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Abstract

Rationale and Objectives. Supraspinatus muscle disorders are frequent

and debilitating, resulting in pain and a limited range of shoulder motion.

The gold standard for diagnosis involves an invasive surgical procedure. As

part of a proposed clinical workflow for noninvasive computer-aided diagnosis

(CAD) of the condition of the supraspinatus, we present a method to classify

3D shapes of the muscle into relevant pathology groups, based on magnetic

resonance (MR) images.

Materials and Methods. We obtained MR images of the shoulder from 72

patients, separated into five pathology groups. The imaging protocol ensures

that the supraspinatus is consistently oriented relative to the MR imaging
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plane for each scan. Next, we compute the Fourier coefficients of 2D contours

lying on parallel imaging planes and integrate the corresponding frequency

components across all contours. To classify the shapes, we learn the Fourier

coefficients that best distinguish the different classes.

Results. We show that our method leads to significant improvement when

compared to previous work. We are able to distinguish between normal

shapes and shapes that possess a pathology with an accuracy of almost 100%.

Moreover, we can differentiate between the different pathology groups with

an average accuracy of 86%.

Conclusion. We confirm that analyzing the 3D shape of the muscle has

potential as a form of diagnosis reinforcement to assess the condition of the

supraspinatus. Moreover, our proposed descriptor based on Fourier coeffi-

cients is able to distinguish the different pathology groups with accuracies

higher than those obtained by previous work, indicating its potential appli-

cation to support a system for CAD of the supraspinatus.

Key words: shoulder pathology, supraspinatus, magnetic resonance image,

computer aided diagnosis, shape analysis

1. Introduction

The supraspinatus muscle originates from the supraspinatus fossa of the

scapula and runs along the top of the shoulder blade. This muscle is part

of the rotator cuff, which is a group of muscles and tendons responsible for

shoulder movement and stabilization. Disorders affecting the rotator cuff can

cause pain and reduce patient mobility [1], and their occurrence is frequent,

with a reported rate of 30% of individuals past 60 years of age in a cadaveric
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study [2]. Supraspinatus disorders involving tendon tearing can be accompa-

nied by muscle retraction, atrophy, or both. The standard procedure for the

diagnosis of rotator cuff disorders is shoulder arthroscopy, which is a surgery

involving the insertion of an optical camera. However, diagnosis based on

magnetic resonance (MR) images is a preferred noninvasive alternative. Ad-

ditionally, the impact of a supraspinatus tendon tear on the overall body

of the muscle has prognostic value and is visible on MR images, but is not

visible during arthroscopy [3, 4].

The long-term goal of our research is to develop a tool for noninvasive

computer-aided diagnosis (CAD) of the supraspinatus, based on 3D shapes

extracted from MR images. The realization of this goal would lead to several

important benefits and results. Firstly, CAD can be helpful to provide a

second opinion or to serve as a form of diagnosis reinforcement for the physi-

cian, and it can also be valuable when other clinical data (e.g., palpation or

range-of-motion exams, in the context of musculoskeletal disorders) do not

provide a clear indication of the pathology. Secondly, understanding the re-

lationship between shape and pathology can be helpful in providing evidence

for etiological or epidemiological studies. Lastly, the impact of a torn tendon

on the shape of the supraspinatus, which has prognostic significance, can be

assessed more accurately by analyzing the 3D shape of the muscle. We are

therefore motivated to perform an automated analysis of the 3D shape of the

supraspinatus, which would allow us to improve upon the diagnosis based on

2D MR images or even shoulder arthroscopy. Previous work concluded that

the shape of the supraspinatus is helpful in the diagnosis of rotator cuff dis-

orders, but a more effective shape analysis procedure is necessary to achieve
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a pathology classification with 100% accuracy [5]. From a computational

viewpoint, our goal is: given a set of shapes and their diagnoses (which were

determined by a physician), learn the relationship between the shape of the

supraspinatus and its pathologies, and employ such a relationship in CAD.

There have been several studies focusing on learning the relationship be-

tween the shapes of anatomical structures and their pathological conditions,

such as in the case of cerebral structures [6, 7, 8, 9, 10, 11], but there are

relatively fewer works relating shape properties to musculoskeletal patholo-

gies [5, 12]. These works make use of global shape properties (e.g., area

and volume) [7, 5], or representations such as the Fourier transform [11, 12],

level sets [13], spherical harmonics [8, 9], and spherical wavelets [10]. How-

ever, measures such as volume have limitations in capturing changes that

appear in higher frequency detail or which are of a more localized nature.

On the other hand, spherical harmonics or spherical wavelets, which allow

for localization, require the data to have some form of correspondence (a bi-

jection matching anatomically-related points between the two shapes). The

computation of an accurate and repeatable correspondence is in general a

difficult problem and particularly in our case, where the given muscle shapes

lack reliably identifiable anatomic landmarks [14]. Moreover, methods based

on spherical representations also require a parameterization onto a sphere,

which can introduce considerable distortion in the data [15].

In this paper, we propose a shape representation that does not require a

correspondence (in the spirit of works for 2D such as [16, 17]), but that is able

to detect variations in the shape at all scales, from coarse to fine. We take

advantage of the fact that the clinical imaging protocol encourages a consis-
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Figure 1: Input to the representation used in this work: (a) MR images of the shoulder of

a patient are acquired (only one image is shown), (b) The 3D shape of the supraspinatus

muscle is segmented from the MR images, (c) The final shape of the muscle is captured

as a set of 2D contours (only 3 contours are shown for illustration purposes).

tent alignment of the shapes, where the orientations of the sagittal imaging

planes are consistent with respect to the orientation of the supraspinatus

across all subjects. This orientational consistency permits the use of our

proposed correspondence-free shape representation. Our representation is

generated as follows (Figure 1 shows the input to our representation). First,

patients are imaged with a protocol that ensures the consistent orientation

of the supraspinatus. Next, the 2D MR images are segmented by a radiology

resident, yielding a set of parallel 2D contours that define the 3D shape of the

muscle. Subsequently, for the analysis of the shapes, we apply the Fourier

transform to each contour and obtain a set of coefficients. This is motivated

by the fact that the Fourier transform has well-known properties of decom-

posing a signal into all of the frequency components that provide a complete,

coarse-to-fine description of the shape. Finally, we integrate each frequency

coefficient for all the contours, which yields a descriptor that is coherent

across shapes because the contours lie on planes oriented along a consis-
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tent direction. The integration of coefficients also ensures coherence when

muscles are described by different numbers of contours. Although this ap-

proach slightly reduces the discriminative power of the descriptors, it avoids

the requirement of having the contours correspond to each other across sub-

jects. Since we can manipulate the components obtained with the Fourier

transform to obtain descriptors that are invariant to rotations, translations,

and scale, we see this transform as the best choice for our representation.

Utilizing other decompositions (e.g., the level set method) would require a

consistent alignment of the shapes along all dimensions and a one-to-one

correspondence between contours of different shapes. Learning the geomet-

ric variations between the shapes is then posed as the problem of finding the

descriptor components and the decision rule that best distinguish the differ-

ent classes. Our contribution in this aspect is that, since it is not possible

to know beforehand which is the best descriptor for the classification, we

propose to learn it by selecting components from our representation, thus

allowing us to make use of all of the geometric information that helps in

distinguishing the pathologies.

2. Materials and methods

Our dataset consists of MR images of the shoulders of 72 patients (a

sample is shown in Figure 1(a)). This dataset was initially acquired and

utilized in the work of Ward et al. [5], and the images were taken as part

of routine clinical studies. The MR images were acquired at 1.5T, with the

following imaging parameters: repetition time 4,000-5,500, echo time 36, field

of view 14, matrix 256 × 256. The in-plane (sagittal) resolution of the data
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ranges from 0.3 to 0.6 mm and the slice thickness ranges from 3 to 5 mm. As

part of the routine clinical imaging protocol, the patients were consistently

imaged in the supine position, relaxed, in minimal external rotation, and with

consistent elevation of the arm, to minimize the effects of pose and gravity on

the shape of the muscle. Great care was taken in the consistent positioning of

the shoulder of each patient, and subjects were instructed not to move after

the arm had been positioned. This imaging protocol ensures the consistent

orientation of the supraspinatus fossa (part of the shoulder blade) and the

humeral head (top of the upper arm bone) across all subjects. Since these

are the anchoring points of the supraspinatus muscle, the imaging protocol

also ensures the consistent orientation of this muscle across all subjects. This

study was conducted under a waiver from the Institutional Review Board.

Each muscle was segmented from the images by a radiology resident in

a slice-by-slice manner and the set of contours representing each shape was

constructed (Figure 1(b) and (c)). Manual segmentation of contours was

performed (as opposed to an automatic method) because of the low contrast

that the supraspinatus muscle has with surrounding tissues on many slices,

which requires the use of expert knowledge for the segmentation. We fol-

low the same segmentation approach as in [5]. In the software tool used for

the segmentation, the resident selects points lying on the boundary of the

supraspinatus on each slice. Next, the tool fits a parametric cubic spline to

these points, generating a smooth curve that segments the muscle. Adjust-

ments can be made to the curve interactively (by adding, moving or removing

points). A previous study has shown that the intra- and interobserver vari-

ability in supraspinatus contouring is less than 5% [18], while another study
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Table 1: Pathology groups considered in the study.

Pathology Abbreviation Number of shapes

No pathology (normal) N 14

Tear T 19

Tear and atrophy TA 13

Tear and retraction TR 15

Tear and atrophy and retraction TAR 11

concluded that the interobserver variability in determining the volume of the

supraspinatus by 3D contouring in MR images is 3.63% [19]. It should be

noted that the resident responsible for the segmentation was not aware of the

diagnoses during this procedure, since the diagnoses were made only after the

segmentation was complete.

Finally, the supraspinatus of each patient was diagnosed in conjunction

by a radiologist and a radiology resident, based on the MR images. The

correctness of the diagnosis was further confirmed by shoulder arthroscopy.

According to the study in [20], the inter- and intra-observer variability in

discriminating normal from torn rotator cuff muscles is low, with accuracies

ranging from 89% to 98%. The supraspinatus of each patient was assigned

to one of the following classes: normal (N), tendon tear (T), tendon tear

and muscle atrophy (TA), tendon tear and tendon retraction (TR), and ten-

don tear with muscle atrophy and tendon retraction (TAR). The number

of shapes in each class is presented in Table 1. The study was composed

of patients suffering different disease severities (e.g., full vs. partial thick-

ness tear), assuming that some of these patients would have visible muscle
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shape changes and some would not. It should be noted that, out of neces-

sity to obtain ground truth, this dataset consists of a selected, non-random,

surgically-proven population.

After concluding the acquisition and segmentation procedures, the shape

of each muscle is captured as a set of 2D contours. The contours are uniformly

distanced from each other according to the slice thickness, and the first and

last contours correspond to the anatomic ends of the muscle as determined

by the radiology resident during the segmentation. Since the slice thickness

ranges from 3 to 5 mm, the outcome of the segmentation step is a set of

3D points which are dense within the (sagittal) imaging planes, but sparse

along the orthogonal direction of the planes. To obtain a set of points that

is dense along all axes, we perform an interpolation of the contours in 3D.

For this step, we use the interpolation module of the segmentation editor in

the Amira software (Mercury Computer Systems, Inc), based on an implicit

level set shape representation, similar to the work by Turk and O’Brien [21].

Finally, we extract uniformly spaced 2D contours from the sagittal planes of

the interpolated 3D shape and use them as the input to our method.

Now, we describe in more detail the steps of our approach, as illustrated

in Figure 2. In the formulations that follow, we denote scalars in regular

typeface (e.g., n or N) and vectors in bold (e.g., x or F), where the i-th

entry of the vector x is written as xi.

2.1. Descriptor computation

Contour decomposition: Firstly, all of the contours are oriented in a

consistent direction (clockwise or counterclockwise) and individually resam-

pled to possess the same number of vertices and equidistant vertex positions
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Figure 2: Proposed method: starting from the segmented muscle, the Fourier transform is

applied to each individual contour (only 3 contours are shown for illustration purposes).

The resulting normalized coefficients ci are integrated for all the contours, yielding a vector

of descriptors F. The vector is then partitioned into sets φi and the best combination of

sets is selected according to a classifier. The set size is 2 in this example for illustration

purposes only.

within each contour. We set the target number of vertices as the maximum

possible number of vertices in all of the contours, so that no geometric details

are lost in this process. Next, we denote a 2D contour as a polygonal curve

(xn, yn), where n ∈ [0, 1, . . . , N − 1], with N being the number of vertices in

the polygon. We define a complex vector using the coordinates of the vertices

and denote it as x = (x0 + i y0, x1 + i y1, . . . , xN−1 + i yN−1). We then apply

the discrete Fourier transform to this vector according to

fk =
N−1∑
n=0

xn exp

(
−2π i

N
kn

)
, (1)
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where k ∈ [0, 1, . . . , N − 1] and f is a vector of complex coefficients. The

Fourier transform decomposes a signal into a set of frequency components

that provide a complete, coarse-to-fine description of the signal. The coef-

ficient fk corresponds to the amount of frequency k that is present in the

original signal. The frequencies k are increasing multiples of the sampling

frequency.

Obtaining invariance: To obtain a vector of descriptors that is invariant to

rotations of the contours in their 2D planes, we discard the phase component

and make use only of the magnitude |fk|. When the original signal is inter-

preted as a combination of waves, the phase component captures the initial

angle of the corresponding wave present in the signal, while the magnitude

captures the amplitude or size of the wave. Discarding the phase component

also provides invariance to selecting different starting points for the contours.

Moreover, by discarding the DC-components (|f0|), we obtain invariance to

translations of the contours in their 2D planes. The DC-components, which

are the first coefficients given by the Fourier decomposition, correspond to

the mean value of the signal’s shape. We also seek invariance to scaling to

account for the variation in the size of the muscles of different patients. So,

we first rescale each muscle to fit in a unit cube while preserving its aspect

ratio. Next, we divide each coefficient by the maximum magnitude associ-

ated to the first frequency of all the contours in the muscle, which has the

effect of further normalizing the descriptors to any scale changes happening

between the shapes of different patients. The rationale behind this proce-

dure is that, if two contours have the same coefficients fk, but multiplied by

different scales s1 and s2, then clearly, dividing all of the coefficients by one
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specific non-zero coefficient cancels out changes in scale, i.e.,

s1fk
s1fl

=
s2fk
s2fl

, ∀k, (2)

where fl is a specific non-zero component. Since we discard the DC-

components (set |f0| to zero), we use the first frequency components |f1|

for the aforementioned scale normalization. Therefore, the normalized coef-

ficients are given by ck = |fk|/|f∗1 |, where |f∗1 | = maxl |f l
1|, with f l

k denoting

the coefficient associated to frequency k for contour l in the muscle.

Final descriptor: Each contour l has now an associated vector of descrip-

tors (cl
1, c

l
2, . . . , c

l
N−1). We obtain our final shape descriptor F by integrating

the different frequency magnitudes for all the contours,

F =

(∑
l

cl
1,
∑

l

cl
2, . . . ,

∑
l

cl
N−1

)
. (3)

The descriptor component Fk (referred to simply as component hereafter), in-

dicates the total contribution of frequency k to the shape, measured on slices

along a specific axis. The resolution within each slice is between 0.3 and 0.6

mm, so the frequencies analyzed are multiples of the sampling frequency, i.e.

k 10
6

to k 10
3

cycles/mm. Since the contours lie on planes aligned in a consistent

direction in all shapes and they are described by rotation-, translation-, and

scale-invariant components, the final descriptor F is coherent across different

shapes and hence the need to establish point correspondence is avoided. The

descriptor implicitly captures the 3D shape of the muscle by recording the

changes in scale between the contours of a given muscle and also the varia-

tions in the shapes of the contours at different frequencies. These frequency

variations are integrated for all the contours in the muscle.
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2.2. Descriptor selection and classification

The final step in our approach is to learn how components of the shape de-

scriptors can best distinguish the different classes. Such a task can be carried

out more efficiently by first selecting the components that best distinguish

each pair of classes, and then combining the pairwise results to obtain the

final classification [22]. Given a pair of classes and the shapes belonging to

these two classes, the descriptors are selected according to their discrimina-

tory power. That is, we train a classifier for each possible combination of

components and verify its accuracy in distinguishing the two classes. The

most accurate classifier is then chosen for the given pair of classes. Next, we

combine the best pairwise classifiers using a voting method to obtain the final

classification. That is, given a shape, we classify it into one of two classes

according to all of the pairwise classifiers, and then we assign the shape to

the class with the largest number of positive classifications. In this manner,

given a muscle shape acquired from a new patient, we can assign it to one of

the 5 pathology classes.

Partitioning and set combination: Moreover, to reduce the complex-

ity of component selection and also to avoid the selection of single compo-

nents that could be potential outliers, we propose a partitioning scheme.

Notice that techniques for feature selection that exist in the machine learn-

ing literature could be alternatively used for this task [23]. Given a set

size parameter S, we divide the descriptor vector F of each shape into

contiguous sets Φ = [φ0, φ1, . . . , φM−1], where the j-th set is given by

φj = [FjS,FjS+1, . . . ,FjS+(S−1)] and M =
⌊

N
S

⌋
. Each φj corresponds to

a group of components associated with similar frequencies. Next, for each
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possible combination of descriptor sets, e.g. [φ0, φ1, φ3], we train a classifier

and verify its accuracy in distinguishing the shapes (this procedure is de-

scribed in more detail later). We keep the set combination that gives the

best classification results in terms of accuracy.

In the experiments, we evaluate the performance of our approach with

S = 5. This chosen set size is large enough to avoid selecting outlier com-

ponents that can be unstable across different shapes. On the other hand,

S = 5 is small enough so that the partitioning of the components is not

too coarse, allowing the descriptor selection to find components that provide

high accuracies in the classification.

The number of all possible combinations of sets is given by
∑M

k=1

(
M
k

)
=

2M − 1. To attenuate the exponential explosion of this search, we consider

only components associated to frequencies below a threshold, since high fre-

quency coefficients tend to be sensitive to noise. That is, given a frequency

limit λ, we only consider φj that contain elements Fk where k < λ.

We choose λ in our experiments as 10% of the length of the contours.

Although it might appear that much information is lost with this choice,

when reconstructing the contours using only 10% of their Fourier coefficients,

the maximum Hausdorff distance between any contour in the dataset and its

reconstruction is 0.009 (less than 1%). The Hausdorff distance intuitively

gives the maximum error between an original and a reconstructed contour,

and is defined as

distH(A,B) = max
a∈A

min
b∈B

dist(a, b) (4)

where A and B are two contours, a and b are vertices on the contours, and

dist(a, b) is the Euclidean distance between two vertices.
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Moreover, we also restrict the maximum number of sets that can be com-

bined during the search, since we verified empirically that aggregating a large

number of sets does not improve classification accuracies over sparser com-

binations. To determine that, we conducted several tests where all possible

combinations were considered and observed that combinations of three or

four sets would have similar or superior accuracy to combinations with many

more sets. So, the term
∑M

k=1

(
M
k

)
becomes

∑L
k=1

(
M
k

)
, where L is the com-

bination limit. We evaluate the performance of our approach using L = 5.

Classification: We make use of a support vector machine (SVM) [24] for

classification. Given a set of input points and their corresponding class labels,

an SVM constructs a hyperplane that best separates the data points into the

different classes. The hyperplane can then be utilized to classify new data

points. One reason for choosing SVMs in our work is that this type of

classifier possesses the maximum margin property, which ensures maximum

separation between the classes and low generalization error (the expected

error of the classifier for previously unseen data). More specifically, we utilize

a soft-margin non-linear version of SVM, which requires a parameter C that

assigns a penalty to errors, and a parameter γ defining the width of a radial

basis function (RBF). The RBF is used as a kernel to obtain the non-linearity

of the SVM. Given the shape descriptors, a standard logarithmic grid search

procedure is used to determine the optimal values for the parameters C and γ.

We verify whether there is overfitting in the learned model by evaluating the

classification accuracy, which gives an indication of the generalization ability

of the model. The accuracy of the classification is evaluated according to a

leave-one-out scheme. In this scheme, for each shape in a pair of classes, we
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retain the shape for validation and train the pairwise classifier with all the

remaining shapes. Next, we verify the accuracy in classifying the retained

shape. Finally, we compute the average accuracy for all the validations.

Notice that this procedure is repeated twice. First, leave-one-out is used to

determine the best set of parameters C and γ for a pairwise classifier. Next,

the best parameters are fixed and leave-one-out is utilized again to evaluate

the accuracy that is reported for the pairwise classifier.

Multi-class scenario: After having obtained the best classifiers to distin-

guish between each pair of classes, we combine these pairwise classifiers using

a voting method to address the multi-class case. The class for each shape is

given by

δ = arg max
i

∑
j,j 6=i

pij, (5)

where pij is the posterior probability that the shape belongs to class i ac-

cording to the classifier trained to distinguish between classes i and j. In

this work, 1 ≤ i ≤ 5 and 1 ≤ j ≤ 5.

3. Results

We present here the results of applying the proposed method for pairwise

classification and then to the multi-class case. We are interested in confirming

that it is possible to learn a classifier to infer the pathology of a muscle from

its shape. Therefore, we compare the proposed method against previous work

by comparing the accuracy of the classifiers, in order to determine how well

each group of pathologies can be classified by the different methods. The

results are evaluated according to a number of different measures: accuracy,
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recall, precision, F-measure, G-mean [25], and the area under the receiver

operating characteristic (ROC) curve [26]. We choose this specific set of

measures because they possess different properties, e.g., the F-measure is

not invariant to asymmetry (if there is a bias towards a specific class, it will

be reflected in a low value). See [27] for details on these invariances. First,

we formulate these measures and then we present the results.

Let us denote TPij, FPij, TNij, and FNij as the true positives, false pos-

itives, true negatives, and false negatives that appear in the classification

when considering class i over class j, respectively. The accuracy of classifica-

tion is then given by Aij = (TPij +TNij)/N, where N is the number of shapes

in both classes. We define recall (Rij), precision (Pij), and the F-measure

(Fij) as

Rij =
TPij

TPij + FNij

, Pij =
TPij

TPij + FPij

, and Fij =
2RijPij

Rij + Pij

. (6)

When considering only two classes, we have that the recall Rij is also known

as the sensitivity for class i, while the recall Rji is the specificity for class

i. Moreover, the F-measure is a way of combining into a single number the

recall and precision values. Since we are performing pairwise classification, we

compute the average of the F-measure for the two classes involved, denoting

it as Fij = (Fij + Fji)/2. An assessment of the overall classification is given

by the G-mean, which is the geometric mean of recall values for all classes.

It is formally defined as

G =

(
K∏

i=1

K∏
j=1, j 6=i

Rij

)1/(K(K−1))

, (7)

where K is the number of classes.
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Finally, we also evaluate the results in terms of ROC curves, which show

the change in trade-off between the false positive (FP) and true positive (TP)

rates when varying the classifier parameters. The area under such a curve

(AUC) is a summary of the overall accuracy of the classifier, with larger

values implying higher accuracy. We denote the area under each curve in

our experiments as AUCij. The dashed diagonal line in the ROC graphs

corresponds to the line of no discrimination, i.e., to a classifier that uses

random guesses to assign a shape to a class and has an AUC of 0.5.

For our experiments, we vary the C and γ parameters of the SVM (accord-

ing to a logarithmic grid search from 2−8 to 28) and measure its performance.

Basically, for each pair of parameters, we train a classifier and compute its

FP and TP rates, which correspond to one operating point (x, y) = (FP,TP)

in the graph. Next, we select the set of optimal operating points to consti-

tute the ROC curve. An operating point (x, y) is optimal if there is no other

point (x′, y′) such that x′ < x and y′ ≥ y. That is, if two operating points

have the same TP rate, then we select the one with the lowest FP rate as

being optimal. The ROC curves created in this manner inform the expected

performance of the system [26].

We compare the results of three methods, described and labeled as follows.

• G: we consider the results obtained by previous work on the same

dataset [5], where three global measures were utilized as shape descrip-

tors: surface area, volume, and the ratio of the area to the volume. We

refer to these three measures as the global descriptors from now on.

• GOpt: an implementation of the same global descriptors, but when

the classifier parameters C and γ are optimized to obtain the best
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classification results.

• F: our method based on selection of Fourier descriptors.

Pairwise classification: Tables 2 to 6 present the values obtained for the

assessment of the results. Each cell in a table corresponds to a classifier

that distinguishes between the two indicated groups. A value of 100 denotes

perfect classification results. Figures 3 and 4 show the ROC curves obtained

for each pairwise classifier.

Multi-class scenario: To demonstrate the generalization of the proposed

method to the multi-class case, we combine the pairwise classifiers using the

voting method described in the previous section. In the case of the global

descriptors (GOpt), we obtain classification accuracies of 79%, 74%, 31%,

27%, and 45% for the groups N, T, TA, TR, and TAR, respectively, with an

overall accuracy of 51%. Moreover, for the proposed method (F), we obtain

classification accuracies of 100%, 95%, 85%, 80%, and 82% with respect to

the same groups, with an overall accuracy of 88%.

Robustness to misalignments: Although the utilized descriptors are in-

variant to scale (implying invariance to muscles of different sizes) and in-

variant to rotations and translations of the contours on the slice planes, the

accuracy of the method can be affected if there are errors in the consistent

alignment of the muscles. To present some evidence that the method is ro-

bust to reasonable amounts of misalignment, we simulate cases where the

muscles are not well aligned and apply the proposed method.

Basically, we create sets of misaligned muscles by taking each shape in

our dataset and rotating it around the x, y, and z axes by a random angle

19



Table 2: Accuracy (Aij) results for pairwise classification. Improvements in relation to G

are marked with red color. Please refer to Section 3 and Table 1 for the meaning of the

row and column labels.

G GOpt F

N T TA TR N T TA TR N T TA TR

T 70 79 100

TA 81 72 85 81 100 84

TR 79 44 82 90 65 82 97 82 89

TAR 76 73 50 73 88 73 67 73 100 87 92 81

Table 3: Recall (Rij) results for pairwise classification. Improvements in relation to GOpt

are marked with red color. Please refer to Section 3 and Table 1 for the meaning of the

row and column labels.

GOpt F

N T TA TR TAR N T TA TR TAR

N 64 93 93 93 100 100 100 100

T 89 95 68 79 100 95 89 89

TA 77 62 62 54 100 69 92 100

TR 87 60 100 100 93 73 87 87

TAR 82 64 82 36 100 82 82 73
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Table 4: Precision (Pij) results for pairwise classification. Improvements in relation to

GOpt are marked with red color. Please refer to Section 3 and Table 1 for the meaning of

the row and column labels.

GOpt F

N T TA TR TAR N T TA TR TAR

N 82 81 87 87 100 100 93 100

T 77 78 68 79 100 82 81 89

TA 91 89 100 78 100 90 86 87

TR 93 60 75 68 100 85 93 81

TAR 90 64 60 100 100 82 100 80

Table 5: Average F-measure (Fij) and G-mean results for pairwise classification. Improve-

ments in relation to GOpt are marked with red color. Please refer to Section 3 and Table 1

for the meaning of the row and column labels.

GOpt F

N T TA TR N T TA TR

T 77 100

TA 85 79 100 83

TR 90 64 81 97 82 89

TAR 88 71 66 67 100 86 91 80

G-mean = 75 G-mean = 90
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Table 6: Area under ROC curve (AUCij) results for pairwise classification. Improvements

in relation to GOpt are marked with red color. Please refer to Section 3 and Table 1 for

the meaning of the row and column labels.

GOpt F

N T TA TR N T TA TR

T 79 100

TA 93 78 100 81

TR 95 75 83 99 81 88

TAR 87 75 81 72 100 87 96 82

of αx, αy, and αz degrees, respectively. The x, y, and z axes correspond

to the coronal, transverse, and sagittal axes of the muscles, respectively. By

changing the maximum angle that αx, αy, and αz can assume, we obtain mis-

aligned datasets of increasing rotation and, therefore, of increasing difficulty.

Next, we evaluate the accuracy of the proposed method on these misaligned

datasets. However, to obtain a method that is robust to this form of noise,

we train the classifiers with two misaligned datasets (corresponding to ran-

dom rotations of 2 and 4 degrees), in addition to the original dataset. The

rationale behind this approach is that we need to present some misaligned

examples to the classifiers, so that they can learn which descriptors are more

robust in this context.

Figure 5 presents the average accuracy for all the pairwise classifiers ap-

plied to the misaligned datasets, as well as the minimum and maximum

accuracies among all the classifiers.
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(a) N × T (b) N × TA

(c) N × TR (d) N × TAR

(e) T × TA (f) T × TR

Figure 3: ROC curves for the pairwise classifiers. The red curve denotes the global

descriptors (GOpt), while the blue curve denotes the proposed method (F): (a) N × T, (b)

N × TA, (c) N × TR, (d) N × TAR, (e) T × TA, (f) T × TR.
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(a) T × TAR (b) TA × TR

(c) TA × TAR (d) TR × TAR

Figure 4: ROC curves for the pairwise classifiers. The red curve denotes the global

descriptors (GOpt), while the blue curve denotes the proposed method (F): (a) T × TAR,

(b) TA × TR, (c) TA × TAR, (d) TR × TAR.
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Figure 5: Evaluation of the robustness of the method to misalignments in the data: the

black solid line shows the average accuracy for all the pairwise classifiers, while the blue

dotted lines show the minimum and maximum accuracy among all the pairwise classifiers.

We can see that, although the accuracy generally decreases for large angles, the minimum

accuracy is still above 75% for misalignments created with rotations of up to 10 degrees.

Timing: The descriptor selection for each pairwise classifier takes approx-

imately 40 minutes when using a 1 GHz AMD Opteron processor with 8

Gbytes of memory, since we run a full cross-validation experiment with clas-

sifier optimization for every combination of subsets. This timing is for the

parameters mentioned before (N = 1, 000, S = 5, and L = 5). Thus, the

time required to obtain the best pairwise classifiers is approximately 7 hours.

Once the results of this learning stage are available, the time required to clas-

sify one new muscle is on average 3 seconds (not including the time required

for the initial steps of acquisition and segmentation).
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4. Discussion

Pairwise classification: When considering the accuracy in Table 2,

we see that although there is already some improvement from G to GOpt

by optimizing the classifier, we obtain the most significant improvement by

utilizing the proposed method (F). We notice that the accuracy for distin-

guishing shapes in the normal class from shapes in the pathology groups is

almost 100%, while the average accuracy for distinguishing between shapes

that belong to the different pathology groups is 86%. This discrepancy in

the classification accuracy could be attributed to the different forms of vari-

ation that the shapes possess. That is, the shapes of pathological muscles

have clear differences when compared to normal muscles (e.g., differences in

volume and area [5]). On the other hand, the difference between two muscles

with different pathologies is more subtle and reflected in higher frequency

detail, which also renders it more sensitive to noise and could account for the

lower classification accuracy in this case.

Moreover, by analyzing the other evaluation measures in Tables 3 to 6,

we notice a similar pattern of improvement. For the proposed method, we

can see that the pairwise classifiers are well balanced and do not possess a

significant bias towards any specific class, as seen in the precision, recall,

and F-measure matrices. The values of the areas under the ROC curves also

confirm these results.

Multi-class scenario: Moreover, we again see substantial improvement for

the proposed method, with an increase in the overall accuracy from 51%

(GOpt) to 88% (F).

Robustness to misalignments: When considering Figure 5, we see that
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the method has high accuracy for the three datasets that it was trained

with (0, 2, and 4 degrees). Furthermore, we can also see that the average

accuracy of the method still stays above 85% for the next three datasets (6 to

10 degrees), while the minimum accuracy is 75%. This experiment implies a

robustness to 6 degrees of error in the misalignment. Additionally, for large

misalignments, the maximum and average accuracies still stay above 85%

and 70%, respectively.

Selected descriptors: When analyzing the results of descriptor selection,

we observe a tendency for descriptors in the center of the set of frequencies

lying below our chosen λ to be selected to distinguish between the non-

normal pathology groups (related to frequency indices k ∈ [30, . . . , 60], for

contours withN = 1, 000 vertices). On the other hand, lower frequencies (k ∈

[1, . . . , 30]) are preferred to differentiate between shapes in the normal group

vs. shapes in the aggregation of all pathology groups. We speculate that this

could correspond to the fact that there is a clear change in shape between

normal and pathological shapes, but that the distinguishing factor between

the shapes of different pathology groups is present in higher frequency details.

5. Conclusion and future work

We presented a method to classify 3D shapes of the supraspinatus muscle

into several pathology groups, obtaining significant improvement when com-

pared to previous work. For distinguishing shapes in the normal class from

shapes in the pathology groups, we obtained an accuracy of almost 100%,

which compares favorably with radiologists’ accuracies of 89% to 98% in
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distinguishing these same rotator cuff pathologies on MR images [20]. More-

over, for distinguishing between shapes that belong to the different pathology

groups, we obtained an average accuracy of 86%. We have also demonstrated

the robustness of the proposed representation to reasonable amounts of mis-

alignment in the data. This evidence is motivational of future work examin-

ing the performance of our method on additional clinical data, with emphasis

on measuring the augmentation of radiologists’ diagnostic performance when

provided with advice from our classifier. The results presented in this work

suggest that such a future study would reveal the potential of our method as

part of a clinically useful CAD system for the rotator cuff.

Our method is based on computing Fourier descriptors of a set of par-

allel 2D contours that capture the shape of a muscle. Although we applied

the approach to the specific case of the supraspinatus, we would like to

extend our method to serve as a general tool for CAD. This method can

be potentially applied for the analysis of shapes that can be consistently

aligned and decomposed into parallel contours, and where we do not know

beforehand which are the distinguishing geometric variations in the shapes.

Since the routine clinical workflow of MR image acquisition for the diagnosis

of many musculoskeletal disorders includes the positioning of the patients’

limbs to normalize for pose and gravity, our representation is not restricted

to controlled research studies, but rather has potential in the analysis of the

relationship between shape and pathology for other muscles.

Moreover, in relation to the set of techniques that constitute our method,

the investigation of methods for automatic segmentation of the supraspinatus

muscle is a topic of further research, allowing for a comparison between super-
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vised and unsupervised approaches. Moreover, transforms that decompose

2D contours which have different properties when compared to the Fourier

transform can be investigated (e.g., the wavelet transform). To address the

exhaustive combination of sets for descriptor selection, we plan to make use

of methods for feature selection [23] or spectral band selection [28] that exist

in the literature. Finally, we obtained improved results for the multi-class

case by making use of a voting method, but even better results may be

obtained with more elaborate coupling methods, e.g., by solving an opti-

mization problem that takes into consideration the difference between the

pairwise probability estimates [22].
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