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Abstract
Feature-driven analysis forms the basis of many shape processing tasks, where detected feature points are charac-
terized by local shape descriptors. Such descriptors have so far been defined to capture regions of interest centered
at individual points. Using such regions to compare feature points can be problematic when performing partial
shape matching, since the region of interest is typically defined as an isotropic neighborhood around a point,
which does not adapt to the geometry of the shape parts. We introduce the bilateral map, a local shape descriptor
whose region of interest is defined by two feature points. Compared to the classical descriptor definition using a
single point, the bilateral approach exploits the use of a second point to place more constraints on the selection of
the spatial context for feature analysis. This leads to a descriptor where the shape of the region of interest adapts
to the context of the two points, making it more refined for shape matching. In particular, we show that our new
descriptor is more effective for partial matching, since potentially extraneous regions of the models are selectively
ignored owing to the adaptive nature of the bilateral map. This property also renders the bilateral map partially
insensitive to topological changes. We demonstrate the effectiveness of the bilateral map for partial matching via
several correspondence and retrieval experiments and evaluate the results both qualitatively and quantitatively.

1. Introduction

Many shape processing techniques are based on fea-
ture analysis, where detected feature points are character-
ized by local shape descriptors. Important tasks such as
segmentation [Sha08], shape retrieval [TV08], correspon-
dence [vKZHCO11], and symmetry detection [XZT∗09],
can all be solved with the aid of local shape descriptors.
A variety of such descriptors have been proposed in the
literature, where a point can be represented either by a
scalar property (e.g., curvature [MCH∗06] or local vol-
ume [SSS∗09]), or more effectively by representing the con-
text or region of interest (ROI) around the point, as in the
popular shape context descriptor [BMP02]. The latter is
commonly extended to 2D manifolds by laying out a con-
centric grid on the surface around a point and then aggre-
gating the geometric properties of points or faces that fall
within each grid cell or bin, e.g., curvature [GGGZ05] or
area [KHS10] can be summed. We call this descriptor a
geodesic map. The main characteristic of all of these local
shape descriptors is that they capture a ROI centered at a
single feature point.

When dealing with incomplete shapes, shapes composed
of a mixture of parts from multiple classes, or shapes that

(a) (b) (c)

Figure 1: The bilateral map facilitates partial matching: the
region captured between the head and right hand is similar
in (a) and (b), and does not include extraneous parts of the
Neptune model (the spear and base). In contrast, the single-
point geodesic map for the right hand in (c) includes extrane-
ous parts, even with a reduced coverage. Note that the gray
portions of the shapes are not part of the regions of interest,
while descriptor bins are shown with alternating colors. The
content of each bin (area sum) is shown with the histograms.
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(a) (b)

Figure 2: First construction scheme for the bilateral map:
(a) Starting from the shortest geodesic path between the two
reference points (in red), we compute the geodesic distances
from all faces in the mesh to the path (shown as a red-to-blue
colormap). (b) The ROI (in yellow) is obtained by threshold-
ing the geodesic distances.

possess significant topological variability, it becomes nec-
essary to use descriptors that enable partial matching. As
shown with the example in Figure 1, if we wish to match
a human model to the Neptune, the extraneous parts of the
Neptune (spear and base) should not be included in the con-
text. Otherwise, the effectiveness of the descriptors is re-
duced, affecting the quality of retrieval and correspondence
results. One solution is to first segment the shape into mean-
ingful parts and then eliminate the extraneous parts from the
ROI. However, obtaining a meaningful segmentation of a
shape is a difficult problem [Sha08], as well as determining
what regions are extraneous. Thus, we would rather make
the descriptors independent of such a requirement. A pos-
sible straightforward solution for this problem is to assign a
scale or radius parameter to the descriptor, to reduce its ROI,
as shown in Figure 1 (c). However, automatically selecting
the proper scale is not a trivial problem, and it is clear that
this solution still has deficiencies as, no matter what radius
is selected, the context of certain feature points will always
include undesired portions of the models (as for points near
Neptune’s right hand or near the feet).

In this paper, we propose a new type of local shape de-
scriptor that we call the bilateral map (Figure 1), which is
designed to circumvent these problems. Instead of defining
a ROI around a single point and constraining it to a fixed ra-
dius, we compute a descriptor whose context is constrained
by a pair of points. We propose two construction schemes to
obtain such a ROI. In the first scheme, shown in Figure 2, we
compute the shortest path on the surface between the pair of
points, and define a ROI in the vicinity of the path according
to a region width parameter. In the second scheme, shown
in Figure 3, the ROI is obtained by thresholding the fuzzy
geodesic [SCF10] between the two points. After construct-
ing the ROI with one of the two schemes, we define equally
spaced bins over the ROI, with bin boundaries defined by in-

(a) (b)

Figure 3: Second construction scheme for the bilateral map:
(a) We compute the fuzzy geodesic [SCF10] between the
two reference points, which is a scalar field over the mesh.
Notice its similarity to the distance field in Figure 2. (b) The
ROI is obtained by thresholding the scalar field.

tervals of the geodesic distance emanating from one of the
two points; see Figure 4. Finally, we aggregate a geometric
property of all the faces or points that fall into each bin, e.g.,
the face areas or vertex curvatures can be summed.

It is interesting to note that in the independent paral-
lel work of Zheng et al. [ZTZX12], point pairs have also
been employed to construct a shape descriptor which is
then used in applications such as intrinsic reflectional sym-
metry axis computation, shape correspondence, skeletoniza-
tion, and segmentation. While Zheng et al. build the descrip-
tor based on a pairwise harmonic field between two points,
the construction of our bilateral map is based on the geodesic
path or fuzzy geodesic between the two points.

The main observation of this paper is that it is more ad-
vantageous to define regions of interest anchored by two
points instead of one point, where these regions are obtained
without the need for a meaningful segmentation of the mod-
els. The bilateral map possesses several advantages over de-
scriptors centered at a single point. First, the ROI is adap-
tive. That is, since it is constrained to lie between the two
reference points, it only includes portions of the shape that
capture the structural relationship between these two points.
Portions of the shape that are not relevant to the reference
points and that may be potentially missing in other shapes
are ignored by the descriptor; contrast Figure 1 (b) to (c).
Secondly, given that the ROI is adaptive, the selection of the
scale of the ROI is facilitated, since the region width can
be set to be proportional to the geodesic distance between
the two points. In this manner, if the absolute distance be-
tween two points changes from one shape to the other, the
region width is adjusted according to the distance. Finally,
the bilateral approach is also partially insensitive to moder-
ate topological changes, in comparison to other descriptors
that also depend on geodesics.

Moreover, the bilateral map can have an immediate im-
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(a) (b) (c)

Figure 4: Definition of bins for the bilateral map: the initial
ROI in (a) is filtered to obtain the more restricted ROI in (b),
which is then divided into equally spaced bins according to
geodesic distances emanating from p, as shown in (c).

pact on existing correspondence approaches. Some of the
most successful methods are based on the assumption of
isometry preservation, which already requires an analysis of
the compatibility between pairs of matches. This is the case,
for example, in recent search-based methods [ZSCO∗08,
ACOT∗10], sampling-based algorithms [TBW∗11], or spec-
tral matching methods [LH05]. Thus, our descriptors natu-
rally fit into such approaches, since they can be added di-
rectly to the estimate of pairwise compatibility, along with
other constraints such as geodesic distortion [vKZHCO11].

We demonstrate the effectiveness of the new descriptor
with several experiments on shape correspondence and re-
trieval on complete and partial shapes, and evaluate the qual-
ity of the results in a qualitative and quantitative manner.
We show that the top matches returned by the bilateral maps
are generally better than those returned by descriptors cen-
tered at a single point, including the scale-invariant heat sig-
nature [BK10]. We also obtain improved results for shape
retrieval when comparing to a state-of-the-art approach: the
persistent heat signature of Dey et al. [DLL∗10]. In addition,
we show that, although the bilateral maps were designed for
partial matching problems, they also display good perfor-
mance when employed to match complete shapes.

2. Related work

Shape matching. A prominent problem in shape analy-
sis is the development of means to compare the geome-
try of shapes, be they the full models or parts. This prob-
lem is at the heart of shape retrieval [TV08] and corre-
spondence [vKZHCO11], which are a prerequisite of sev-
eral applications, e.g., attribute transfer, shape morphing,
and 3D content creation. When matching shapes with sig-
nificant variability and missing data, it is important that the
above applications are able to perform partial matching. Par-
tial matching is difficult since, before computing the simi-
larity of the shapes, we first need to find the common por-
tions of the shapes [GCO06, vKZHCO11]. This requires the
careful design of descriptors that are less sensitive to vari-
ations in the part composition of the models and also a
mechanism to search for a partial match. The latter can be

achieved, for example, by detecting a sharp increase in the
objective function when outlier regions are excluded from
the match [GMGP05, ZSCO∗08], or by making use of vot-
ing methods [LF09, ACOT∗10].

There are also approaches that compute a partial corre-
spondence without relying on shape descriptors, such as the
method of Bronstein and Bronstein [BB08]. Their approach
optimizes a type of Mumford-Shah functional, common for
image segmentation, with a quasi-Newton optimization.

Local shape descriptors. A great variety of local shape de-
scriptors have been proposed in the literature, since the most
common approach to shape correspondence and retrieval is
to utilize descriptors as a more suitable representation for
shape comparison. Simple descriptors capture scalar proper-
ties of points, such as the integral invariants [MCH∗06], or
the shape diameter function [SSS∗09]. Descriptors that go
beyond scalar properties explicitly represent a region of in-
terest or context around the points, resulting in a vector of
scalar properties. The shape context descriptor is based on
laying out a grid on this region and then counting the num-
ber of feature points that fall into the bins implied by the
grid. A direct extension of this descriptor to 3D has been pro-
posed [KPNK03], as well as a version that defines the grid
relative to the surface orientation; the spin images [JH99].
Kazhdan et al. [KFR03] propose to encode such contex-
tual descriptors in a rotationally-invariant manner by us-
ing spherical harmonics. A natural extension of shape con-
text to manifolds is to lay out the grid on the surface of
the models, and then aggregate the curvature [GGGZ05] or
area [KHS10] of the surface portion that falls into the bins.
Another representation encodes the region of interest with a
statistical model [CCFM08].

However, these descriptors provide little flexibility to cap-
ture partial regions of the shapes, since what can be regulated
is mainly the size of the context. Thus, multi-scale descrip-
tors have been introduced, such as the multi-scale features of
Li and Guskov [LG05], or integral invariants captured at dif-
ferent scales [MCH∗06]. However, the context region cap-
tured by these descriptors is still isotropic and non-adaptive.

Gal and Cohen-Or propose a descriptor designed specif-
ically for partial matching, where salient regions are ex-
tracted from the models and stored as a full geometry that
is later matched with geometric hashing [GCO06]. Another
possibility is to include part information to limit the con-
text of the descriptors, e.g., by making use of the isophotic
metric [PSH∗04] or a part-aware metric [LZSCO09]. Fer-
reira et al. [FMA∗10] extract parts from the shapes to com-
pose a part thesaurus that is used for partial matching, while
Itskovich and Tal [IT11] propose to combine sets of fea-
ture points and part information (segments) in the match-
ing. Finally, a representation that has achieved consider-
able success in shape matching is the heat kernel signa-
ture [DLL∗10, OMMG10], which can tolerate significant
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(a) (b)

Figure 5: The bilateral map is a directional descriptor: the
descriptor for (p,q) is different from the one for (q, p) (the
geodesic bins and histogram contents are different), prevent-
ing the confusion between p and q during the matching.

variability and missing data. This signature can also be com-
puted in a multi-scale or scale-invariant manner [BK10].

In contrast to these works, the bilateral maps go beyond
the multi-scale or fixed-size context representations and do
not require part detection. The partial regions of the shapes
are defined by pairs of points.

Pairwise descriptors. Pairs of points have been used be-
fore in the context of shape matching, e.g., to quantify
the deviation from isometry introduced by a correspon-
dence [vKZHCO11]. However, as a shape representation,
we are only aware of the work of Zheng et al. [ZTZX12]
discussed in the introduction and two other works that build
shape signatures based on pairs of points. In the work of
Bronstein et al. [BBGO11], a histogram captures the fre-
quency that pairs of features appear close-by on a shape,
according to the pair’s diffusion distance. Being of a global
nature, this signature is mainly suitable for shape retrieval. In
the work of Sun et al. [SCF10], the intersection configura-
tion descriptor is proposed for shape correspondence, where
the amount of intersection between the fuzzy geodesics of
two pairs is quantified by a single scalar value. On the other
hand, the novelty of our approach is to propose a local
shape descriptor that explicitly represents the region lying
in-between the two reference points. Thus, the bilateral maps
can be used for correspondence and retrieval.

3. Descriptor construction

In this section, we discuss the construction of the bilateral
maps. First, given a pair of reference points (p,q), we de-
fine a ROI that captures the context between the two points
(Figures 2 and 3). The way in which we define the ROI is ex-
plained in the next heading. Next, we compute the shortest
geodesic distance from each face within the ROI to the point
p, defining a scalar distance field. By dividing the range of
possible scalar values into b equal intervals, we are able to
divide the ROI into b bins. Finally, for each bin, we aggre-
gate a property of the faces or vertices that fall into the bin

Figure 6: Definition of the ROI for the bilateral map: (a)
An initial region is defined either as the region within a dis-
tance θ from the shortest path, or by thresholding the fuzzy
geodesic between p and q. (b) A filtering region (in purple
at the center) is defined by intersecting the expanding fronts
(in red and blue) from the two feature points. (c) The final
ROI is given by the intersection of (a) and (b).

and use the result as the scalar value that represents the bin.
In this paper, we simply sum the area of all the faces in the
bin, although other properties can be utilized, such as the
curvature or the heat kernel signature of the points. The re-
sulting descriptor is a b-dimensional vector as shown by the
histograms in Figure 1 (a) or (b). For normalization, we di-
vide each vector entry by the sum of all entries.

Notice that our construction provides a directional de-
scriptor. That is, the descriptor for (p,q) is different from
the one computed for (q, p). This is in fact a desired and im-
portant property to prevent the switching of any two points p
and q, since it ensures that matching (p,q) to a pair (r,s) will
return a different similarity than matching (q, p) to (r,s). In
the former match, p is in correspondence with r, while in the
latter, q is in correspondence with r (Figure 5).

Region of interest. Our goal is to capture a ROI between
the two points and avoid including extraneous portions of the
models. Thus, we start the construction with an initial region
obtained with one of two schemes. In the first scheme, shown
in Figure 2, we create a scalar field given by the shortest dis-
tance from each face to the shortest geodesic path between
the two points. All the faces with the distance below a thresh-
old θ define our initial region. Before this step, we divide all
the distances by the shortest distance between p and q, so
that the threshold becomes relative to the path length. The
parameter θ can be seen as the relative width of the initial
region. We study the selection of this parameter in Section 4
and show that using a fixed θ is sufficiently robust.

In the second scheme, shown in Figure 3, the initial region
is obtained from the fuzzy geodesic of two points [SCF10].
Given two points p and q, the fuzzy geodesic Gp,q(x) is a
scalar field defined on the mesh that quantifies how long is
the shortest path from p to q through the diversion x, in com-
parison to the direct shortest geodesic from p to q:

Gp,q(x) = |distS(x, p)+distS(x,q)−distS(p,q)|, (1)

where distS is the shortest geodesic distance between two
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(a) (b)

(c) (d)

Figure 7: Scale selection problem on a model of two humans
holding hands. Suppose that our goal is to match this model
to another human with the aid of single-point descriptors.
(a) For locations such as the man’s arm, we need to select
smaller scales so as not to include regions of the woman’s
portion. (b) If we apply such a small scale to all the points,
we get less descriptive contexts. On the other hand, the bi-
lateral maps between head and arm (c), and head and hand
(d), more naturally adapt to the context of the points while
being constructed with the same width parameter.

faces on the shape S. Note that we do not filter Gp,q through
a Gaussian as in [SCF10]. Finally, given a threshold τ, we
create our initial region by collecting all the faces x with
Gp,q(x)< τ. However, first we normalize Gp,q by distS(p,q),
so that the threshold τ also defines the relative width of the
initial region, playing a similar role as θ. Note that using the
fuzzy geodesics can create a region that is more robust when
the shortest path between p and q is unstable, although there
is no guarantee that the region will be connected.

After obtaining the initial region with one of the two
schemes, we proceed as shown in Figure 6. We define a fil-
tering region in order to exclude portions of the shape that
lie beyond the reference points. Given that δ is the shortest
geodesic distance between p and q, we compute the inter-
section of all the faces that are at most a distance of δ away
from p and all the faces that are at most δ away from q. In
this manner, we obtain a region that excludes the faces be-
yond (or “behind”) p and q, as shown in Figure 6 (b), assum-
ing that there are no small handles or tunnels in the region.
Finally, we intersect the initial and filtering regions to define
the ROI for the bilateral map; see Figure 6 (c). The effect
of this filtering can be seen in Figure 4, where the region
highlighted in (a) is not part of the ROI after filtering.

Adaptiveness and scale selection. Our bilateral maps have
several advantages over approaches centered at a single
point. Firstly, the geometry of the ROI is adaptive and cap-

(a) (b) (c) (d)

Figure 8: Partial insensitivity of the bilateral map to topo-
logical changes: when a topological shortcut exists in one of
the shapes, the bilateral map capturing the region between
the two feet is significantly different in (a) and (b). However,
notice that many of the remaining bilateral maps are not af-
fected by this shortcut, e.g., between the foot and left hand
in (c) and (d), between the foot and points on the head, etc.

tures mainly the parts of the shape that lie between the ref-
erence points. In contrast to other descriptors, the ROI does
not simply expand isotropically towards all directions; it is
anisotropically constrained by the region between a pair of
points, as shown in Figure 1 (a) and (b), and Figure 7 (c)
and (d). Secondly, instead of selecting a free parameter to
define the scale of the ROI, which could assume any arbi-
trary value, we instead select the width of the bilateral maps
relative to the distance between the two points. This adapts
the scale of the descriptor to the context of the two points on
the overall shape. As shown in Figure 7, descriptors centered
at a single point might require different scales depending on
the location of the points on the shape, while the bilateral
maps more easily adapt the size of the region while using
the same width parameter.

Partial insensitivity to topological changes. Since our con-
struction is based on the geodesic path or distance between
two points, the bilateral maps are affected when the shortest
path is unstable. This will happen when a topological short-
cut exists in one of the shapes (Figure 8). Nevertheless, we
observe that the paradigm of using pairs of points makes this
approach partially insensitive to topological changes. Note
that, when one topological shortcut exists in the shape, most
of the bilateral maps will still remain intact, since the short-
cut affects only the descriptors related to points in its vicin-
ity (Figure 8). This is the case in the bilateral approach since
each feature point is associated to multiple bilateral maps.
Thus, if one of these maps is affected, there still remain sev-
eral other maps to guide the algorithm. This property makes
the full set of bilateral maps of a shape less sensitive (but
not completely insensitive) to moderate topological changes.
This is not the case in the single-point approach, since each
feature point has a single associated descriptor which is then
modified and unable to provide a proper match for the point.
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Suitability to existing correspondence methods. Another
advantage of the bilateral maps is that they can be used
with existing correspondence approaches without the need
for a major modification to these methods. Recent isometry-
preserving methods minimize an objective similar to

π
∗ = argmin

π
∑

p∈S1

dissim(Dp,Dπ(p)) +

α ∑
p,q∈S1

|distS1(p,q)−distS2(π(p),π(q))| , (2)

where π
∗ is the optimal correspondence that we seek, p,q

are points on shape S1, π(p),π(q) are their corresponding
points on shape S2, dissim is the dissimilarity between the
descriptors Dp and Dπ(p), and distSi is the geodesic distance
on shape Si. This objective function captures the notion that
two pairs of points should be matched if the distance be-
tween the points is similar on each shape, and the descriptors
of the matching points are also similar [LH05, ZSCO∗08].
α regulates the balance between the geodesic inconsistency
and the descriptor dissimilarity in the objective function.

Thus, to make use of our descriptors, we can simply re-
place the first term of the objective by

∑
p,q∈S1

dissim(D(p,q),D(π(p),π(q))) (3)

where D(p,q) are now the bilateral maps defined over pairs of
points. Thus, the general complexity of evaluating (2) is not
increased with this modification; only the time required to
compute the descriptors is increased. Moreover, notice that
the complexity of optimizing (2) depends on the heuristic
method being used, since optimizing this functional in its
general form is an NP-hard problem [vKZHCO11].

Similarly, for other applications such as shape retrieval,
we will also have an increase in the time required to com-
pute the descriptors. However, as we show in Section 4, typ-
ically a simple scheme is used to match the signatures of two
shapes. Thus, in practice, we may be able to find a balance
between the number of features extracted from the shapes
and the quadratic number of descriptors generated.

Complexity of bilateral maps computation. When com-
puting geodesic distances between n feature points by ap-
proximating the mesh with a discrete graph, we have a time
complexity of O(n(|E|+ |V |log|V |)), where |V | and |E| are
respectively the total number of vertices and edges in the
mesh. Thus, the computation of the bilateral maps is dom-
inated by this complexity. In practice, computing the 2,450
bilateral maps between 50 feature points on a mesh of 20K
faces takes 10 minutes with unoptimized MATLAB code.
In contrast, computing the corresponding 50 single-point
geodesic maps takes 1 minute with the same base code.

4. Experiments and results

In this section, we demonstrate the effectiveness of the
bilateral maps in the contexts of shape correspondence

and retrieval. For our initial experiments, we use the first
scheme proposed to construct the region of interest between
two points, where the region is grown around the shortest
geodesic path between the two points. We use a single set of
descriptor parameters: number of bins b = 20, and θ = 0.30.
We also study the impact that different values of these pa-
rameters have on the correspondence results, as well as the
second construction scheme of the initial region.

4.1. Shape correspondence

Although a variety of methods that make use of local shape
descriptors for correspondence have been proposed in the
literature [vKZHCO11], we chose to perform a raw evalua-
tion of the bilateral maps, i.e., pairwise matches are obtained
from the descriptors without any intermediate optimization
or filtering steps. In this manner, the effectiveness of the bi-
lateral maps can be isolated and evaluated directly.

However, given that the bilateral maps are defined be-
tween pairs of points, we still need a mechanism to extract a
point-to-point correspondence from the descriptors defined
between pairs of points. Following the spirit of a direct eval-
uation, we use a simple voting algorithm for this step. Given
two meshesM1 andM2, for each bilateral map onM1, we
find the most similar map on M2, and place a vote on the
two pairwise matches implied by the two descriptors. We
utilize the `1-norm to measure the descriptor dissimilarity.
At the end of the voting, we select for each feature point in
M1, the matching point inM2 with the largest number of
votes. We also constrain the matching to be one-to-one by
retaining for each point inM2, the match to the correspond-
ing point in M1 with the most votes. In our experiments,
we sample 50 feature points uniformly across each surface
and compute the bilateral maps for all the pairs of points.
We display only the top 50% matches, since correspondence
algorithms will typically explore only the top matches.

Results. In Figure 9, we show visual examples of corre-
spondences computed with our bilateral maps. Notice how
the descriptors are able to provide meaningful matches for
shapes with missing parts or even differing topology. In (a),
the method is applied to a pair of complete shapes, to show
that the bilateral maps are also suitable for computing full
correspondences between shapes in different poses. The ex-
amples in (b)-(h) present cases requiring partial matching.
We see that in the simple case where a shape is matched to
a version of itself cut in half, shown in (b), the descriptors
are able to provide the correct matches between all the se-
lected feature points. In (c)-(e), we see that the bilateral maps
are effective for matching incomplete shapes, with missing
parts. Finally, in (f)-(h), we show the effectiveness of the bi-
lateral maps for matching hybrid shapes or shapes with topo-
logical differences. Notice that, since these results were ob-
tained without any form of optimization, incorrect matches
are also returned. However, note that each prominent shape
part is not missed, receiving at least one correct match.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Correspondence results obtained with our bilateral maps on a set of example pairs. Corresponding points are shown
with matching colors, and we connect some interesting matches with the blue curves. Notice that our descriptors enable to find
meaningful matches between: (a) two complete shapes in different poses, (b)-(e) shapes with missing parts (missing legs, hand
and tail), and (f)-(h) shapes that possess different topology (circled in red in (f) and (g)) or which include extraneous parts (the
human part of the centaur in (h)). The same descriptor width θ was used in all the examples.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Correspondence results obtained with the bilateral maps in (a)-(c), compared to the results obtained with the single-
point geodesic maps in (d)-(f), and the scale-invariant heat signature in (g)-(i). Note that the results obtained with the bilateral
maps are more meaningful than those obtained with the single-point descriptors. Meaningful matches are highlighted in blue.
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(a) Incomplete humans (b) Accept symmetric flips

(c) SCAPE (d) Accept symmetric flips

Figure 11: Quantitative evaluation of correspondences com-
puted with the bilateral maps and single-point descriptors
on incomplete (a)-(b) and complete humans (c)-(d). The x-
axis denotes the correspondence error in terms of geodesic
distances, while the y-axis denotes the percentage of corre-
spondences with an error below a given value. Note the bet-
ter performance of the bilateral maps on incomplete shapes,
and competitive performance on the SCAPE dataset.

Comparison to single-point descriptors. Figure 10 shows
additional results obtained with the bilateral maps as well
as a comparison to traditional single-point descriptors: the
geodesic map and the scale-invariant heat kernel signa-
ture [BK10]. The geodesic maps use the same type of in-
trinsic binning as the bilateral maps, and we compute these
descriptors at five different scales. The extent of the descrip-
tors is set to 20%, 40%, 60%, 80%, and 100% of the longest
geodesic path on each shape. Each descriptor is composed
of 20 concentric bins, where we also sum the area of the
faces that fall within each bin. Next, we compute correspon-
dences with each scale and select the best result for each
example in Figure 10 (d)-(f). By using these geodesic maps
that have a similar setup to the bilateral maps, we are able
to compare directly the advantage of using pairs of points
over single points. The heat kernel signatures are computed
according to the construction in [BK10], and we use the first
10 coefficients for the signature, as suggested in that work.
To establish the correspondences, we select, for each feature
point, the matching point with the greatest similarity.

In Figure 10 (a), we show the matches obtained for
our motivating example of the human vs. Neptune. Cor-

(a) (b)

(c) (d)

Figure 12: Context regions built with fuzzy geodesics. Here
we show the bilateral maps built with the same parameters
between two points on the hands, for two different shapes
(front and back). Note how the resulting context regions do
not correspond across the two shapes. Since more shortest
paths that differ by a given ε tend to cross the front of the
shape in (a) and (b), the region within a certain threshold is
significantly different from that in (c) and (d), where similar
shortest paths divide equally between front and back.

rect matches are obtained between the prominent parts of
the models, including points close to topological differences
(legs), while not many matches which connect extraneous
regions (the spear and base) are returned. However, the right
arm of the human is matched to Neptune’s left arm. Due
to the intrinsic nature of the descriptor, symmetric parts are
not always distinguished. In (b), we see a human matched to
a single manifold composed of two humans holding hands,
where all the correspondences are meaningful up to symme-
try switching. Note that since we are performing a raw com-
parison, points on the human on the left can be matched both
to the man and the woman portions of the model on the right.
Finally, in (c), the left elephant has a different topology from
the one on the right (its head, trunk, and tusks are connected
to a front leg), but correct matches are still obtained between
the trunks, tusks, and the bodies of the elephants.

Moreover, by contrasting the results of the bilateral maps
in Figure 10 (a)-(c) to the results of the single-point geodesic
map in (d)-(f), we see that the bilateral maps return more
meaningful matches, while using the same descriptor width
parameter. When selecting the proper scale, the single-point
descriptors are able to match important features such as the
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head and arms of the humans, and the body of the elephants.
However, the existence of extraneous regions and topolog-
ical changes have a stronger impact on the single-point de-
scriptors than on the bilateral maps. Incorrect matches are
returned, for example, between the legs of Neptune and the
body of the human. The single-point approach completely
fails in (d), since the geodesic maps of the two shapes are
significantly different, even at the small scale of 20%. In
comparison to the scale-invariant heat signature in (g)-(i),
we see that this signature is effective for matching shapes
with scale variations or small topology changes (like the ele-
phants), but fails when the models have significant extrane-
ous portions (like on the two humans holding hands).

Topological changes. One advantage of the bilateral maps is
that, if two shapes possess moderate topological differences,
we can still obtain a meaningful correspondence between the
two. As discussed in Section 3, although some of the descrip-
tors are modified when one of the shapes suffers topological
changes, enough of the multiple bilateral maps associated
to each feature still remain intact if only a few topological
shortcuts exist. The partial insensitivity of the bilateral maps
is demonstrated in the examples in Figure 9 (f) and (g), as
well as in the matching of a human to Neptune in Figure 10
(a) and the elephants in (c), where more meaningful matches
are returned in comparison to the single-point descriptors.

Quantitative evaluation. We also compare the bilateral
maps to the single-point geodesic maps and scale-invariant
heat signature in a quantitative manner on datasets of partial
and complete shapes. For partial shapes, we selected 13 in-
complete humans from the dataset for partial shape retrieval
of Dey et al. [DLL∗10]. These humans have missing parts
or missing data in the form of multiple holes on the meshes.
Next, we computed correspondences between each human
and 8 other randomly selected humans. For evaluating the bi-
lateral maps on complete shapes, we use the SCAPE dataset
with 71 shapes [ASP∗04], where we computed a correspon-
dence between each model and another randomly-selected
model in the set. To compute the correspondences, we also
perform a raw matching on sets of 50 sample points.

Figure 13: Quantitative evaluation of correspondences com-
puted with the bilateral maps with different numbers of bins
and increasing descriptor width θ. Note that the best perfor-
mance on this dataset is with 20 bins and θ higher than 0.3.

To evaluate the results, the SCAPE dataset has ground-

truth correspondences available. For the partial dataset, we
first created a ground-truth for each shape. We selected 36
consistent landmark points on each shape, as in the bench-
mark of Kim et al. [KLF11]. In the case of features appearing
in missing parts, we placed the ground-truth at the location
nearest to the landmark. For example, if a human is missing
its left leg from the knee downwards, we placed the land-
mark corresponding to the left toe at the location of the left
knee. Since the descriptors are computed on automatic fea-
tures, we then derive a ground-truth for the features from
the ground-truth of the landmark points. Each feature point
is represented by a vector of geodesic distances to the land-
marks. By finding the best match for such vectors, we estab-
lish the ground-truth for the feature points.

Once we are given a correspondence π computed with one
of the descriptors, we compute its error in relation to the
ground-truth correspondence πgt by adding up the geodesic
distance from each selected point to the ground-truth point,

Error(π,πgt) = ∑
p∈M1

dM2(π(p),πgt(p)). (4)

The geodesic distances dM2 are normalized by√
Area(M2) [KLF11].

Figure 11 shows the results of this experiment. Each curve
denotes the percentage of correspondences that have an error
below a given geodesic distance. We also show the results
when symmetric flips are accepted in the correspondence.
It can be clearly seen that the bilateral maps have a bet-
ter performance on the incomplete shapes, returning corre-
spondences with lower errors. Note that, for this dataset, the
geodesic maps with a larger scale of 60% gave the best re-
sults for single-point descriptors, since this larger scale bet-
ter captures the human structure. For the complete shapes,
the single-point descriptors are expected to perform well.
However, the bilateral maps still remain as a competitive op-
tion, returning lower error correspondences on the first 40%
matches. Note that correspondence algorithms will typically
make use of the top most similar matches for guidance. Thus,
it is essential that the top matches are of higher quality.

Figure 11 also compares the two possible constructions of
the initial region of the bilateral maps: using the shortest path
between the two reference points or their fuzzy geodesic. For
the fuzzy geodesic construction, we chose a parameter τ that
creates regions of the same size to the selected θ. We see that
the two options are equivalent to each other in practice. Our
observation on this result is that, if the shortest path is sta-
ble, the regions defined by both constructions are practically
the same. However, in the case of instability, the more stable
fuzzy geodesics do not necessarily guarantee that the con-
text regions will correspond across the shapes. E.g., in one
shape the geodesics could be more unstable than in the other,
resulting in significantly different context regions. One such
example is presented in Figure 12.

Figure 13 investigates the effect of using different num-
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bers of bins and descriptor widths θ for the construction of
the bilateral maps with the shortest paths. We evaluate the
different parameters on the set of incomplete shapes. We
see that, for this dataset, any θ value equal or higher than
0.30 gives good results, while increasing the number of bins
only slightly improves the quality of the correspondences.
We conjecture that this is the case since, although the shapes
in the dataset are incomplete, they still possess large com-
mon portions, and larger contexts then capture more shape
information. On the other hand, lower values for θ clearly
do not capture much context around the pair of points and
are less effective. We select 0.30 as the parameter in our ex-
periments since then we guarantee that less extraneous parts
will be captured when the shapes have more variations.

Limitations. The limitations of the bilateral maps can be
observed in Figure 9. As common with intrinsic descrip-
tors [KLF11], when the shapes have strong intrinsic sym-
metries, e.g., left- and right-halves of a human, the bilateral
maps are unable to tell the symmetries apart. Also, since the
descriptors are built on geodesic distances and the area of
the shapes, significant distortion from isometry on the shape
parts can provide poor matches, as shown in Figure 14 (a).
Finally, as seen in Figure 14 (b), if several topological short-
cuts exist on a shape (between arms and legs on the human
on the right), the bilateral maps become significantly dissim-
ilar and do not provide good matches for the parts involved
in the shortcuts.

Another point for practical consideration is that the bi-
lateral maps can only capture as much detail as present on
the input meshes. That is, if two feature points are close-
by and there are not many details in their context region
(e.g., between the thumb and index finger in a low-resolution
model of a complete human), then their corresponding bi-
lateral map will not be very informative. Thus, the strength
of the bilateral maps is more on what we term “medium-
scale” partial matching, i.e., where the partial portions of the
shapes being matched represent a significant fraction of the
shapes (at least 20% or 30% of the shapes), as in the exam-
ples shown throughout this section.

(a) (b)

Figure 14: Examples illustrating the limitations of the ap-
proach. The performance of the bilateral maps is decreased
in the presence of: (a) Significant distortion from isometry.
(b) Topological shortcuts affecting several parts in a shape.

4.2. Shape retrieval.

Dataset and methodology. We show results of using our
bilateral maps for shape retrieval and also compare to the
method of Dey et al. [DLL∗10]. Their method utilizes the
persistent heat kernel signature (PHS) to detect interest
points on the shapes and also to define shape signatures for
retrieval. Their work is the first to evaluate results specifi-
cally on incomplete shapes and also to build a dataset for this
purpose. We perform the comparison by evaluating the bilat-
eral maps on Dey et al’s dataset. The dataset is composed
of 300 shapes organized into 21 classes (humans, horses,
chairs, etc.). Its query set is composed of 18 complete shapes
and 32 incomplete shapes, while the target set contains 197
complete and 101 incomplete shapes.

To perform the retrieval, we also utilize a procedure sim-
ilar to that used by Dey et al. First, we compute the bilat-
eral maps for 20 interest points uniformly sampled on each
shape. We take the resulting 380 descriptors to create the
signature of each shape. Next, during the retrieval phase, the
matching score between two shapes M1 and M2 is given
by the expression [DLL∗10]

∑
f1∈F1

min
f2∈F2
‖ f1− f2‖1 + ∑

f2∈F2

min
f1∈F1
‖ f1− f2‖1, (5)

where F1 and F2 are the sets of signatures forM1 andM2,
respectively, f1 ∈ F1 and f2 ∈ F2 denote single descriptor
vectors in the signature set, and ‖ . . .‖1 is the `1-norm. This
score is simple and efficient to compute for large datasets.

For each query, the target shapes are ordered according to
the score in (5) and the results are evaluated in terms of the
top-3 and top-5 hit rates. Basically, given a query shape, we
have a top-k hit if a shape from the same class is retrieved
within the top k matches. For a class with N shapes, the top-k
hit rate is the percentage of top-k hits with respect to N.

Results. Table 1 shows the retrieval hit rates for our de-
scriptors, compared to the method of Dey et al. [DLL∗10]
(PHS) and the Eigenvalue descriptor method of Jain and
Zhang [JZ07] (EVD). Note that, in the case of the bilat-
eral maps, we are using a quadratic number of descriptors
in comparison to a linear number for PHS and EVD. We see
from the results that, although PHS and EVD have differ-
ent performances on complete and incomplete shapes, our
descriptors provide better results than these two methods on
both types of shapes. Thus, although the bilateral maps were
designed for partial matching, their performance does not
drop when matching and retrieving complete shapes.

5. Conclusion

The key message of this paper is to show that it is worthwhile
to consider two points instead of one point in defining re-
gions of interest for local shape descriptors. To demonstrate
this idea, we proposed the bilateral map, which anisotropi-
cally adapts its shape to the region comprised between two
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Table 1: Retrieval results on a dataset of complete and in-
complete shapes. Each table entry shows top-3 and top-5 hit
rates for our bilateral maps, PHS, and EVD.

Queries Ours PHS EVD
32 incompl. 91% / 94% 88% / 91% 62% / 62%
18 compl. 100% / 100% 78% / 83% 100% / 100%
50 total 94% / 96% 84% / 88% 76% / 76%

points. We showed that the bilateral map offers a promising
alternative to the classic descriptor definition for tasks such
as shape correspondence and retrieval. The bilateral map was
designed to deal better with the partial matching problem,
but we showed that this does not hinder its performance on
the full matching problem.

We have shown results using the bilateral maps within
a simple correspondence framework, to more easily eval-
uate the effectiveness of the descriptors. However, these
descriptors can potentially help improve the results of
more elaborate methods based on the feature analysis ap-
proach. For example, they can be readily used within recent
search-based algorithms [GMGP05, ZSCO∗08, ACOT∗10],
sampling-based algorithms [TBW∗11], or even to guide
transformation-based [LF09, KLF11] or registration-based
methods [BB08] more rapidly towards a good solution.
Moreover, we evaluated the bilateral maps by collecting the
area of the faces that fall within each bin. However, the de-
scriptor can be potentially used with other geometric proper-
ties, such as curvature [GGGZ05], the shape diameter func-
tion [SSS∗09], or even with more sophisticated scalar fields,
such as the heat diffusion field [DLL∗10].

In the future, we plan to investigate alternative construc-
tions of the proposed descriptors. For example, we can ad-
ditionally split the bins according to the distance from the
geodesic path, obtaining a 2D instead of 1D bin layout.
Moreover, we can attain a higher-order construction by con-
sidering three points on a surface, which define a common
region. A grid can then be defined by dividing the region
along every pair of points, resulting in another 2D bin layout.
Such a generalization lifts the need to specify a threshold θ

for the descriptor, but increases the matching complexity.

Finally, another important topic for future investigation
is that of feature selection, which is a difficult problem
when the goal is to capture features that appear consis-
tently across two different shapes. We evaluated the pro-
posed bilateral maps with feature points uniformly sam-
pled across the surfaces. However, an interesting question
is whether there is a feature selection approach that is
more suitable for the new descriptors. Previous works pro-
posed to use sampling schemes based on extremity selec-
tion [ZSCO∗08], saliency [CCFM08] or information crite-
ria such as entropy [TBW∗11], but the particular choice of
method is highly correlated with the category of shapes be-

ing considered. Perhaps the best way of selecting feature
points on surfaces is to use an approach similar to that of
Tevs et al. [TBW∗11], where the feature selection is part of
the correspondence computation and, potentially, could even
be made part of the descriptor construction.
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