
Pacific Graphics (2015) Short Paper
N. J. Mitra, J. Stam, and K. Xu (Editors)

Incomplete 3D Shape Retrieval via Sparse Dictionary
Learning

Lili Wan †1 Jingyu Jiang 1 Hao Zhang 2

1School of Computer and Information Technology, Beijing Jiaotong University, China
2School of Computing Science, Simon Fraser University, Canada

Abstract

How to deal with missing data is one of the recurring questions in data analysis. The handling of significant
missing data is a challenge. In this paper, we are interested in the problem of 3D shape retrieval where the query
shape is incomplete with moderate to significant portions of the original shape missing. The key idea of our method
is to grasp the basis local descriptors for each shape in the retrieved database by sparse dictionary learning
and apply them in sparsely coding the local descriptors of an incomplete query. First, we present a method of
computing heat kernel signatures for incomplete shapes. Next, for each shape in the database, a set of basis local
descriptors, which is called a dictionary, is learned and taken as its representative. Finally, a query incomplete
shape’s heat kernel signatures are respectively reconstructed by each dictionary, and the shape similarities are
therefore measured by the reconstruction errors. Experimental results show that the proposed method has achieved
significant improvements over previous works on retrieving non-rigid incomplete shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

One of the recurring questions in data analysis is how to
deal with missing data. Methods aimed at handling com-
plete data may still be applicable if the missing data is not
significant and data completion is possible via interpolation.
However, when large chunks of data are missing, e.g., en-
tire parts are cut off from a shape, interpolation no longer
works and new methods, or significant adjustments to meth-
ods designed for complete data, must be developed. Previous
attempts on problems such as shape retrieval [DLL∗10] and
matching [FS06, GCO06] have revealed that the handling of
significant missing data can be quite a challenge.

In this paper, we are interested in the problem of 3D shape
retrieval where the query shape is incomplete with mod-
erate to significant portions of the original shape missing.
The database on the other hand would consist of complete
shapes. Such a problem setting may arise in practice when
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a modeler wants to create a new 3D shape via part compo-
sition and needs to search for one or more missing parts for
a partially created shape, which is incomplete. In 3D model
reconstruction amid significant missing data, a partial recon-
structed shape, which is again incomplete, may be used to
query a database for data-driven model completion.

Shape retrieval typically relies on one or more global
shape descriptors [RWP06,JZ07]. However, by design, these
global descriptors are unlikely to work for retrieving highly
incomplete shapes. Local shape descriptors, including the
well known shape context [KPNK03] and heat kernel sig-
nature (HKS) [SOG09], encode geometry at or from the per-
spective of a point over a shape’s surface. The entire set of
local descriptors for a shape, incomplete or not, needs to be
properly organized into a shape signature to allow a sensible
comparison between incomplete and complete shapes.

This paper is devoted to incomplete non-rigid 3D shape
retrieval. The most similar work is introduced in [DLL∗10].
Their method focuses on critical points detecting, wherein
the concept of persistent homology is brought in to help to
extract a set of HKS maxima. The HKS descriptors of these
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critical points form a feature set which is called persistent
heat signature (PHS), and the similarity between two shapes
is then measured based on their feature sets. However, when
some parts of a shape are missing, the detection of critical
points may be easily impacted. For example, if an original
critical point happens to locate on the missing part, another
point of the incomplete shape will instead be selected as the
critical point.

The key observation we make is the similarity of local
descriptors between incomplete and complete shapes. More
specifically, if the set of local shape descriptors of a com-
plete shape S had been well sparsely coded by a dictionary,
which consists of a few basis signals, via sparse dictionary
learning, then the dictionary would also be capable of repre-
senting the same local descriptors of incomplete versions of
S. The overview of our shape similarity measure is shown in
Figure 1. In shape retrieval, each shape in the database has
its dictionary. When taking an incomplete shape as a query,
the shape similarities can be obtained by using these dictio-
naries respectively to represent the query’s local descriptors.
Our main contributions include:

• To reduce the negative impact of boundary regions to local
shape descriptors, we propose a new method to compute
heat kernel signatures for a non-rigid incomplete shape,
which is also applicable for complete shapes.
• In order to retrieve an incomplete shape, previous work

focuses on detecting and matching critical points. Instead,
in our approach, the relationship of local descriptors be-
tween a complete shape and an incomplete shape is estab-
lished by a learned dictionary.

2. Related work

The literature on shape descriptors, shape matching, and
retrieval is vast. In this section, we only cover methods
that are most closely related to our work. We refer the
readers to a number of surveys on these topics, includ-
ing [BP06, TV08, vKZHCO11].

Sparse dictionary learning. Sparse dictionary learning
methods have been versatile tools in many applications
including signal processing and image processing [Ela10,
TF11]. Recently, it also attracts some researchers in the field
of 3D shape processing. Abdelrahman et al. [AEMF12] uti-
lize sparse representation to reduce the dimensionality of
a global shape descriptor. For efficient shape retrieval, lo-
cal descriptors are usually pooled into a global descrip-
tor by some statistic methods, e.g. bag-of-words (BoW).
Sparse dictionary learning can also be applied in this task.
In [WLMC13, LBBC14], the clustering process in the BoW
methods is replaced by sparse dictionary learning. Boscaini
et al. [BC14] investigate the utility of sparse coding to partial
shape retrieval, wherein the queries are composites of sub-
parts from different classes. However, its use in 3D shape
retrieval is still relatively new, and it has not yet been used
for incomplete shape retrieval.

Figure 1: Overview of our approach to compute the simi-
larity between an incomplete 3D shape (left) and a complete
shape (right) via sparse coding.

Partial matching. Partial shape matching can be applied to
compute shape similarity, e.g., [GCO06,FS06], for shape re-
trieval. Tierny et al. [TVD09] match partial 3D shapes via
Reeb pattern unfolding. Shapira et al. [SSS∗10] execute part-
in-whole object queries via hierarchical graph matching.
Ferreira et al. [FMA∗10] propose a part-in-whole match-
ing method for engineering shapes to retrieve 3D models
containing a part similar to a query. Itskovich et al. [IT11]
present an archaeological application which finds the best
match to a specified surface shape within other surfaces. In
our work, we compute shape similarity between an incom-
plete and a complete shape via sparse dictionary learning.

3. Incomplete HKS (I-HKS)

3.1. HKS vs. WKS for incomplete shapes

Heat kernel signature (HKS) [SOG09, BBGO11] and wave
kernel signature (WKS) [ASC11b] are two state-of-the-art
methods in non-rigid shape analysis. HKS has a foundation
of heat diffusion, while WKS is induced from quantum me-
chanics. They are both invariant under isometric transforma-
tions. However, shape missing may influence the energy dif-
fusion on a surface, so we need to analyze which one is more
appropriate for incomplete shapes.
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Figure 2: Elements of spectral descriptors mapped on the
original shape (from [BBGO11]) and its incomplete versions
after cutting an extremity, (a) the 1st and 3rd elements of the
HKS descriptors, (b) the 1st and 25th elements of the WKS
descriptors. The color ranges of HKS and WKS are different,
and hotter colors both represent larger values.

The HKS descriptors and WKS descriptors are visual-
ized in Figure 2 for a human shape and its incomplete ver-
sions. Our settings to compute HKS and WKS are due to
[BBGO11] and [ASC11a] respectively.

From Figure 2, we can see that the HKS descriptors only
vary near the cutting boundaries, but the WKS descriptors
change significantly in some regions far from the bound-
aries. Based on the analysis in [ASC11a] and [LB14], HKS
can be seen as a collection of low-pass filters, while the re-
sponses of WKS are band-pass. Therefore, WKS is good for
featuring localization. However, WKS is more sensitive to
missing data than HKS.

3.2. HKS for incomplete shapes

For an incomplete shape, we calculate the HKS descriptors
for vertices on the largest connected component, and then
exclude those descriptors of the boundary vertices and their
1-ring neighbors.

In practice, for a vertex x on a surface, its HKS descriptor
at time t is approximately computed by

h(x, t) =
K−1

∑
k=0

e−λkt
φ

2
k(x). (1)

where 0 = λ0 ≥ −λ1 ≥ −λ2, ... are eigenvalues of the

Laplace-Beltrami operator and φ0,φ1, ... are the correspond-
ing eigenfunctions.

To deal with the subsequent procedure of dictionary learn-
ing, the dimension M of an I-HKS descriptor needs to be
set carefully. We utilize the K-SVD algorithm for dictionary
learning. As known from [AEB06], the sparsity threshold
should be small enough relative to the dimension of a signal,
because in these circumstances the convergence can be guar-
anteed. Therefore, the dimension M can not be too small.
Meanwhile, M should be smaller than the dictionary size.
Consequently, in all the experiments of this paper, M is fixed
to be 10.

Then, we select the time scales to ensure the invariance of
local descriptors as much as possible. The first 100 eigenval-
ues and eigenfunctions are used to compute the I-HKS de-
scriptors. From [SOG09], we can deduce that the elements of
an I-HKS descriptor with t > |4ln10/λ1| remain almost un-
changed and those elements with t < |4ln10/λ99| need more
eigenvalues and eigenfunctions. For an incomplete shape,
small time is more appropriate for representing local at-
tributes. So for each 3D model, we sample M points between
tmin = |4ln10/λ99| and tmax = |4ln10/λ99|+(|4ln10/λ1|−
|4ln10/λ99|)/10, and generate a logarithmically spaced
vector. The time scales are then formulated as

t = 10lg tmin+(lg tmax−lg tmin)i/(M−1), i = 0, ...,M−1. (2)

Finally, all the I-HKS descriptors are normalized to the unit
L2 norm for the subsequent matching procedure.

4. Shape similarity

From Figure 2a, we can see that: (1) The local descriptors of
a vertex and its neighbors are very close; (2) Two symmetric
parts, e.g. left hand and right hand, also have nearly equal
local descriptors, and therefore these descriptors are largely
redundant. According to the related studies on sparse dictio-
nary learning [TF11,MBPS09], it is appropriate to deal with
this kind of redundant information. For a complete shape,
taking its I-HKS descriptors as signals, we attempt to learn
the basis signals to reconstruct the whole signal set. For its
incomplete shape, the I-HKS descriptors can be considered
as a signal subset, and they are expected to be also well
sparsely represented by the learned basis signals. We, there-
fore, use the reconstruction error to formulate the shape sim-
ilarity measure problem.

4.1. Dictionary learning

Sparse dictionary learning has multiple applicable object
functions. In our application, the local descriptors vary
smoothly along the surface, and thus a vertex’s local descrip-
tor can be interpolated by the descriptors of its nearby ver-
tices. Therefore, we use the sparsity threshold to constrain
how many basis signals will contribute to the interpolation,
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and naturally choose the object function combined with the
sparsity threshold.

For a complete shape Sc with n vertices, its I-HKS de-
scriptors { fi|i = 1, ...,n} are all computed, each of which is
taken as a training signal. Let us denote its dictionary as Dc,
each signal fi is expected to be approximately represented as
a sparse linear combination of basis signals from Dc, which
can be described as

fi ≈ Dcγi Subject To ‖γi‖0 ≤ T, (3)

where γi consists of sparse coefficients and T is a sparsity
threshold.

In the learning process, taking the training signal set { fi}
and the dictionary size as inputs, the constrained optimiza-
tion problem can be formulated as

D̃c = min
Dc

1
n

n

∑
i=1
‖ fi−Dcγi‖2

2 Subject To ‖γi‖0 ≤ T. (4)

4.2. Sparse representation

In order to ensure the invariance of local descriptors, the de-
scriptors of those greatly impacted regions, e.g. unconnected
small parts, boundary vertices and their 1-ring neighbors, are
excluded from the descriptor set. For an incomplete shape Si
with m vertices, the number of its I-HKS descriptors m′ will
be less than m because of the exclusion. Given a dictionary
Dc, for a I-HKS descriptor f j, the reconstruction error of
sparse coding is expressed as

err j,c = min‖ f j−Dcγ j‖2
2 Subject To ‖γ j‖0 ≤ T. (5)

Next, given a query Si with a descriptor set { f j| j =
1, ...,m′} and a shape Sc with a dictionary Dc, the average re-
construction error is utilized to measure their distance, which
is formulated as

dist(Si,Sc) =
1

m′
m′

∑
j=1

err j,c. (6)

Each shape in the retrieved database has a dictionary. Then,
after using each dictionary to reconstruct the query’s de-
scriptors respectively, we can get and sort the shape simi-
larities. In practice, we use SPAMS (SPArse Modeling Soft-
ware) [MBPS09,MBPS10] which is an optimization toolbox
for solving various sparse estimation problems.

5. Results

In this section, we present retrieval results under several
experimental settings and compare our results to those ob-
tained by HKS and PHS. To make the comparison infor-
mative in regards to the work of Dey et al. [DLL∗10],
we first test the three methods on the small dataset used
in [DLL∗10]. Then we expand the scale of the experiment
significantly by retrieving 150 incomplete shapes from the
SHREC 2015 database.

Figure 3: Generated incomplete samples. First row shows
complete shapes, and the other rows respectively show in-
complete shapes in strength 1, 2 and 3.

5.1. Experimental setup

Dataset. To evaluate the performance of our method for
incomplete shape retrieval, we used two publicly-available
collections in experiments. One is the PHS dataset from
[DLL∗10], which consists of two parts: 50 queries and a
database of 300 shapes divided into 21 classes, and the other
is the newest non-rigid shape benchmark: SHREC 2015
database [LZC∗15], which is composed of 1200 models of
50 categories. In all, we establish the following two datasets:

• Dataset 1: PHS queries + PHS database. It is the dataset
used in [DLL∗10]. The queries are 32 incomplete and 18
complete shapes, and the database contains complete and
incomplete shapes.

• Dataset 2: Generated incomplete shapes + SHREC
2015 database. We manually created 150 incomplete
shapes (3 per class) from the SHREC 2015 database as
the queries, which appeared in three different incomplete
strengths numbered 1-3. Some of them are shown in Fig-
ure 3.

Parameters. For each model, our I-HKS shape descrip-
tors are computed using the first 100 eigenvalues and eigen-
functions of the Laplace-Beltrami operator. The dimension
of each descriptor is 10, and the selection of time scales
is introduced in Section 3. For sparse dictionary learning,
the dictionary size is fixed to 12, the number of iterations is
1000, and the sparsity threshold T is 2.

Assessment criteria. We utilized the Top-k hit rate pre-
sented in [DLL∗10] to evaluate the performance of incom-
plete shape retrieval. Its ideal score is 100%, and higher
scores represent better results.
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Table 1: Top-3 / Top-5 hit rates on Dataset 1.

#queries Ours PHS HKS
32 incomplete 91% / 94% 88% / 91% 56% / 63%
18 complete 100% / 100% 78% / 83% 83% / 89%

50 total 94% / 96% 84% / 88% 66% / 72%

Table 2: Top-3 / Top-5 hit rates on Dataset 2.

Strength Ours PHS HKS
1 94% / 94% 78% / 78% 48% / 54%
≤ 2 87% / 88% 65% / 67% 36% / 41%
≤ 3 74% / 76% 51% / 56% 30% / 34%

5.2. Evaluations of incomplete shape retrieval

We compared our method with two competitive shape re-
trieval methods: Persistent Heat Signature (PHS) method
[DLL∗10], and Heat kernel signature (HKS) method
[BBGO11]. We chose these two methods because PHS rep-
resents a state-of-the-art technique for incomplete non-rigid
shape retrieval, and HKS is a representative spectral method
for non-rigid shape retrieval.

For the PHS method, all the parameter settings were the
same as [DLL∗10]. For the HKS method, we used the first
100 eigenvalues and eigenfunctions as [BBGO11] to com-
pute the HKS descriptors, which were all 6D vectors. In or-
der to be fit for the model scales in our datasets, the time
scales were chosen by t = α

i−1t0 with t0 = 0.006, α = 2
and i = 1, ...,6. For Dataset 1, all the models in the database
were used to train a vocabulary, and the word number was
64. For Dataset 2, 50 models (1 per class) were selected to
train a vocabulary, and the word number was 192, because
there were more classes in the SHREC 2015 database.

Table 1 shows the Top-3 and Top-5 hit rates on Dataset 1.
PHS performs better than HKS for the queries of incomplete
shapes, and HKS achieves better performance than PHS for
complete shapes as the queries. However, our method has
obviously better performance than PHS and HKS in these
two circumstances. Since the database has both incomplete
and complete shapes, we conclude that our method can also
deal with the shape similarity measure between two com-
plete shapes or between two incomplete shapes.

Next, we assess our method under different incomplete
strengths using Dataset 2, and present the results in Table 2.
Each row shows the hit rates using the queries of the spec-
ified incomplete strength. Our method also performs much
better than PHS and HKS in this dataset.

5.3. Running time

To evaluate the running time, we used the SHREC 2015
database. All the experiments in this section were carried out
using MATLAB R2010b on a laptop with a 2.5GHz dual-
core 4-thread CPU and 8.00 GB RAM.

Table 3: Time for retrieving some models on the SHREC
2015 database (sec).

Query #v Ours Ours(PC) PHS HKS
T684 2959 5.8 3.2 0.8 0.5
T784 5971 10.7 5.5 0.8 0.5
T470 9999 17.8 10.8 0.8 0.5
T837 14718 25.8 13.4 0.8 0.5

The retrieval time is shown in Table 3. HKS has the fastest
retrieval speed. The retrieval time of PHS and HKS algo-
rithms are nearly equal for any model, while ours increases
with the number of vertices. To accelerate our algorithm, we
utilized Matlab parallel computing, and the results are shown
in the Ours(PC) column. From them, we find that the paral-
lelism can obviously reduce the retrieval time, but our al-
gorithm will still be slower than PHS and HKS. Although
the time needed for retrieval is increased, the performance
of accuracy achieves significant improvements, as shown in
Section 5.2.

6. Conclusion, limitation, and future work

We propose a dictionary learning and sparse coding based
framework for non-rigid incomplete shape retrieval. Differ-
ent from previous work of detecting and matching critical
points, we measure shape similarities based on reconstruct-
ing the local shape descriptors of a query under sparse con-
straints. We also present a method of computing heat kernel
signatures for incomplete shapes. The proposed method has
achieved significant improvements over previous works on
retrieving non-rigid shapes amid significant missing data.

One major limitation of our current method is that the
query shape is assumed to be connected. If the input shape
is disconnected but with some large connected components,
then the retrieval can simply be conducted on the largest
component. Another limitation is that we assume that the
boundary regions are easy to detect. While this assumption
often holds when a complete model is being cut, in practice,
particularly for partial surface reconstruction, boundary de-
tection is not always an easy task.

For future work, we would like to deal with incom-
plete point clouds, incomplete topology-varying man-made
shapes, etc. Our framework is not restricted to a particular
local shape descriptor, and the I-HKS shape descriptors in
our method are possible to be replaced by other descriptors.
With the progress of local shape descriptors, it may be appli-
cable to those more complex cases in retrieving incomplete
shapes.
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