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Mean Curvature Skeletons
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Figure 1: Given a watertight surface (a), the well-known medial axis transform (b) often produces too complex of a structure
to be of practical use. Our skeletonization algorithm can produce intermediate meso-skeletons (c), which contain medial sheets
where needed and curves where appropriate, while converging to a medially centered curve skeleton output (d).

Abstract
Inspired by recent developments in contraction-based curve skeleton extraction, we formulate the skeletonization
problem via mean curvature flow (MCF). While the classical application of MCF is surface fairing, we take ad-
vantage of its area-minimizing characteristic to drive the curvature flow towards the extreme so as to collapse
the input mesh geometry and obtain a skeletal structure. By analyzing the differential characteristics of the flow,
we reveal that MCF locally increases shape anisotropy. This justifies the use of curvature motion for skeleton
computation, and leads to the generation of what we call “mean curvature skeletons”. To obtain a stable and effi-
cient discretization, we regularize the surface mesh by performing local remeshing via edge splits and collapses.
Simplifying mesh connectivity throughout the motion leads to more efficient computation and avoids numerical
instability arising from degeneracies in the triangulation. In addition, the detection of collapsed geometry is facil-
itated by working with simplified mesh connectivity and monitoring potential non-manifold edge collapses. With
topology simplified throughout the flow, minimal post-processing is required to convert the collapsed geometry to
a curve. Formulating skeletonization via MCF allows us to incorporate external energy terms easily, resulting in a
constrained flow. We define one such energy term using the Voronoi medial skeleton and obtain a medially centred
curve skeleton. We call the intermediate results of our skeletonization motion meso-skeletons; these consist of a
mixture of curves and surface sheets as appropriate to the local 3D geometry they capture.

1. Introduction

Skeletonization is a powerful and well-adopted means of
shape abstraction. A variety of applications including shape
segmentation, matching, retrieval, and reconstruction have
utilized skeletal representations of 3D shapes. The best
known skeletal structure is the Blum medial axis [Blu67] and
its variants have played a central role in fields such as med-
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ical shape analysis [SP09]. One characteristic of the medial
axis is that it is formed at the singularities of the Euclidean
distance transform. Correspondingly, one can obtain the me-
dial axis of a 3D shape by an inward surface evolution which
tracks the distance transform, resulting in a complex compo-
sition of surface sheets in the general case.

Due to the topological complexity and sensitivity to sur-
face perturbations of the medial axes, however, a more pop-
ular choice for skeletal representations in computer graph-
ics has been curve skeletons [HSKK01, DS06, ATC∗08,
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Figure 2: An overview of our skeletonization algorithm. The input mesh (a) is first remeshed (b) to obtain better-quality Voronoi
poles, from which a medial skeleton is computed (c) to constrain our construction of a medially centered skeleton. The algorithm
performs iterative mesh contraction to generate a series of meso-skeletons in intermediate steps (d). Note that mesh connec-
tivity is simplified throughout the contraction process. The last iteration produces a thin skeletal structure (e) which is finally
converted into a curve skeleton (f) via edge collapse. The inserts in (e) and (f) show close-ups at the center of the palm.

TZCO09, LGS12]. A natural and interesting question to ask
then is whether a curve skeleton of a 3D shape can also
be obtained through a surface evolution. A good candidate
seems to be the mean curvature flow (MCF) [DMSB99], ow-
ing to its area minimizing characteristic [ATC∗08, CK11].

In this paper, we closely examine MCF as a means for
curve skeleton extraction from a 3D shape. Noting that area
minimization alone does not explain the tendency of MCF
to produce 1D structures, we analyze the differential geom-
etry of the flow and show that MCF favors contractions of a
surface along the direction of the largest curvature. In other
words, MCF induces a surface motion that accentuates local
shape anisotropy. This motivates the use of MCF for com-
puting curve skeletons since a curve skeleton represents the
anisotropy of a shape. One practical implication in the dis-
crete setting is that MCF generates high aspect ratio triangles
along the low principal curvature directions.

We formulate the skeletonization problem using MCF and
call the resulting skeletal structures mean curvature skele-
tons. Given an input triangle mesh, we drive the flow towards
the extreme so as to collapse the geometry and obtain a
skeletal structure; see Fig. 2. Our algorithm is entirely mesh-
based and we adopt the discrete form of MCF for triangle
meshes [DMSB99, BKP∗10]. To ensure faster convergence,
we rely on an implicit scheme which allows large time steps.
This scheme is realized by a constrained Laplacian smooth-
ing process, but with two important modifications to achieve
stable and efficient processing of the collapsed geometry.

1. First, since the tendency of MCF to create skinny tri-
angles leads to numerical issues for the implicit solver,
we perform local remeshing via edge splits and edge
collapses concurrently with the geometry flow. This not
only produces a more regular tessellation of the col-
lapsed shape and eliminates an otherwise-required post-
processing step, but also leads to more efficient computa-
tion, as mesh connectivity is simplified with the flow.

2. Second, we take advantage of the connectivity updates
to control the discrete flow. The flow stops as soon as

further local contraction would lead to a non-manifold
edge collapse, corresponding to a pinch in the surface.

Our work is not the first to connect MCF to curve skele-
ton extraction. The most representative method of this kind,
which inspired our investigation, is the mesh contraction
scheme of Au et al. [ATC∗08]. Their work also relies on an
implicit scheme to execute a constrained Laplacian smooth-
ing. To prevent the contraction from shrinking the input
mesh into a point, the contraction force is counterbalanced
by attraction forces directed towards the vertices from pre-
vious time steps. A balance between the two forces is con-
trolled heuristically by tuning several parameters. Through-
out the contraction, both the topology of the shape and con-
nectivity of the mesh are preserved. However, there is no
control to center the thinned structure. Both curve skeleton
extraction and centering are performed as post-processes.

Our analysis of the MCF reveals a more intricate connec-
tion to skeletonization. The insight gained leads to a better
understanding of the tuned parameters, fewer of which are
required, and they are associated with precise mathemati-
cal interpretations and therefore more predictable behaviour.
Like that of Au et al. [ATC∗08], our flow is also topology-
preserving. However, the mesh connectivity is simplified
throughout the flow, leading to simplified control of the
contraction and skeleton formation. In contrast to Au et
al. [ATC∗08], we do not require boosting contraction forces
at each iteration to combat stiffness in the Laplacian system.
As well, we pin already-contracted vertices, to prevent the
boosted contraction from pulling vertices past the point of
full contraction, without requiring an heuristic to do so.

A key advantage of our simplified flow control is that we
can easily incorporate new energy terms. We define such a
term using the Voronoi medial skeleton and obtain a medi-
ally centered skeleton as a result of the geometry flow itself
rather than a separate post-process [ATC∗08]. Intermediate
results of our skeletonization process are what we call meso-
skeletons, which consist of a mixture of curves and surface
sheets as appropriate to the local 3D geometry they capture;
see Fig. 1. Indeed, insisting only on curve skeletons might
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Figure 3: Meso-skeletons produced by our algorithm on a
cup model. The container part obviously does not admit a
natural curve skeleton. We can produce a range of results
from medial axis-dominant (b) to curve-dominant (c). Note
that in all these results, the skeleton stays interior to the
model. In contrast, the result from Au et al. [ATC∗08] (a)
is outside the shape and does not abstract the cup well. We
obtain a result similar to Dey et al. [DS06] (d) , but with
greater smoothness and reduced computational effort.

not always provide us with the most appropriate shape ab-
straction. For example, a meso-skeleton is a more appropri-
ate representation of a coffee mug; see Fig. 3.

The main contributions of our work are:

• A differential geometric analysis of the MCF to reveal its
intricate connection to curve skeleton extraction, further
motivating the use of MCF for the task and making the
formulation cleaner and more mathematically justified.
• An efficient and robust 3D skeletonization algorithm that

is topology-preserving and produces medially centered
curve skeletons in a unified control framework.
• A simplified MCF flow control via local dynamic remesh-

ing for efficiency and numerical stability.
• The ability to generate meso-skeletons to more faithfully

abstract shapes of more general varieties.

The implementation of our skeletonization algorithm is al-
ready made available to researchers and practitioners. Fully
documented code can be found at the following site: http:
//code.google.com/p/starlab-mcfskel.

2. Background and related works

Skeletons are effective shape abstractions which augment
the information conveyed by traditional three dimensional

representations. They are commonly employed across a wide
range of domains and in a number of applications includ-
ing reconstruction [ABK98], segmentation [ATC∗08], shape
matching [HSKK01], and virtual navigation [WDK01]. It is
important to note that for three dimensional shapes the term
“skeleton” is ambiguous as it is used to refer to both me-
dial axis skeletons [SP09], which are composed of 2D struc-
tures (surfaces), and curve skeletons [CMS07], which are
composed of 1D structures (curves). While any object can
be exactly represented by a medial axis skeleton, the same
is not true for curve skeletons. Only a shape which has has
a generalized cylindrical cross-section can be correctly ap-
proximated. The advantages of both approaches can be com-
bined by considering what we call “meso-skeletons”. Meso-
skeletons use a compact curve skeleton in area of the shape
which are approximately cylindrical, with the ability to rep-
resent local volume with medial axes where needed. An al-
gorithm for the generation of meso-skeletons on digital vol-
umetric objects was introduced in [LCLJ10]. The approxi-
mation quality provided by a skeletal representation is fun-
damental whenever they are used for studying the local vol-
umetric structure of a shape like in segmentation [SSCO08]
or statistical volumetric analysis [PFJ∗03].

Medial axis skeletons. Medial axis skeletons, based on the
medial axis transform or MAT [Blu67], provide a true dual
shape representation. For a 3D solid, the medial axis skele-
ton is defined as the locus of the centres of all maximally-
inscribed spheres, and is composed of two-dimensional
components referred to as medial surfaces or sheets. The
MAT is inherently sensitive to perturbations in the object’s
boundary (see Fig. 1 for an example) and additional lo-
cal [DZ03] or global [MGP10] post-processing is needed to
handle boundary noise. Medial surfaces, together with the
medial radius function, provide a powerful volumetric repre-
sentation of the shape. This volumetric interpretation is fun-
damental in tasks like shape statistical analysis [PFJ∗03], the
reconstruction of incomplete shapes [TOZ∗11] and the defi-
nition of volumetric diffusion distances [BS12].

The key advantage of medial axis skeletons is that they are
indeed medial: Their surfaces are found inside the object,
in the middle of the shape. Other skeletal structures which
aim to provide a similarly meaningful volumetric represen-
tation must satisfy this medial requirement. The computation
of medial axis skeletons has received much attention in the
literature and we refer the reader to [SP09] for an extensive
coverage. When the input data is in the form of surfaces em-
bedded in R3, a common approach for medial axis skeleton
extraction lies in the computation of the Voronoi diagram of
a sampling of the surface. Given a sufficiently good sam-
pling, the Voronoi poles [ACK00] form a provably conver-
gent sampling of the medial axis.

Curve skeletons. Curve skeletons provide an alternative,
more compact representation of a shape, as they are formed
by curves embedded in the 3D space. Having a smaller di-
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mensionality than medial axis skeletons, the curve skeleton
nevertheless captures the essential topology of the shape.
The cost of this simpler representation is the loss of invert-
ibility: Given only a curve skeleton and a radius function
defined thereon, only an approximate shape approximation
can be generated. Here again a meso-skeleton can provide
necessary precision by including medial surfaces where the
aspect ratio of the shape’s cross-section is too large.

While a formal definition of curve skeletons has been pro-
posed by Dey et al. [DS06], in practice, curve skeletons are
better defined in a domain-specific fashion. Given a set of re-
quired properties like robustness, smoothness, and centered-
ness (see [CMS07] for a complete list) the chosen skele-
tonization algorithm is that which is most efficient while sat-
isfying these requirements. Thus, because of its high compu-
tational cost and lack of smoothness, the algorithm of Dey et
al. [DS06] is impractical in most applications.

It is possible to classify other skeletonization methods be-
yond a simple consideration of whether they work on a vol-
umetric grid or on a discretized surface. Reeb-graph based
solutions [BFS00] focus on capturing the shape topology.
Methods based on the medial axis [LKC94, DS06] attempt
to prune its surfaces down to a graph of curves. Other solu-
tions attempt to generalize the concept of medialness to that
of centeredness: These methods generate a potential field in-
side the shape’s volume whose critical points can be traced
to define a skeleton [HF08]. Other methods focus on more
extrinsic properties like rotational symmetry [TZCO09] or
shape convexity [LKA06]. There are also skeletonization al-
gorithms which consider space-time data [SY07,ZST∗10] or
template fitting [BP07, LLW12].

However, from a geometric point of view, the most suc-
cessful methods for building curve skeletons are based on
contracting the shape to a degenerate surface (i.e. curves or
points in space) [ATC∗08, CTO∗10, CK11] by applying a
controlled mean curvature flow process. Our work is closely
related to that of [ATC∗08], in which the surface is con-
tracted by a Laplacian force while collapsed features are an-
chored to avoid convergence to a degenerate solution. We ex-
tend the work of [ATC∗08] by performing a thorough anal-
ysis of the contraction process in which we interpret it in the
differential setting as a mean curvature motion. This justifies
the use of this motion for accentuating shape anisotropy and
producing a high-quality skeletonization.

Given this improved understanding, we are also able to
understand the issues [ATC∗08] has when attempting to gen-
erate a truly well-centred (or even medial) curve skeleton. By
comparison, we provide a simpler control structure, which
allows us to merge the contraction and local remeshing pro-
cesses into a unique framework that produces higher qual-
ity skeletons. In addition, this simplified control system lets
us augment the optimization with energies that attempt to
perform medial embedding directly within the evolution and
permits the generation of meso-skeletons as a by-product.

Mean curvature flow. Given a surface S, mean curvature
flow or MCF is a motion that iteratively moves each surface
point along its anti-normal with a speed proportional to the
local average curvature:

Ṡ =−Hn H = (k1+ k2)/2 (1)

If we measure surface fairness in terms of its membrane
energy, which measures the area of the surface S, by ap-
plying variational calculus we see that a fair surface is as-
sociated with a vanishing Laplacian [BKP∗10]. Given that
Hn = ∆p, the flow described by Eq. (1) can be interpreted as
a progressive fairing operation [DMSB99]. We draw a con-
nection between this flow and the skeletonization problem
by interpreting curve skeletons as zero-area, zero-volume
degenerate manifolds with infinitesimal cross-section. As a
solid object has non-zero area, any flow that performs skele-
tonization must progressively reduce surface area.

It is important to note that drastically different results
can be obtained depending on the discretization of S. By
discretizing the problem in a level-set framework [OF02],
the flow could result in changes of shape topology. Instead,
here we consider a version of curvature flow which does not
change shape topology even if the surface becomes arbi-
trarily thin; rather, we detect and avoid potential topology
changes as part of our algorithm.

3. Overview

The input to our skeletonization algorithm is a watertight
manifold triangle mesh. Once the algorithm reaches full con-
vergence, it produces a medially centered curve skeleton.
After a preprocessing step, the algorithm iteratively invokes
an implicit constrained Laplacian solver and optimizes the
triangulation by local remeshing, until the volume of the
shape vanishes. The algorithm can be halted before full con-
vergence to produce a meso-skeleton, composed of curves
in regions with circular cross-section and sheets elsewhere.
Pseudocode is provided in Fig. 4.

Preprocessing. We use QHull to compute the voronoi di-
agram of the mesh vertices and process its output to com-
pute medial poles. As discussed in Section 2, these poles
are known to lie on the medial axis when the surface is
sufficiently well-sampled. We resample the shape according
to [BK04] to obtain a uniform sampling that produces higher
quality Voronoi poles.

Iterative mesh contraction via MCF. As discussed
in Sec. 2, the area-reducing properties of the MCF make it
a good candidate for the core of a skeletonization algorithm,
but several modifications are required to obtain a mean cur-
vature motion that performs effective skeletonization. We
justify the use of MCF in Sec. 4.1, describe the basis for
our implicit solver in Sec. 4.2, and follow with details of the
implementation in Sec. 4.5.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



Andrea Tagliasacchi & Ibraheem Alhashim & Matt Olson & Hao Zhang / Mean Curvature Skeletons

function COMPUTE_SKELETON(shape Sin)
S← Resample(Sin)
vor← Voronoi_poles(S)
while has_volume(S′) do

update_laplacian_and_weights(S,vor)
perform_mesh_contraction(S,vor)
update_connectivity(S)

end while
collapse_shortest_edges(S)
return S

end function

Figure 4: Pseudocode for our algorithm.

Updating Laplacian and weights. As the input surface is
contracted towards the resulting meso-skeleton, the local
curvature of the surface changes, and thus the Laplacian op-
erator must be updated. Control of the velocity of the mo-
tion is obtained using a regularization scheme introduced
in Sec. 4.2 and refined in Sec. 4.4 and Sec. 4.5.

Local dynamic remeshing. Since our constrained Lapla-
cian solver increases local anisotropy by contracting edges
aligned with directions of high curvature, it tends to produce
triangles with high aspect ratio and hinders solver perfor-
mance. In Sec. 4.3, we present a method which splits badly-
shaped triangles and collapses short edges to mitigate this
problem. Performing these steps at each iteration speeds up
the solver and avoids a post-processing step.

Mean curvature skeleton formation. When the iteration is
completed, we perform a simple edge collapse operation to
reduce the degenerate manifold surface to a set of curves.
We repeatedly collapse the shortest edge on a vertex that has
two neighbouring faces. Edges in medial sheet portions of
the meso-skeleton are not collapsed.

4. Mean curvature skeletons via MCF

We now present our algorithm for constructing mean cur-
vature skeletons. In Section 4.1, we argue that MCF is par-
ticularly suitable for skeletonization, first by relating skele-
tonization to curve parameterization, then by studying the
changes in local surface geometry throughout MCF motion.
In Section 4.2, we discuss flow discretization and the prac-
tical implications of such a model. Section 4.4 shows how
we control the discrete flow to obtain a curve skeleton as the
steady state of the motion. In Section 4.5, we compute me-
dially embedded skeletons via a slight variation of the MCF
motion; we also discuss how the intermediate states of our
evolution provide a suitable meso-skeletal structure.

Given a solid object O with manifold watertight bound-
ary surface S = ∂O, we consider its triangle mesh approx-
imation G = (V,E) where V = [v1;v2; ...;vn] are the ver-
tices and E are the edges. There exist several possible dis-
cretizations of the Laplace-Beltrami operator [WMKG08];
Due to the positive-definitedness requirements imposed by

the Cholesky solver, we adopt the cotangent Laplacian dis-
cretization from [DMSB99] and we will refer to its matrix
representation as L.

4.1. Mean curvature flow for skeletonization

As discussed in Sec. 2, the area-reducing properties of the
MCF only make it a good candidate for skeletonization. We
now provide further insight by interpreting skeletonization
as a curve parametrization, then studying the anisotropic ef-
fects such a motion causes via a differential analysis.

Curve parameterization. Recall that by exploiting the
fact that Hn = ∆p, we can relate MCF to Tutte’s embed-
ding [Tut60]. In Tutte’s parameterization, we can fix a set
of vertex positions to a convex polygon {pi = p0

i }i∈1..n
and then look at the steady steady state of Eq. (1) ∆p =
0. This observation allows us to interpret the problem of
skeletonization as one of curve parameterization. A sim-
ple skeleton could be produced by marking two extremities
on a shape and solving Tutte’s embedding using the marked
points as boundary constraints.

However, this curve parameterization is fundamentally
different from computing the flow described by Eq. (1): In
the former, we only need to compute the Laplacian matrix
L once to obtain our final solution; in the latter, the mean
curvature of the surface changes over time and the matrix
must be updated. In addition, skeletonization algorithms are
often expected to compute extremities rather than take them
as input. This is problematic as Eq. (1), in the limit, will
contract the surface to a point rather than a linear skeleton.
We address these issues by first analyzing the differential
properties of the curvature motion and by then constructing
a suitable control scheme in Section 4.2.

Anisotropic flow. Consider a curve α(s) lying on the in-
put surface St=0 and parametrized by arc length s. As mean
curvature motion takes place, we obtain a family of curves
αt : I → St . We take p = αt(0) ∈ S0 with v = d

ds α0(s)
as the unit tangent vector. Now consider the evolution of
vt =

∂

∂t αt(0) with respect to time t:

∂

∂t vt |t=0 =
∂

∂t
∂

∂s αt(s)|(0,0) =
∂

∂s
∂

∂t αt(s)|(0,0)
=− ∂

∂s H (α0(s))n(α0(s))|s=0

=−D̄v (H(p)~n(p))

=−dH(v)pn(p)−H(p)D̄vnp

(2)

where D̄v is the covariant derivative in R3. We can now
use Eq. (2) to examine the change of a tangent vector with
respect to t by evaluating 〈v̇,v〉. As v is a tangent vector, the
first component of the last line of Eq. (2) vanishes:

〈v̇,v〉=−H(p)〈D̄vnp,v〉=−H(p)Πp(v) (3)

where Πp(v) is the second fundamental form.
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Equation (3) helps us understand the anisotropic distor-
tion caused by Eq. (1) around a point p ∈ S. If we consider
an infinitesimal geodesic disk around the point p, this disk
will be distorted in the direction of v according to the orien-
tation of v with respect to the principal curvature directions.
Consequently Eq. (3) demonstrates the utility of MCF as a
tool for skeletonization, as it favours a contraction of the sur-
face in the direction of largest curvature. That is, it creates a
motion which accentuates local shape anisotropy.

4.2. Discrete mean curvature flow

A simple discretization of the MCF in Eq. (1) can be ob-
tained by noting that Hn = ∆p and by applying a forward
Euler integration: vt+1

i = vt
i + h∆vt

i . Explicit discretizations
of this type are typically used for surface smoothing where
the limitations on small time-steps imposed by its elliptic
structure are not a problem [DMSB99]. However, in skele-
tonization, we are not interested in a fine discretization of the
the flow movement. We prefer implicit schemes that allow us
to discretize Eq. (1) with much larger time steps.

We obtain an implicit scheme for MCF by using the dis-
cretized Laplacian operator L. Directly solving the Laplacian
equation LV = 0 is problematic, as L is singular and the sys-
tem admits a trivial solution V = 0. To address this problem,
we solve the regularized version:[

L

WH

]
V t+1 =

[
0

WHV t

]
(4)

Where by WH is a diagonal matrix such that WH,i = wH .
The solution of this linear system minimizes the following
quadratic energy:

E =
∥∥∥LV t+1

∥∥∥2
+w2

H ∑
i

∥∥∥vt+1
i − vi

∥∥∥2
(5)

Examining the right hand side of Eq. (4) shows that this reg-
ularizer works to bound the velocity of vertices undergoing
curvature motion. Slowing down the motion is essential, not
only from a numerical point of view, but also from a geo-
metrical one. As the surface evolves, the local curvature of
the surface changes, and thus the Laplacian operator must
be updated to construct an approximation of Eq. (1). This is
demonstrated in Fig. 5.

4.3. Local dynamic remeshing

Due to the anisotropic behaviour discussed in Section 2,
particular care must be taken when solving an optimiza-
tion problem like Eq. (5). For example, consider an highly
anisotropic shape, where where k1 >> k2 = 0 (e.g. an in-
finitely extended cylinder of small radius, where k1 = const).
The anisotropy boosting effects of the mean curvature flow
described by Eq. (3) will cause edges aligned with the prin-
cipal curvature direction ~k1 to vanish rapidly, while edges

aligned with~k2 retain their length. This results in the forma-
tion of very high aspect ratio triangles which hinder the per-
formance of the finite element solver by stiffening the sys-
tem. In [ATC∗08,CK11] this problem was overcome by em-
ploying a multi-grid solver. In this paper we perform a sim-
ple local remeshing at each iteration which collapses edges
deemed too short, provided that the collapse retains the man-
ifoldness of the shape, and splits badly shaped triangles. In
particular we split an edge e whenever one of its incident tri-
angles has an angle greater than θ0 = 110◦ at the opposite
vertex. We heuristically position the new vertex by perpen-
dicularly projecting the third vertex of the split face onto e.

Since the mean curvature flow reduces edge length in pro-
portion to the edge’s curvature, this process allows us to re-
duce the vertex count of the skeleton, which is already sig-
nificantly smaller than the mesh, as the iteration progresses
rather than maintain a dense skeleton which is later simpli-
fied in a post-processing step. In addition, it permits us to
maintain a correspondence between points on the skeleton
and associated vertices on the mesh, rather than recomputing
such a correspondence as a post-processing step. This facil-
itates the use of the skeleton for mesh-editing operations.

4.4. Discrete skeletonization flow

As we maintain the manifold properties of the surface dur-
ing evolution, it is important to note that solving Eq. (5)
as presented would result in a straightening of already col-
lapsed branches of the shape, pulling them away from the
medial axis. Furthermore, the tips of skeletal branches ex-
hibit a very large curvature and consequently they would be
very strongly contracted back into the shape. We would like
to stop the movement of a point on a branch of the skeleton
as soon as the creation of such a branch is detected. As we
identify a branch as an infinitesimal cross-section manifold,
the problem reduces to measuring whether the local shape
cross-section is below a certain threshold (i.e. close to zero).

In the continuous setting, determining whether a surface
has a locally vanishing cross-section can be achieved by
looking at an infinitesimal geodesic disk centred at a point
p. If the local surface has disk topology then the local geom-
etry is non-degenerate. Our dynamic topology regularization
allows us to adapt this process directly to the discrete setting.
We can test for degeneracy by monitoring the Euler charac-
teristic of an infinitesimal (w.r.t. the edge collapse threshold)
neighborhood of a vertex. Whenever this neighborhood does
not exhibit disk topology we set the corresponding diago-
nal element in WH to a sufficiently large number, effectively
fixing its position in space throughout evolution.

4.5. Medial skeletonization flow

One of the fundamental flaws of geometric contraction for
skeletonization [ATC∗08] is that it does not guarantees cen-
teredness of the skeleton. To compute a well-centered curve
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Figure 5: The effect of changing the ratio WL/WH and its effect on the embedding. We apply our method, setting WH = 20 and
WL = {1.5,3.0,6.0,12.0,24.0}. This results in the skeletonization flow converging in (resp.) {26,12,6,3,2} iterations. Note
that while increasing WL results in faster convergence, it has a severe effect on the quality of the embedding.

skeleton (i.e. one that lies on the medial axis) we modify the
energy of Eq. (5) as follows:

E = Esmooth +Evelocity +Emedial

where the individual energies are define as:

Esmooth =
∥∥∥WLLV t+1

∥∥∥2

Evelocity = ∑
i

wH

∥∥∥(vt+1
i − vi

)∥∥∥2

Emedial = ∑
i

wM

∥∥∥(vt+1
i −µ(vi)

)∥∥∥2

(6)

The energy term Emedial pulls the evolving surface to-
ward the medial axis. This is done by defining µ(vi) as a
map which corresponds a vertex vi to a chosen medial axis
Voronoi pole. At t = 0 we simply correspond each surface
vertex to its associated medial pole. As the motion pro-
gresses we apply a simple update: whenever an edge is col-
lapsed, we retain the Voronoi pole which is closest to the
resulting vertex.

Note that when the motion associated with Eq. (6) has
converged, our skeleton lies along the medial axis in an ap-
proximating (as opposed to interpolating) sense. The energy
Et=∞

velocity will have vanished, while Esmooth and Emedial will
balance each other, keeping the skeletal curves smooth yet
medially embedded. This variational interpretation of medi-
ally embedded skeleton produces noticeably smoother skele-
tal curves than those typical of other medial axis-based al-
gorithms. At the same time, it provides robustness against
possible under-sampling of the medial axis.

Performing a motion like the one associated with Eq. (6)
is not only interesting because of its steady state. It is clear
from the non-converged iterations in Fig. 2 that an infor-
mative decomposition of the shape is obtained before the
skeleton converges to a curve. This flow is able to gener-
ate a meso-skeleton, composed of curves in approximatively
cylindrical regions but retaining a surface representation in
regions associated with strong reflectional symmetry.

5. Results and discussions

In this section, we show mean curvature skeletons generated
by our algorithm and compare them to curve skeletons ob-

tained from two state-of-the-art approaches: the mesh-based
contraction scheme of Au et al. [ATC∗08] and the volumet-
ric, medial geodesic based approach of Dey et al. [DS06]. In
Figure 6, we show the performance of our skeletonization al-
gorithm on a set of heterogeneous shapes, and we showcase
the novel meso-skeletons in Figure 7.

Input, preprocessing, solvers. We applied our algorithm
to a range of meshes of varying resolution. In our exam-
ples the mesh sized ranged from 50k to 200k faces. As our
algorithm is based on a Voronoi approximation of the me-
dial axis, it was important to re-mesh the surfaces in such
a way that the sampling was adequate to resolve the lo-
cal feature size. Optimally, an ε-sampling would have been
preferable, but with no code publicly available we opted
for a simple uniform sampling which, if dense enough,
provides poles which approximate the medial axis just as
well. To achieve such a sampling we employed a tangen-
tial remeshing based on Laplacian smoothing and local con-
nectivity changes [BK04]. To solve the large sparse linear
systems with a structure similar to Eq. (4), we use a di-
rect solver based on Cholesky factorization (LLt ). It is noted
in [BKP∗10] that such a method not only outperforms other
types of solvers in general, but also that the observed runtime
of factorization grows linearly with the size of the mesh.

Parameters. Our algorithm requires a total of four param-
eters {wL,wH ,wM ,ε}; of these, however, only three require
tuning. First, the wL, wH , and wM parameters have a partition
of unity property over multiplication; thus, only two of them
need to be set. Also, ε controls the resolution of our skele-
ton, as throughout the process we collapse any edge ‖e‖< ε

provided that such a collapse is manifold.

The triplet of parameters {wL,wH ,wM} offers a clean
mathematical interpretation. The ratio wL/wH controls the
velocity of the movement and the approximation quality
with which we resolve the motion as illustrated in Figure 5.
The ratio wL/wM controls the smoothness of the medial ap-
proximation, and wM controls the degree to which the sur-
face is attracted to the medial axis. In our experience, this
parameter is closely influenced by the number of features,
particularly medial features, to be retained in our skeleton.
An example is provided in Figure 6, where varied wM ob-
tained different scales of features for the Elephant model.

c© 2012 The Author(s)
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Mesh Timings Distances
Name Size [DS06] [ATC∗08] This technique [ATC∗08] This technique
Cuboid 37k 10’ + 0.009" 16.61" + 1’77.71" 1.57" + 8.05" + 0.032" 0.02820 0.00449
Dragon 72k 30’ + 0.013" 31.83" + 5’01.93" 2.54" + 12.97" + 0.048" 0.01589 0.00769
Fertility 36k 9’ + 0.007" 13.77" + 1’11.96" 1.30" + 4.24" + 0.054" 0.01202 0.00447
Hand 35k 11’ + 0.008" 09.61" + 1’15.85" 1.44" + 2.78" + 0.152" 0.01027 0.00476
SGP 60k 25’ + 0.011" 11.13" + 3’28.89" 2.19" + 5.24" + 0.049" 0.03067 0.00381

Table 1: Quantitative comparison of our method to the state of the art for the models in Fig. 8. In columns 3–5 we show
recorded execution times; we split execution times as [DS06]: (tgeodesic + terosion); [ATC∗08]: (tcontraction + tsurgery); for our
technique we report (tvoronoi+ tcontraction+ tsurgery). In columns 6–7 we measure average asymmetric Euclidean distances to the
skeleton produced by [DS06], normalized by the length of the bounding box diagonal. To compute this distance, the skeletons
were re-sampled such that no edge is longer than 0.1% of the bounding box diagonal.

Figure 6: A gallery of models that have been skeletonized by our algorithm. On each model the algorithm took less than a
minute to produce a skeleton, which was produced with the parameters {wL = 1,wH = 20,wM = 40,ε = .002 ∗ bbox.diag()},
with the exception of the elephant model, where we illustrate how lowering the parameter wM = 20 results in a coarser skeleton.

Comparison to Au et al. Figure 8 shows that the neces-
sity for post-processing and re-centering in [ATC∗08] gen-
erally results in a severe under-sampling of the skeleton. Re-
centering exploits correspondences between nodes on the
skeleton and the surface and re-locates a node to the centre of
mass of its corresponding surface points. This re-centering
is often unable to position the curves on the medial axis (see
the distance measures reported in Table 1) or even inside
the shape (see the last row of Figure 8). Furthermore, in or-
der to make this re-centering effective, a large set of surface
points must be taken in order to form a uniform radial dis-
tribution; this causes the coarseness in the resulting struc-
ture. In addition, the topology surgery algorithm required
by [ATC∗08] is based on quadric edge collapses, and is far
more complex than the shortest edge collapse in our solu-
tion. This is notable in light of the lengthy running times
we recorded for the surgery step, illustrated in Table 1. As
the method of [ATC∗08] emphasizes efficiency over preci-

sion, it doubles the contraction weights at every iteration
W t+1

L = 2W t
L. Another important difference lies in the fact

that our contraction is highly tied to mean curvature flow,
while in [ATC∗08] the use of the ratio At

i/A0
i to control at-

traction constraints eliminates this connection. Taken as a
whole, these improvements allow our algorithm to produce
better results with more intuitive parametric control.

Comparison to Dey et al. The algorithm of [DS06] relies
on the computation of geodesic distances in between every
pair of points, consequently requiring O(n2 logn) computa-
tional time, resulting in long running times even for models
of moderate complexity as shown in Table 1. While we are
not aware of an equivalent result for three dimensions, it is
known that curvature flow in 2D is associated with a constant
decrease in area: Ȧ =−2π [Gra87]. We believe a similar ar-
gument applies to 3D curvature flow, which implies that the
complexity of our algorithm is a constant factor of the vol-
ume of the model, times the complexity of a single iteration
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Figure 7: Not all shapes are well abstracted by curves.
Meso-skeletons can characterize regions with circular cross-
sections as well as those exhibiting local reflectional symme-
try. Note how the meso-skeletons produced by our algorithm
(red) are not hindered by noisy medial axes (green).

of the solver – which, for the solver we employed, is lin-
ear. A minor disadvantage is that, by computing a skeleton
as a strict subset of the medial axis, the method of [DS06]
produces branches that are quite noisy (see for example Fig-
ure 6). However, one significant advantage of [DS06] is the
ability to change the resolution of the skeleton quickly once
the initial geodesic computation is complete; in comparison,
the presented method would need to construct a new skele-
ton for each tuple of input parameters.

6. Conclusion and future work

We present a mesh-based contraction algorithm for curve
skeleton extraction. Our work was inspired by the mesh con-
traction scheme of Au et al. [ATC∗08] but offers several
marked improvements, both in its formulation as well as the
results it achieves. Qualitatively speaking, our curve skeleton
results are more similar to those obtained by the algorithm
of Dey et al. [DS06]. In retrospect, this latter algorithm also
takes a flow approach: it involves two distance transforms,
one on the input 3D shape and one on the medial sheets.

While [DS06] was the first to define curve skeletons for-
mally, we believe that mean curvature flow is also an excel-
lent candidate for an alternate definition. In this paper, we
employed Voronoi poles to guide the surface toward the me-
dial axis. Nevertheless, as the MAT offers a direct interpre-
tation as the first order discontinuities of the Euclidean dis-
tance field, we believe that it is possible to provide a formal
definition of the medially-centred curve skeletons of Sec. 4.5
in the continuous setting.

In future work, we plan to investigate mean curvature
meso-skeletons further and produce a flow that generates
them as the steady state of a properly constructed differ-
ential equation. Performance-wise, we find highly detailed

Figure 8: Curve skeletons computed from mesh contrac-
tion [ATC∗08] (left column), medial geodesics [DS06] (mid-
dle), and our method (right). The last two rows show the side
and top views of an “SGP” model. The cross-sectional pro-
file of each letter along the curve skeleton is not circular,
but a concave shape resembling the letter ‘U’. Note how the
skeletons generated from [ATC∗08] are not only far from be-
ing medial, but also lie exterior to the shape (seen as being
centred in the top view of the SGP in contrast to the other
two methods). Note also the sparsity and coarseness of the
generated skeletal vertices, and that medial geodesic skele-
tons are often noisy. Our method produces smoother, interior
skeletons that lie close to the medial axes.

surfaces to cause issues for the evolution as the resulting
Voronoi pole structure is dense and noisy. Simply remov-
ing medial poles with small spoke angles does not work
well, as internal energies are known to be stiffer than ex-
ternal ones, resulting in an unnatural motion. We would like
to find a solution to this problem within the presented frame-
work. Finally, we would also like to consider integrating our
technique into the highly optimized curvature flow solver re-
cently presented by Chuang and Kazhdan [CK11].
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