, the shapes in the database are ex-

pected to be more complete than the queries.

The problem of retrieving incomplete articulated

(non-rigid) shapes has been addressed in Dey et al.’s

work [1]. They rely on detecting and matching critical

Fig. 1 Overview of our approach to computing the similarity
between a complete shape (left) and an incomplete 3D shape
(right) via sparse descriptor reconstruction.

points to measure shape similarity. These critical points

are HKS maxima, and their HKSs are named as persis-

tent heat signatures (PHS). However, when large parts

of a shape are missing, the detection of critical points

will be easily impacted.

Differing from the aforementioned work, we propose

a novel approach to measuring shape similarity based

on sparse reconstruction of local descriptors for non-

rigid incomplete shape retrieval. Experimental results

show the effectiveness of our method. The contributions

of our approach are twofold:

– Our method of computing local descriptors can main-

tain invariance under non-rigid deformations and

also tolerate the missing parts of a shape to some

extent.

– Our measure of shape similarity, which is defined

from the perspective of sparse reconstruction of lo-

cal shape descriptors, can be applied for two shapes

which can be complete or not. The reason is that

similar shapes with similar local descriptors can share

the same dictionary, and the reconstruction error

would be insensitive to the missing parts of a shape.



Full and Partial Shape Similarity through Sparse Descriptor Reconstruction 3

2 Related work

The literature on shape descriptors, shape matching,

and shape retrieval is vast. In this section, we only cover

methods that are most closely related to our work. We

refer the readers to a number of surveys on these topics,

including [15–17].

Spectral descriptors for non-rigid shapes. In nu-

merous non-rigid shape analysis tasks, the spectral de-

scriptors achieve state-of-the-art performance. Jain and

Zhang [18] define an affinity matrix based on geodesic

distances and take the spectrum of the matrix as a

global descriptor. Many researchers study shape de-

scriptors based on the spectrum of the Laplace-Beltrami

operator on the surface. Due to the intrinsic nature of

the Laplace-Beltrami operator, its spectrum is isometry-

invariant. Reuter et al. [19] propose a Shape-DNA de-

scriptor in which a shape is described using the Laplace-

Beltrami spectrum (eigenvalues). Heat diffusion has re-

cently been paid much attention according to its suit-

ability for non-rigid shape analysis. The well-known

heat kernel signature (HKS) [6] is a local shape de-

scriptor based on heat diffusion. Wave kernel signature

(WKS) [20] also carries a physical interpretation, and

a quantum mechanics equation is used to replace the

heat equation that gives rise to HKS. HKS and WKS

are both invariant with respect to isometric transfor-

mations.

Non-rigid shape matching and partial shape match-

ing are two hotspots of 3D shape analysis. Our aim is

to solve the matching problem of shapes which are non-

rigid and also have missing parts. It is more challenging

than a single non-rigid shape matching problem, since
missing shape parts may influence the Laplace-Beltrami

operator obtained from the global shape.

Sparse coding for 3D shape retrieval. Sparse cod-

ing is usually combined with dictionary learning. For

shape retrieval, dictionary learning is used to replace

the clustering process of the bag-of-words framework,

and can be performed in an unsupervised [10] or super-

vised [11] scheme. Then, for a shape, its local descrip-

tors are sparsely coded, and the resulting sparse coef-

ficients are integrated to form a global shape descrip-

tor. Besides local descriptors, the samples (signals) for

training can be patch features. In Liu et al.’s work [13],

each shape is over-segmented into a set of patches, and

patch words are learned via sparse coding from all the

patch features. Boscaini and Castellani [21] propose to

exploit sparse coding for two retrieval applications: non-

rigid shape retrieval and partial shape retrieval. Their

partial shape retrieval is different from our incomplete

shape retrieval. The best matches in their method are

partly similar to the query, that is to say, some parts

of the shapes might be dissimilar to the query. In con-

trast, we discuss a specific application aimed at solving

the non-rigid and incomplete problem together. In our

work, the best matches would be overall similar to the

query, which may have pose changes and missing parts.

Consequently, our work differs from [21] in the local

descriptors and shape similarity measure.

Despite of some retrieval applications via sparse cod-

ing, to our knowledge, sparse coding has not yet been

used for incomplete non-rigid shape retrieval.

Partial matching. Partial shape matching is appro-

priate for comparing shapes with significant variability

and missing data. Shape retrieval and correspondence

are its typical applications. For shape retrieval, partial

shape matching is applied to compute shape similarity

[22,23]. To solve this problem, many methods detect

and match feature points characterized by local shape

descriptors. Gal and Cohen-Or [22] extract and store

a set of salient regions for each model. Dey et al. [1]

detect critical points based on the HKS descriptors. It-

skovich and Tal [24] integrate feature point similarity

and segment similarity for partial matching. Kaick et al.

[25] propose a bilateral approach, where a local shape

descriptor is defined by exploring the region of inter-

est from the perspective of two points instead of one

point. Quan and Tang [26] present a local shape de-

scriptor called Local Shape Polynomials (LSP), which is

based on the evolution pattern of geodesic iso-contour’s

length.

Another way is to encode the topological informa-

tion as a graph for partial matching [27,28]. Biasotti et

al. [27] present a structural shape descriptor, by which

the structure and the geometry are coupled for recog-

nizing similar parts among shapes. Tierny et al. [28]

match partial 3D shapes via Reeb pattern unfolding.

Some methods involve shape segmentation to inves-

tigate meaningful parts of an object [29–31]. Toldo et al.

[29] utilize bag-of-words to cluster the shape descriptors

of segmented regions. Shapira et al. [30] define a similar-

ity measure between two parts based on their geometry

and context. Ferreira et al. [31] propose a part-in-whole

matching method.

In our work, we focus on computing shape similarity

between two non-rigid shapes, which may have missing

shape parts, via sparse reconstruction of local descrip-

tors.

3 Incomplete HKS (I-HKS)

Local shape descriptors, which are expected to maintain

consistency between non-rigid shapes and their incom-

plete versions, are crucial to measure the shape similar-

ity. Spectral descriptors are invariant under isometric
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transformations. However, these descriptors may vary

when a shape misses some parts. Therefore, in this sec-

tion, we will analyze two well-known spectral descrip-

tors to deduce which is less sensitive to missing parts.

3.1 Preliminary

HKS and WKS are notable local descriptors using the

spectral decomposition of the Lalplace-Beltrami oper-

ator associated with a shape, and are widely used in

numerous non-rigid shape analysis tasks.

Heat diffusion is an elegant mathematical tool with

a good physical interpretation, which is the foundation

of HKS. The heat kernel is used to describe the process

of heat diffusion on a Riemannian manifold. Given a

unit heat source at a point x, the heat kernel Kt(x, y)

can be considered as the amount of heat that is trans-

ferred from x to y in time t, which can be written as

[32]

Kt(x, y) =
∑
k≥0

e−λktφk(x)φk(y), (1)

where 0 = λ0 ≥ −λ1 ≥ −λ2, ... are eigenvalues of

the Laplace-Beltrami operator and φ0, φ1, φ2, ... are the

corresponding eigenfunctions.

Sun et al. [6] propose to take Kt(x, x) as local shape

descriptors, and call it HKS. For a point x, its HKS can

be expressed as

h(x, t) = Kt(x, x) =
∑
k≥0

e−λktφ2k(x). (2)

According to the analysis in [6], HKS has built-in ad-

vantages such as being isometry-invariant, multi-scale

and robust against small perturbations.

Ovsjanikov et al. [7] present a compact representa-

tion of HKS. By sampling the HKS descriptor in time

ti = αi−1t0, they obtain a descriptor vector p(x) =

(p1(x), · · · , pn(x))T , and the elements are

pi(x) = c(x)h(x, αi−1t0), i = 1, · · · , n, (3)

where the constant c(x) is determined by ‖p(x)‖2 = 1.

WKS is induced from quantum mechanics, which is

another physical tool used to analyze non-rigid objects.

From the uncertainty principle of quantum mechanics, a

quantum mechanical particle’s position and energy can-

not be accurately determined at the same time. Thus,

WKS represents the average probability of measuring a

particle at a specific location by varying the energy of

the particle. Let γ denote the logarithmic energy, for a

vertex x ∈ V , its WKS can be computed by [20]

WKS(x, γ) =

∑
k≥0 φ

2
k(x)e

−(γ−lnλk)2

2σ2∑
k≥0 e

−(γ−lnλk)2

2σ2

, (4)

where σ is the variance of energy distributions.

3.2 HKS vs. WKS for incomplete shapes

In this section, we analyze HKS and WKS to decide

which is more suitable for incomplete shape compar-

isons.

For a fair comparison, we make the parameter set-

tings as consistent as possible for HKS and WKS. We

take the first 100 eigenvalues and eigenfunctions to eval-

uate both of them. The importance of the diffusion time

t to HKS is just as the energy γ to WKS. Thereby,

we set t and γ to be adaptive to a shape. For each

shape, we adopt its tmin and tmax to set t for the

HKS, and take γmin and γmax to compute γ for the

WKS. According to [6], we set tmin = 4 ln 10/λ1 and

tmax = 4 ln 10/λ99. As in [33], we adopt γmin = lnλ1
and γmax = lnλ99

1.02 . Then, t is uniformly sampled to

get n = 100 values over [tmin, tmax], while γ is also

set to n = 100 values, ranging from γmin to γmax
with linear increment δ = γmax−γmin

99 . As a result, t

and γ are sampled using similar formulas which are

ti = tmin + tmax−tmin
99 (i − 1), i = 1, ..., 100 and γi =

γmin + γmax−γmin
99 (i − 1), i = 1, ..., 100. Additionally,

the WKS has a parameter of variance σ which is set to

7δ [33].

According to the multi-scale property of the HKS,

for small values of t, the h(x, t) is mainly influenced by

a small neighbourhood of x. So we can deduce that for

an incomplete shape, the HKS descriptors with small t

are almost invariant, except for those points near the

cutting boundaries. It can be verified by the visualiza-

tion of the HKS descriptors for a human shape and its

incomplete versions, as shown in Figure 2a-e. Further-

more, the h(x, t) decreases sharply as t increases (see

Figure 2f). These two observations are the reason of

our setting of the time interval in Section 3.3.

The WKS descriptors are visualized in Figure 3.

From it, we can have the following findings: (1) For

small energies, the WKS descriptors change significantly

in some regions far from the boundaries (see Figure 3a-

c); (2) For larger energies, most of the WKS descrip-

tors are relatively small (see Figure 3d-f). As known

from [20], the WKS descriptors of small energies are in-

duced by the global geometry. Based on this property,

the missing parts influence the global geometry, and

then result in the variation of the WKS descriptors. So

it can explain our first finding. The WKS descriptors of

large energies have good local attributes, but the small

values are not good for discrimination.

Besides, we can discuss this problem from another

perspective. Based on the analysis in [33] and [34], the

HKS descriptor can be seen as a collection of low-pass

filters, while the responses of the WKS descriptor are

band-pass. However, for the WKS, the centre frequen-
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Fig. 2 Elements of the HKS descriptors mapped on the original shape (from [7]) and its incomplete versions, (a) h(x, t2),
(b) h(x, t3), (c) h(x, t4), (d) h(x, t7), (e) h(x, t10), (f) h(x, t20). Hotter colors represent larger values.

Fig. 3 Elements of the WKS descriptors mapped on the original shape and its incomplete versions, (a) WKS(x, γ10), (b)
WKS(x, γ20), (c) WKS(x, γ30), (d) WKS(x, γ50), (e) WKS(x, γ70), (f) WKS(x, γ80). Hotter colors represent larger values.

cies of band-pass filters are defined by the eigenvalues

which will be influenced by the missing parts. As a re-

sult, the elements of WKS, as a collection of band-pass

filters, are also varied.

Based on the aforementioned analysis, we can draw

a conclusion that the HKS descriptors are more suitable

to be taken as local shape descriptors than the WKS

descriptors for incomplete shapes.

3.3 HKS for incomplete shapes

We improve the computation of the HKS descriptors for

incomplete shapes on the following aspects: (1) The de-

scriptors are calculated on the largest connected com-

ponent for a disconnected shape, while some descrip-

tors of the boundary vertices and their 1-ring neigh-

bors are excluded; (2) The dimension of each descrip-

tor is chosen for sparse dictionary learning according to

the dictionary size and the sparsity threshold; (3) The

diffusion time scales are adaptively set for each shape,

rather than some fixed values. To distinguish the mod-

ified descriptors from the original HKS descriptors, we

call them I-HKS descriptors.

The dimension of each descriptor needs to be suit-
able for the subsequent procedure of dictionary learn-

ing. We utilize the K-SVD algorithm for dictionary learn-

ing. The sparsity threshold should be small enough rel-

ative to the dimension of a signal, because in these

circumstances the convergence can be guaranteed [35].

Therefore, the dimension n of an I-HKS descriptor can-

not be too small. Meanwhile, n should be smaller than

the dictionary size for designing an overcomplete dictio-

nary. Consequently, in all the experiments of this paper,

n is set to a reasonable value 10.

We use the first 100 eigenvalues and eigenfunctions

to compute the I-HKS descriptors. Elements of an I-

HKS descriptor with t > tmax remain almost unchanged

and those elements with t < tmin need more eigenval-

ues and eigenfunctions [6]. For incomplete shape match-

ing, small time is more appropriate for representing

local attributes. Furthermore, from Figure 2e, when

t10 = tmin + tmax−tmin
99 (10 − 1), although the values

of h(x, t10) can still be used to distinguish the different
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points on a shape, they are indeed very small. So we

choose the diffusion time from tstart = tmin to tend =

tmin+(tmax− tmin)/10. So for each 3D model, we sam-

ple n points over this time interval, and generate a log-

arithmically spaced vector. The time scales are then

formulated as:

ti = 10lg tstart+
lg tend−lg tstart

n−1 (i−1), i = 1, ..., n. (5)

Finally, all the I-HKS descriptors are normalized to

unit L2 norm for the subsequent matching procedure.

4 Shape similarity

A 3D model may consist of as many as tens of thou-

sands of vertices, and each vertex has a local shape

descriptor. As a result, the set of local shape descrip-

tors may be very large. It is not efficient to directly

compare between such huge descriptor sets. Therefore,

many researchers use the bag-of-words framework to

pool them into a global shape descriptor. An alterna-

tive scheme is to utilize critical points. A small set of

local shape descriptors is computed at detected critical

points, and the shape similarity is measured by these

representative descriptors. However, the missing parts

of an incomplete shape may impact both the global de-

scriptor via bag-of-words and the detection of critical

points.

Recently, the sparse dictionary learning theory has

shown excellent performance in many applications. Given

a set of signals, the information in this set is often

largely redundant. Therefore, it is very important to

determine a proper representation of the set. The aim

of dictionary learning is to find a small set which is

appropriate for representing all the signals in a given

signal set. The signals in a learned dictionary are called

basis signals. By means of the dictionary, each signal in

the set can be efficiently expressed as a linear combina-

tion of basis signals, wherein the linear coefficients are

sparse (most of them are zero).

From Figure 2a, it is clear that: (1) The local de-

scriptors of a vertex and its neighbors are very close;

(2) Two symmetric parts, e.g. left and right hands,

also have nearly equal local descriptors, and therefore

these descriptors are largely redundant. For a 3D model,

taking its I-HKS descriptors as signals, we attempt to

use the sparse dictionary learning theory to understand

these signals, and formulate the shape similarity prob-

lem. Specifically, sparse dictionary learning is utilized

to compute the basis descriptors for the descriptor set of

each shape in the dataset. If the shape, either complete

or not, is similar to the query and more complete, its

dictionary can be applicable to reconstruct the query’s

local descriptors. We, therefore, use the reconstruction

errors to measure the shape similarity between them.

4.1 Dictionary learning

In dictionary learning, researchers define multiple kinds

of objective functions, and compute a dictionary by

minimizing the objective function. In our application,

the local descriptors of vertices vary smoothly along

the surface, and thus a vertex’s local descriptor can

be approximately interpolated by the descriptors of its

nearby vertices. Therefore, we choose the objective func-

tion with a sparsity threshold to constrain each time

how many basis signals are used for interpolating a lo-

cal descriptor.

For a shape SA with NA vertices in the database,

its I-HKS set {fAj |j = 1, ..., NA} is computed, each of

which is taken as a training signal. Let us denote its

dictionary as DA. Each signal fAj is expected to be ap-

proximately represented as a sparse linear combination

of basis signals from DA, which can be described as:

fAj ≈DAγ
A
j s.t. ‖γAj ‖0 ≤ T, (6)

where γAj consists of sparse coefficients and T is a spar-

sity threshold.

In the learning process, taking the training signal set

{fAj } and the dictionary size as inputs, the constrained

optimization problem can be formulated as:

D̃A = min
DA

1

NA

NA∑
j=1

‖fAj −DAγ
A
j ‖22 s.t. ‖γAj ‖0 ≤ T. (7)

The K-SVD algorithm [35] is widely used to solve

the problem given by Equation (7). It iteratively up-

dates a dictionary and computes the sparse coefficients.

The initial dictionary can be randomly selected from

training signals. After the sparse coding with orthogo-

nal matching pursuit (OMP), the dictionary update is

performed by sequentially updating each column of the

dictionary matrix using singular value decomposition

(SVD) to minimize the approximation error.

4.2 Sparse reconstruction

Given a query shape SB with NB vertices, its I-HKS

set {fBj |j = 1, ..., NB} is computed. Then, we use SA’s

dictionary DA to sparsely code each I-HKS descriptor

fBj of the query SB , and the reconstruction error is

expressed as:

E(fBj ,DA) = min ‖fBj −DAγ
B
j ‖22 s.t. ‖γBj ‖0 ≤ T.(8)
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Next, we use the average reconstruction error to

measure the distance between the shapes SA and SB ,

which is formulated as:

Dist(SA, SB) =
1

NB

NB∑
j=1

E(fBj ,DA). (9)

Each shape in the dataset has its own dictionary.

Hence, after using each dictionary to respectively re-

construct the query’s descriptors, we can compute and

sort the shape similarities. In practice, we use SPAMS

(SPArse Modeling Software) [36,37] which is an effi-

cient optimization toolbox for solving various dictio-

nary learning and sparse coding problems.

5 Results

In this section, we evaluate the retrieval performance

of our method from two aspects: incomplete non-rigid

shape retrieval and complete non-rigid shape retrieval,

and then test the running time. At last, we discuss the

influence of the sparsity threshold on retrieval accuracy.

5.1 Experimental setup

To make the comparison informative in regard to the

work of Dey et al. [1], we first test our method and two

comparison methods on the dataset used in [1]. Then

we expand the scale of the experiment significantly by

retrieving 150 incomplete shapes from the SHREC 2015

database. At last, we conduct the most challenging test

where the complete versions of the query (incomplete)
shapes do not exist in the database.

Dataset. Two publicly-available collections are used

to construct the datasets for the experiments. The first

collection is the PHS dataset from [1], which consists of

two parts: 50 queries and a database of 300 shapes di-

vided into 21 classes, and the second is the newest non-

rigid shape retrieval benchmark: SHREC 2015 database

[38], which is composed of 1200 models of 50 categories.

In all, we have the following three datasets for experi-

ments:

– Dataset 1: PHS queries + PHS database. This

is the dataset used in [1]. The queries are 32 in-

complete and 18 complete shapes, and the database

contains complete and incomplete shapes.

– Dataset 2: Generated incomplete shapes +

SHREC 2015 database. The database only con-

tains complete shapes, so we manually generate 150

incomplete shapes (3 per class) as the queries, which

appear in three incomplete strength levels numbered

Fig. 4 Examples of generated incomplete shapes. First row
shows complete shapes, and the other rows respectively show
incomplete shapes in strength 1, 2 and 3.

1-3. Some of them are shown in Figure 4. The cor-

responding complete versions of these queries are in

the database.

Since these incomplete shapes are manually made,

we know their corresponding complete versions, and

thus can evaluate the incomplete strength quanti-

tatively. The missing rate of an incomplete shape

Sincom relative to its complete version Scom is de-

fined as

Mrate(Scom, Sincom) =
Acom −Aincom

Acom
, (10)

whereAcom andAincom are the surface areas of Scom
and Sincom.

The incomplete shapes in level 1 are made by delet-

ing a part from complete shapes. Then, the shapes

in level 2 and 3 are created based on the incomplete

shapes one level below. The missing parts are vari-

able in size, so the missing rates are different for

these incomplete shapes. Therefore, we evaluate the

missing rates of each incomplete level using the av-

erages, which are respectively 10.56%, 19.41% and

27.75%.

– Dataset 3: PHS incomplete queries + SHREC

2015 database. This is the most challenging among

the three datasets, because the corresponding com-

plete versions of queries are not in the database.

The database is the same as that of Dataset 2. The

query set is a subset of that of Dataset 1. Since we

are concerned with the shape matching involving in-

complete shapes, 24 queries of incomplete shapes are

chosen after excluding some queries whose classes

are not in the database.
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Parameters. For each model, our I-HKS descrip-

tors are computed using the first 100 eigenvalues and

eigenfunctions of the Laplace-Beltrami operator. The

dimension n of each I-HKS descriptor is 10, and the se-

lection of time scales are introduced in Section 3.3. Dur-

ing dictionary learning, the dictionary size is fixed to 12,

and the number of iterations is set to 1000. The sparsity

threshold T for dictionary learning and sparse coding

are set to the same value. If not specifically stated, the

sparsity threshold T is set to 2 for the dictionary learn-

ing and sparse coding.

Assessment criteria. We utilize the Top-k hit rate

[1] to evaluate the performance of incomplete shape re-

trieval. If a query shape and one of its top k matches are

from the same class, there is a Top-k hit. The Top-k hit

rate is the percentage of the Top-k hits with respect to

the number of query shapes. An ideal score is 100%, and

higher scores represent better results. In addition, we

evaluate our method for complete shape retrieval based

on the following five quantitative measures (see [39] for

details): Nearest Neighbor (NN), First Tier (FT), Sec-

ond Tier (ST), E-Measure (E), and Discounted Cumu-

lative Gain (DCG). For all of them, higher values are

better.

5.2 Evaluations of incomplete shape retrieval

We compare our method with two competitive shape

retrieval methods: Persistent Heat Signature (PHS) [1],

and Heat kernel signature (HKS) [7]. We choose these

two methods because PHS represents a state-of-the-art

technique for incomplete non-rigid shape retrieval, and

HKS is a representative spectral method for complete

non-rigid shape retrieval.

For the PHS method, all the parameter settings are

the same as [1]. The time unit τ is set to 0.0002; the

first 8 eigenvalues and eigenfunctions are used to com-

pute the HKS function; 15 feature points are detected

for each model using the HKS function at time 5τ ; 15

different time scales are chosen to compute a 15D fea-

ture vector for each feature point, and the time scales

are t = α∗τ with α varying over 5, 20, 40, 60, 100, 150,

200, 300, 400, 500, 600, 700, 800, 900, 1000.

For the HKS method, we use the first 100 eigenval-

ues and eigenfunctions as [7] to compute the HKS de-

scriptors. In order to be adaptive for the model scales in

our datasets, the time scales are changed to t = αi−1t0
with t0 = 0.006, α = 2 and i = 1, ..., 6. The resulting

HKS descriptors are all 6D vectors. To obtain geometric

words, for Dataset 1, all local descriptors collected from

the database are used for K-means Clustering, while for

Dataset 2 and 3, local descriptors from 50 models (1

per class) are selected. The number of words is 64 for

Table 1 Top-3 / Top-5 hit rates on Dataset 1.

#queries Ours PHS HKS
32 incompl. 91% / 94% 88% / 91% 56% / 63%
18 compl. 100% / 100% 78% / 83% 83% / 89%
50 total 94% / 96% 84% / 88% 66% / 72%

Fig. 5 Query models and top 5 matches returned for each
query on Dataset 1. Letter C, I indicate complete and incom-
plete models respectively.

Dataset 1 and 192 for Dataset 2 and 3 which have more

classes.

Table 1 shows the Top-3 and Top-5 hit rates on

Dataset 1. PHS performs better than HKS for the queries

of incomplete shapes, and HKS achieves better perfor-

mance than PHS for complete shapes as the queries.

However, our method has better performance than PHS

and HKS in these two circumstances. Since the database

has both incomplete and complete shapes, we conclude

that our method can also deal with the shape match-

ing between a pair of complete or incomplete shapes.

Figure 5 shows the top 5 matches for some queries.

Next, we assess our method under different incom-

plete strengths on Dataset 2. Table 2 shows the Top-3

and Top-5 hit rates. Each row shows the hit rates using

the queries of the specified incomplete strength. Our

method performs better than PHS and HKS for these

three cases. From Table 2, we can conclude that our

retrieval method can deal with the incomplete queries

with the missing rates up to 30%.

To analyze why the PHS method fails for some in-

complete queries, we design an experiment to investi-
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Table 2 Top-3 / Top-5 hit rates on Dataset 2.

Strength Ours PHS HKS
1 94% / 94% 78% / 78% 48% / 54%

≤ 2 87% / 88% 65% / 67% 36% / 41%
≤ 3 74% / 76% 51% / 56% 30% / 34%

Fig. 6 Critical points detected by the PHS method. In (a),
a complete shape is shown together with its critical points
(red dots), and its incomplete versions with an increasing
incomplete strength are respectively illustrated in (b), (c) and
(d). The black curves are the boundaries of shapes.

Fig. 7 Comparison of retrieval results on Dataset 2 between
(a) PHS and (b) ours, using the shape shown in Figure 6b as
the query.

gate the detection of critical points, using a complete

shape and its incomplete versions from Dataset 2. From

Figure 6, we can find when one or more parts are miss-

ing, some critical points move to the cut boundary. Im-

pacted by the variations of critical points, the retrieval

result of the PHS method is therefore poor (see Figure

7a), while our method still has good retrieval perfor-

mance (see Figure 7b).

We finally evaluate our method on a more challeng-

ing dataset where the queries and the database come

from two different shape collections. Table 3 shows the

Top-3 and Top-5 hit rates on Dataset 3. Although the

performance of the three methods is worse than theirs

on Dataset 1 and 2, our method achieves the best re-

sults and the hit rates are still acceptable.

Table 3 Top-3 / Top-5 hit rates on Dataset 3.

#queries Ours PHS HKS
24 incompl. 71% / 71% 33% / 46% 17% / 25%

5.3 Evaluations of complete shape retrieval

In this section, we test our method for complete shape

retrieval using the SHREC 2015 non-rigid database.

The settings of our method and PHS in this experi-

ment are the same as in the experiments of incomplete

shape retrieval. The results of our method and PHS

are presented in Table 4. For comparison, we also show

the best runs of each group taking part in the SHREC

2015 non-rigid track. Details of their methods can be

found in [38]. Our method is better than PHS, and com-

parable to state-of-the-art methods on complete shape

retrieval.

5.4 Running time

We test the running time of three algorithms using the

SHREC 2015 non-rigid database. All the experiments

in this section are carried out using MATLAB R2010b

on a laptop with a 2.5GHz dual-core 4-thread CPU and

8.00 GB RAM. For the PHS algorithm, we use the au-

thors’ implementation available on the web to compute

the PHS descriptors, and implement their matching al-

gorithm according to the description in [1]. For the HKS

algorithm, we use the code provided by [40] to compute

the HKS descriptors only omitting λ0 and φ0, due to the

fact that λ0 is theoretically 0 and φ0 is a constant vec-

tor [7], and implement the subsequent steps: obtaining

geometric words through K-means, pooling the HKS

descriptors to a global descriptor, and measuring the

shape similarity.

We present the pre-processing time of the three al-

gorithms in Table 5. Each entry in the Ours column

shows the time for computing the I-HKS descriptors

and training a dictionary for the model. Each entry

in the HKS column shows the time for computing the

HKS descriptors and pooling them to a global descrip-

tor. Our algorithm is the slowest, but it is comparable

to PHS when the number of vertices is over 14,000. For

our algorithm, the training time of each model is quite

similar, because it is mainly determined by the number

of iterations.

The retrieval time (not including the feature extrac-

tion of a query shape) is shown in Table 6. HKS has

the fastest retrieval speed. The retrieval time of PHS

algorithm is nearly equal for any query, and so is the

retrieval time of HKS algorithm. This happens because

the computation of their shape similarity is performed
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Table 4 Quantitative evaluations of complete shape retrieval on the SHREC 2015 non-rigid database.

Method NN FT ST E DCG
SV-LSF kpaca50 1.0000 0.9972 0.9997 0.8357 0.9997

HAPT run1 0.9983 0.9657 0.9821 0.8150 0.9919
SPH SparseCoding 1024 0.9975 0.9568 0.9696 0.8047 0.9885
CompactBoFHKS-10D 0.9842 0.8714 0.9082 0.7465 0.9582

EDBCF NW 0.9775 0.7931 0.8839 0.7076 0.9431
FVF-WKS 0.9767 0.8225 0.8945 0.7242 0.9518

SID-4 0.9767 0.7188 0.8213 0.6482 0.9200
SG L1 0.9725 0.7596 0.8143 0.6597 0.9192
Ours 0.9658 0.7572 0.8323 0.6692 0.9227
SNU 2 0.8992 0.5657 0.6706 0.5181 0.8335

TSASR1024 0.8958 0.5316 0.5960 0.4722 0.7975
PHS 0.8342 0.3803 0.4764 0.3572 0.7182

Multi-Feature 0.4508 0.1864 0.2625 0.1846 0.5259

Table 5 Pre-processing time on the SHREC 2015 database
(sec).

Model #v Ours PHS HKS
T684 2959 1.4+15.7 2.1 0.7+1.2
T784 5971 1.9+15.8 5.1 1.6+2.3
T470 9999 2.9+15.8 9.8 2.3+3.9
T837 14718 4.6+15.8 18.8 3.3+5.4
HKS additionally needs 244.7s to obtain geometric words
via K-means clustering.

Table 6 Retrieval time on the SHREC 2015 database (sec).

Query #v Ours Ours(PC) PHS HKS
T684 2959 5.8 3.2 0.8 0.5
T784 5971 10.7 5.5 0.8 0.5
T470 9999 17.8 10.8 0.8 0.5
T837 14718 25.8 13.4 0.8 0.5

on already extracted feature vectors or sets, and is ir-

relevant to the vertex number of a query shape. The

retrieval time of our algorithm increases with the num-

ber of vertices as we use all the I-HKS descriptors for

sparse coding. To accelerate our algorithm, we utilize

Matlab parallel computing, and the results are shown in

the Ours(PC) column. It is clear from the results that

parallelism can reduce the retrieval time. However, our

algorithm is still slower than PHS and HKS. Although

more time is needed, the accuracy improves using our

algorithm as shown in Section 5.2.

5.5 Discussions on parameter settings

In this section, we study two parameters in the stage of

sparse dictionary learning. They are the dictionary size

and sparsity threshold.

First, we use different dictionary sizes for incomplete

shape retrieval on Dataset 2. In this experiment, we

fix the sparsity threshold T to 2. The hit rate results

are shown in Table 7. From it, we can see that the

Table 7 Top-3 / Top-5 hit rates versus the dictionary size
on Dataset 2.

Strength
Dictionary size

12 24 48
1 94% / 94% 92% / 94% 92% / 92%

≤ 2 87% / 88% 85% / 88% 84% / 86%
≤ 3 74% / 76% 73% / 76% 71% / 73%

hit rates only have slight variations as the dictionary

size increases. We thus prefer to use 12 as the final

dictionary size.

Second, we examine the role of the sparsity thresh-

old T on Dataset 2. The “Hit rates vs. T” curves of our

method are presented in Figure 8. From Figure 8, we

can deduce that T is a very important parameter to our

retrieval method since T has a great influence on the

retrieval accuracy. The top-3 and top-5 hit rates for the

queries of different incomplete strengths all reach their

maximum values when T is set to 2. It tells why we

choose 2 as the final setting of T in the retrieval exper-

iments. When T is much less than the dictionary size,

only a small number of basis signals are used to recon-

struct each local shape descriptor. All the queries of dif-

ferent incomplete strengths thus have high retrieval ac-

curacies. However, when T is larger than 6, more basis

signals are involved. The retrieval accuracies decrease

sharply. Surely, the retrieval accuracies also decrease

when the incomplete strength increases.

5.6 Influence of different missing parts

To study the influence of missing different parts, we

manually generate incomplete shapes for two models

from the SHREC 2015 database. They are a deer and

a chicken model indexed as “T578” and “T802”. We

respectively delete two horns and four legs of the deer

shape, and two feet and two wings of the chicken shape.

Figure 9 shows the original shapes and their corre-
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Fig. 8 Hit rates versus different T on Dataset 2, (a) Top-3
hit rates, (b) Top-5 hit rates.

sponding incomplete shapes, with missing rates given

beneath each shape.

We then use four incomplete shapes as queries to

conduct the experiment. The retrieval results are shown

in Figure 10. The deer without horns in Figure 10a has

two wrong matches: a horse and a dog, while the deer

without feet has only one wrong match: a centaur. In

Figure 10b, the chicken without feet has three wrong

matches: two birds and a watch, while the chicken with-

out wings has no wrong match. The incorrect matches

are reasonable. For example, a deer without horns sure

looks like a horse or a dog, and a chicken without feet is

quite similar to a bird. From the experiment of retriev-

ing deer shapes, we can see that horns are more indis-

pensable than legs. When the horns are deleted, even

the missing rate is only 4.62%, the retrieval results are

greatly influenced. From the experiment of retrieving

chicken shapes, we can find that feet play a more im-

Fig. 9 Original and incomplete shapes, (a) Deer, (b)
Chicken.

Fig. 10 Query models and top 5 matches on Dataset 2, (a)
Deer, (b) Chicken.

portant role than wings, although their missing rates

are close. Consequently, we can deduce that different

parts of a shape may have different importance in the

similarity measure.

6 Conclusion, limitation, and future work

We propose a novel approach to measuring shape sim-

ilarity based on sparse reconstruction of local descrip-

tors. Differing from the previous work of detecting and

matching critical points, we characterize each shape in

the database by a learned dictionary, and define the

shape similarity by using the dictionary to reconstruct

the query’s local descriptors under a sparse constraint.

We also modify the computation of HKS for dealing

with non-rigid incomplete shapes. Experimental results
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show the proposed method has achieved significant im-

provements on retrieving non-rigid shapes amid miss-

ing data, and is comparable to some complete shape

retrieval approaches.

Our current retrieval approach has several limita-

tions that leave room for improvement. One major lim-

itation is that our modified local descriptors cannot

completely solve the problem of missing parts. From the

experiments, the retrieval accuracies of our method also

decrease with the increasing incomplete strength, and

our retrieval method can have improved performance

for incomplete queries with missing rates up to 30%.

Our method is not suitable for some datasets [41,42]

composed of range scans. It is because our I-HKS de-

scriptors are still computed using the Laplace-Beltrami

operator of a whole shape which usually misses more

than a half for a range scan. However, our approach

is not restricted to a particular local shape descriptor,

and the I-HKS descriptors are possible to be replaced

by other descriptors in the future.

Second, the query shape is assumed to be connected.

If the input shape is disconnected but with some large

connected components, then the retrieval can simply be

conducted on the largest component.

In the end, we assume that the boundary regions are

easy to detect. While this assumption often holds when

a complete model is being cut, in practice, particularly

for partial surface reconstruction, boundary detection

is not always an easy task.

3D object retrieval based on partial shape queries

remains an open problem. For future work, we would

like to deal with incomplete point clouds, incomplete

topology-varying man-made shapes, and etc. With the

progress of local shape descriptors, it may perhaps be

practical to apply them to those more complex cases in

retrieving incomplete shapes.
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