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Abstract

Objects with many concavities are difficult to acquire using laser scanners. The highly concave areas are hard to
access by a scanner due to occlusions by other components of the object. The resulting point scan typically suffers
from large amounts of missing data. Methods that use surface-based priors rely on local surface estimates and
perform well only when filling small holes. When the holes become large, the reconstruction problem becomes
severely under-constrained, which necessitates the use of additional reconstruction priors. In this paper, we intro-
duce weak volumetric priors which assume that the volume of a shape varies smoothly and that each point cloud
sample is visible from outside the shape. Specifically, the union of view-rays given by the scanner implicitly carves
the exterior volume, while volumetric smoothness regularizes the internal volume. We incorporate these priors
into a surface evolution framework where a new energy term defined by volumetric smoothness is introduced to
handle large amount of missing data. We demonstrate the effectiveness of our method on objects exhibiting deep
concavities, and show its general applicability over a broader spectrum of geometric scenario.

1. Introduction
Surface reconstruction from incomplete point scans is a dif-
ficult and inherently ill-posed problem, requiring geomet-
ric priors to guide reconstruction away from available data.
Large amount of missing data are primarily caused by self-
occlusions, which frequently occur in objects possessing
deep concavities, such as the vase in Figure 1. In practice,
these kinds of objects are difficult to acquire digitally us-
ing common laser scanners: the concavities, especially deep
ones, are hard to reach even by a hand-held scanner.

Most priors adopted to handle missing data in surface recon-
struction depend essentially on local surface estimation near
available data. Positional and normal information at point
samples are taken into account to complete data gaps by
means of a smooth surface interpolant [CBC∗01, KBH06].
Such approaches are well-suited to fill small holes, but still
leave the reconstruction problem under-constrained when
large amount of data are missing. In such cases, topological
ambiguities often cannot be resolved by smoothly interpo-
lating local surface estimates. Furthermore, over-fitting on
sparse data can result in unnatural reconstruction. Surface-
based priors do not fully exploit available data beyond local

smoothness measures. In particular, they overlook volumet-
ric properties of the reconstructed shapes.

In this paper, we introduce weak volumetric priors to al-
low effective digital acquisition of objects exhibiting deep
concavities. Our algorithm is specifically designed to handle
the large amount of missing data caused by these concavi-
ties. Volume-aware surface reconstruction provides a more
global view and permits better use of available data. Our pri-
ors exploit knowledge about the data acquisition process and
a natural volumetric shape property that the local thickness
of the shape varies smoothly. They impose external and in-
ternal forces which together drive the reconstruction.

• First, points obtained via laser scanning must be visible
from the scanner head. By assuming that the scanner head
only moves outside the convex hull of the captured shape,
we infer that each ray from an acquired point to the scan-
ner head, which we call a view ray, must lie entirely out-
side the shape. We use these rays to complement available
point data, where the rays collectively and conservatively
constraint the exterior volume of the shape.

• Second, we consider the interior volume of the shape from
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Figure 1: Volume-aware surface evolution or VASE at work (middle right) when reconstructing a concavity-filled vase model
with large amounts of missing data (middle). Note the ability of our reconstruction scheme to carve deeply into the concavity
of the vase and to regularize its volume, in contrast to Poisson reconstruction (middle left). Two images on the side show
cross-sectional views of the respective reconstructions.

the perspective of its medial axis and make a natural as-
sumption that the magnitudes of the radii along the medial
axis vary smoothly. Internal forces exerted by such a vol-
umetric regularization can simultaneously influence re-
gions that are far apart along the surface. This key charac-
teristic of the volumetric smoothness prior allows a more
global utilization of available data, in contrast to the local
nature of surface-based priors. For example, a large gap
can be filled correctly by data available from the opposite
side of the medial axis.

We implement the two priors within a surface evolution
framework, which we call volume-aware surface evolu-
tion or VASE. Specifically, we present a level-set formula-
tion [OS88] where the reconstructed surface is the steady-
state solution of an interface motion problem. The algorithm
is initialized with a conservative bounding box of the input
point cloud. The subsequent evolution of the interface sur-
face moves it towards the sampled data with its motion con-
trolled by three combined forces (see Figure 2):

• Data fitting: This external force serves to bring the evolv-
ing surface close to the available point samples. View rays
from the samples intersect the current surface and each in-
tersection point is moved along the view-ray direction by
an amount proportional to the distance between the point
sample and the intersection point. We call this process
implicit carving as it resembles traditional space carv-
ing [CL96,Whi98,SSZCO10], but uses the implicit evolv-
ing surface that is controlled by the piercing view rays to
carve the exterior volume.

• Surface smoothness: This internal force diffuses the in-
terface surface by minimizing the bi-Laplacian energy.
We choose this method over the more frequently used
mean curvature flow due to the sparsity of available data.
Mean curvature flow performs area minimization and,
with sparse point constraints, tends to generate undesir-
able artifacts near the sample locations.

• Volumetric smoothness: This second internal force dif-
fuses, via a Laplacian formulation, the distribution of radii

over the medial axis of the evolving interface surface.
Throughout the surface evolution, we maintain and up-
date an approximation of the corresponding medial axis.
The medial axis does not explicitly reconstruct the sur-
face; it only serves to define the volumetric regularizer.

We demonstrate the effectiveness and general applicability
of VASE on synthetic and real point scans including those of
objects containing deep concavities. Comparisons are made
to Poisson reconstruction [KBH06], which exhibits gener-
ally superior handling of missing data over other methods.

2. Related work

Techniques for surface reconstruction from point clouds
can be divided into explicit and implicit approaches.
Explicit methods construct surfaces by triangulating the
point samples directly, often based on Delaunay triangula-
tions [ABK98, DG06, CG06, Dey11]. While able to guar-
antee correctness provided sampling conditions are met,
these methods are unable to deal with significant miss-
ing data. Implicit methods [HDD∗92,CBC∗01,KBH06,AC-
STD07,NOS09] first construct an implicit function from the
point data and then extract the surface by triangulating the
function’s zero level-set. They are able to handle missing
data using a smooth interpolant computed from local surface
estimates. Such surface smoothness priors are only suitable
to fill small holes in the data.

Visibility priors have been used to compensate for missing
data by using view ray directions to carve the exterior vol-
ume. Curless and Levoy [CL96] were the first to use such in-
formation in range scans where the view rays serve to elimi-
nate exterior voxels. Davis et al. [DMGL02] take an implicit
surface evolution approach and apply a surface diffusion ker-
nel to reduce artifacts in transition areas. Recent work by
Shalom et al. [SSZCO10] carves large parts of the outside
space using continuous cones. However, instead of anchor-
ing the cones by the view rays explicitly, they use maximal
cones empty of point samples and produce additional off-
surface points based on signed distances to these cones to
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(a) (b) (c) (d)
Figure 2: Overview of VASE for surface reconstruction. Across the three sub-figures the ground truth is shaded in yellow, the
scanned samples in black, the active surface in red and the medial axis is represented by a blue dotted curve. (a) An illustration
of the initialization of the evolving surface which contracts over the view data samples. (b) Reconstruction achieved by classical
methods where only point constraints and smoothness are enforced; samples deep within the concavity are misinterpreted as
noise and ignored. (c) The effect of our external view direction constraints. (d) VASE: The combined effect of view directions
and volume diffusion.

steer a radial basis function construction. Our algorithm in-
corporates view rays in a surface evolution framework to im-
plicitly carve the exterior volume. This scheme is similar to
the early approach of Whitaker [Whi98] which is also based
a level-set formulation but applied to range images.

Tagliasacchi et al. [TZCO09] adopt a non-local volumetric
prior which assumes that the reconstructed shape is locally
cylindrical everywhere. They rely on rotational symmetry
about extracted curve skeletons to compensate for significant
missing data. Our algorithm does not need the cylindrical
prior; instead, it uses the weaker assumption of volumetric
smoothness about the medial axis.

There is a rich literature on level-set based surface evolution
for surface reconstruction [OF02]. Ballooning techniques,
e.g., [CC93, SLS∗06], start the evolution from inside the re-
constructed shape while others, e.g., [EBV05], evolve an ac-
tive surface via shrinking from an initialization outside the
input data. The surface energy that drives the evolution ac-
counts for data fitting and surface regularization, where the
latter is typically realized by mean curvature flow [ZOF01]
and aims for area minimization. Surface smoothness mea-
sures such as Laplacian and bi-Laplacian energies have been
widely applied to mesh fairing [BO03]. Our work introduces
an additional energy term given by volumetric smoothness
over the medial axis to regularize the reconstruction when a
large amount of data is missing.

In the context of surface reconstruction from volumetric im-
ages, the usefulness of medial-based representations, which
follow the internal and volumetric geometry of the object,
has been demonstrated on data suffering from noise and
weak boundaries [SP08]. However, this line of work has not
been applied to surface reconstruction from points clouds
with significant missing data.

3. Overview and formulation

Here we motivate our approach with a mathematical formu-
lation and first description of VASE. While we can construct

our method in a purely implicit way, for efficiency reasons
our implementation alternates between a multiscale level-
set solver and a mesh-based smoothing step. We first give a
high-level description of our method, then provide more de-
tailed formulations of the constraints involved. We discuss
individual steps of the implementation in later sections.

Overview We define the reconstruction as the steady
state solution to an interface motion problem using the level-
set technique of [OS88]. Our input consists of a set of
scanned samples P = {pi, i = 1 · · ·N} with a unit-length
view vector at each sample; we do not require surface nor-
mals. We represent the evolving 2-manifold as the zero
crossing Sφ of an implicit function φ in 3D.

The algorithm is initialized by setting St=0
φ to be a scaled

bounding box of the input samples, where t indicates itera-
tion count. Sφ evolves according to a set of forces that mod-
ify its geometry and topology by minimizing the following
energy:

E = ω1Efit +ω2Esmooth +ω3Evol. (1)
Intuitively, we want our resulting surface to fit the data while
respecting the visibility prior from the input scan, minimiz-
ing Efit. In order to solve the highly under-conditioned prob-
lem created by large portions of missing data, we employ
both a surface smoothness prior Esmooth as well as a volu-
metric smoothness prior Evol. The relative strength of these
forces is balanced by a tuple ωi of weights.

The motion of the interface is determined by gradient de-
scent on Eq. (1) and is expressed by forces which act or-
thogonally to the active surface:

Ṡ+[ω1Ffit +ω2Fsmooth +ω3Fvol]n = 0. (2)
As the interface motion in (2) takes place along the normal
of the implicit surface Sφ and the function φ is kept as a
signed distance field (‖∇φ‖ = 1), we can rewrite the above
expression in a level-set fashion:

φ̇+ω1Ffit +ω2Fsmooth +ω3Fvol = 0. (3)

c© 2011 The Author(s)
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In practice, we do not express these constraints in terms of
a single scalar field. Instead, we represent the input P by a
pair of scalar functions: a density function ρP and a view-
distance function νP . These are computed once and, in the
first iteration, νP is used to apply Ffit to a signed distance
field φ

t=0 in a multiscale level-set solver using mean curva-
ture flow. This computes an implicit surface St

φ

To apply surface and volumetric constraints, we extract a
level set from φ

t as the mesh St
M, and compute Fsmooth by

bi-Laplacian smoothing. Once the volume of SM has sta-
bilized, we approximate its medial surface by computing its
Voronoi poles and compute a smoothed version of its radius
function R̃. From this we are able to compute a signed dis-
tance field incorporating Fvol. In both cases, we use ρP as a
weighting function to respect the original data.

We alternate between these two steps, passing the computed
fields Fsmooth and Fvol from the mesh step back into the level-
set solver and performing another iteration to find St+1

φ
, until

the surface evolution converges.

Data fitting We minimize the residual distance between
St and the view-ray measurement as shown later in Figure 3:

Efit =
N

∑
i=1
‖st

i− pi‖2. (4)

Following the same derivation provided in [Whi98], it can
be shown that this results in the following force field:

Ffit = δ(φ)
N

∑
i=1

ϖ(x‖i )x
‖
i f (x⊥i ) (5)

where δ(φ) is the Dirac function, f (x⊥i ) is a Gaussian func-
tion, with kernel width proportional to the sampling den-
sity obtained from the scanner, and which is non-zero in
spatial locations in proximity of view rays, and ϖ(x‖i ) con-
trols the depth of the region behind the sample in which the
view ray effects the surface. Where view rays intersect the
same voxel, we take a weighted average among the rays as
in [CL96], minimizing the least-squares error of the surface
approximating the contributing samples.

Surface diffusion To deal with noise and fill small
holes, many surface reconstruction algorithms employ sur-
face smoothness as a shape prior. Low-order priors with hard
constraints, like those that seek to minimize mean curva-
ture [ZOF01], perform well when dealing with noise and
small holes but introduce unpleasant tangential discontinu-
ities when gaps are large. Soft constraints can address this is-
sue but introduce approximation errors. Our solution consid-
ers a bi-Laplacian surface smoothness prior, which provides
tangential continuity across holes [Lie03]. The bi-Laplacian
energy functional is given by:

Esmooth =
∫
‖∆2
SS‖2. (6)

This functional is minimized by the following surface

smoothness force [Kob97]:

Fsmooth =−∆
2
SS =−∆Sκ, (7)

where κ is the mean curvature of the surface. In the level-set
domain, forces in the form of Eq. 7 give rise to interface mo-
tion known as surface diffusion. As shown in [CS99,Sme03],
the discretization of such motion can be quite challenging.
We discuss in the following sections how we overcome this
problem.

Volume diffusion When the input contains large gaps,
the reconstruction problem becomes under-conditioned.
Surface-based priors like those described above are some-
times insufficient to reconstruct a reasonable surface. To
better constrain the problem, we introduce a novel volu-
metric prior based on the Medial Axis Transform or MAT
M,R = MAT (S). The MAT [SP08] represents the surface
as a structure M composed of sheets which encode local
reflectional symmetry, and a radius function R defined on
those sheets. Essentially, R provides a volumetric represen-
tation of the surface; consequently, variations of R along
the medial surface indicate variations in the local volume of
the object. Following this intuition, volumetric smoothness
is measured by the following energy:

Evol =
∫
‖∆MR‖2. (8)

The volumetric force associated with this energy can be de-
rived similarly to Esmooth:

Fvol =−∆MR. (9)

Figure 2 illustrates the difference between a reconstruction
which only employs surface smoothness as a prior, as in
Figure 2(b), and one that also equalizes volume across the
shape, as in Figure 2(d). We further demonstrate the effec-
tiveness of this prior in Section 7 on a variety of data.

4. Density and view-distance field generation

We precalculate a pair of scalar fields from the original data
set to guide our reconstruction algorithm. These are used
both to obtain an initial approximation of the full surface
and to guide subsequent steps of the algorithm.

4.1. Density field

The density field ρP is computed from the input by con-
volution of a Gaussian kernel with the input, producing a
dense scalar field which we use to guide later reconstruc-
tion steps. In particular, ρP influences the bi-Laplacian and
volume-diffusion steps described in Sections 6.1 and 6.3 by
constraining surface movement where input data is present.

We build ρP in the same manner as [KBH06], weighting
each element in a volume enclosing P by the number of ad-
jacent samples using the method described in [Par62]. We

c© 2011 The Author(s)
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then convolve the resulting 3D grid with a Gaussian kernel
whose variance is proportional to the resolution of P to pro-
duce a smooth representation of sample density.

4.2. View-distance field

Figure 3: The value of
νP at a point x is found
in terms of the com-
ponents x‖i and x⊥i for
each view ray vi.

Each sample in our input has
an associated view ray in-
dicating the direction of the
scanner head. Here we com-
pute a scalar field νP in
which every voxel intersect-
ing a view ray contains the
distance to the sample on that
ray. This field pulls the im-
plicit surface Sφ towards the
samples in P against the in-
fluence of Fsmooth.

We build νP in a similar
manner to ρP , using a stan-
dard 3D-DDA algorithm to
encode the view-rays in a 3D
grid. Next we populate the
full grid by computing a discretized version of Eq. (5) at
each node:

Ffit(x) =
N

∑
i=1

ϖ(x‖i )x
‖
i f (x⊥i ), (10)

where ϖ is the windowing function used in [Whi98], which
prevents view-rays from over-penetrating the shape, and f is
a Gaussian as in Section 4.1. The function Ffit is trilinearly
interpolated after discretization. We compute νP over the
whole volume; thus, it is not restricted to Sφ as in Eq. (5).

5. Multiscale distance field construction

We apply the computed forces to the surface Sφ using a mul-
tiscale narrow-band level-set solver. We initialize the solver
with a trivial surface defined as a band around the bounding
box of the input point cloud. The sparse signed distance field
is then evolved by mean curvature flow, subject to the forces
defined by (10). This procedure contracts the active surface
onto the data while respecting the position and orientation
of the input samples, thus producing a first approximation of
the full surface.

As we are only interested in one particular level set – the
zero crossing of φ – the evolution can be performed effi-
ciently by using a sparse-field method [Whi98]. The method
applies motion only to a limited number of voxels of the
solver’s domain: those containing the zero crossing of the
function. Voxels in a small neighborhood near the zero cross-
ing, where |φ| < 2.5, are also updated to retain the property
that ‖∇φ‖ = 1. This permits us to compute curvature mea-
sures necessary for the evolution directly from φ.

In order to be able to evolve the surface onto the data ef-
ficiently, we perform the contraction operation in a multi-
scale fashion. Starting with a coarse representation of Sφ, we
evolve the implicit function until convergence and we then
refine it onto a denser grid by trilinear interpolation. Once Sφ

has converged at the desired resolution, we extract its zero
level-set using marching tetrahedrons [BO05] to produce a
triangle mesh SM.

We proceed by applying surface and volume diffusion to
SM as described in the next section, from which we de-
rive the forces Fsmooth and Fvol which will drive Sφ toward
our final desired result. Due to the non-linearity of Evol, we
need to perform this operation in an interleaved fashion: by
discretizing St

φ, computing a set of forces on St
M, and map-

ping them back into the domain of φ to compute St+1
φ

.

We choose an interleaved approach for several reasons. Most
importantly, computing bi-Laplacian flow directly on Sφ is
unusually difficult, and the mean curvature flow method de-
scribed above would not suffice as it does not allow us to
obtain tangential continuity. In terms of efficiency, the me-
dial axis can be more quickly computed on an explicit repre-
sentation as its complexity is O(n logn), where n is the total
number of voxels in the domain in one case and the number
of vertices in the other; this last quantity corresponds to only
the number of voxels intersecting the surface. Finally, an ex-
plicit representation permits us to achieve sub-pixel accuracy
in the positioning of the Voronoi loci, which a discrete rep-
resentation of the medial axis would not provide.

6. Surface and volume diffusion

Having extracted the zero level set of our implicit surface St
φ

as a triangle mesh St
M, we next compute the surface and vol-

ume smoothness constraints directly from St
M to produce

representations for Ft
smooth and Ft

vol. These forces are returned
to the level-set solver and applied to produce St+1

φ
.

Our surface-based diffusion computations most strongly dif-
ferentiate our approach from that of Whitaker in [Whi98].
Since we do not assume any structure in the view-ray data,
having laser scans rather than range images, a straightfor-
ward implementation of his approach is computationally im-
practical. Furthermore, our volumetric smoothness prior, not
easily calculated in an implicit setting, permits us to recon-
struct a variety of shapes with significant missing data.

Note that until our initial approximation obtained by mean
curvature flow has converged, it is unlikely that St

M contains
the information necessary for the enforcement of tangential
boundary constrains for the bi-Laplacian solver. Similarly,
the MAT of St

M is unlikely to contain useful information
before convergence. Hence, until φ is in the process of con-
verging towards the data points in P , we omit the computa-
tion of Ft

vol or Ft
smooth.

c© 2011 The Author(s)
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6.1. Bi-Laplacian smoothing

In order to produce a surface without the tangential dis-
continuities inherent in mean curvature flow, we apply bi-
Laplacian smoothing [SCOIT05] to SM to compute a new
smoother surface ˜SM, which we then use to encode the
smoothness force Ft

smooth. Rather than treat each component
of SM equally, however, we respect the position of the input
data and control the evolution of the vertices of SM using
the density field ρP . The density field allows us to specify
boundary constraints, allowing parts of SM that are far from
the scanned data to move freely while restraining those that
are close to elements in P . Here we simply use the value of
ρP at a vertex as the constraint weight in our Laplacian op-
erator. The smoothed surface can then simply be converted
into the volumetric force Ft

smooth by constructing its associ-
ated signed Euclidean distance field in the domain defined
by the level-set solver. We also use this distance field Ft

smooth

to encode Ft
vol as described later.

6.2. Voronoi construction of medial axes

As noted in Section 3, the MAT of a surface provides an
elegant description of the variation of its internal volume.
We approximate the MAT of St

M by constructing its medial
axis representationMt

S from its Voronoi diagram Vort
S .

We extract Vort
S by computing the Voronoi diagram of

the vertices of St
M. Following the ideas in [ABK98], we

then associate each vertex on St
M with the corresponding

Voronoi pole in the interior of the shape; we can exclude ex-
terior poles by checking the value of φ

t at each pole. These
poles represent the medial surfaceMt

S of St
M. We do not

need to compute the connectivity of Mt
S in order to com-

pute Fvol.

As constructed,Mt
S may have a number of nodes close to

St
M as the medial axis approaches small features in the sur-

face. We explicitly filter the medial axis when it approaches
the surface, setting to zero the weights of nodes within the
width of one voxel from St

M in the subsequent volume dif-
fusion process. Voronoi loci so close to the surface are not
likely to contribute significant information to the MAT.

We next compute the aperture spoke angle αi at each node
in Mt

S , which we will use to weight the importance of
associated vertices in the volume diffusion step. As noted
in [DZ02], medial loci with large α contribute more strongly
to the MAT, and thus should exert greater influence upon
Ft

vol. Each nodeMi
S ∈M

t
S is a Voronoi vertex of a number

of vertices V on St
M. The aperture spoke angle αi ofMi

S is
the maximum angle between two edges connecting Mi

S to
elements of V . We call the two mesh vertices which define αi
the spoke vertices ofMi

S . These spoke vertices give us an
approximation of R atMi

S , which we use to compute Ft
vol.

Note that this relationship is not bijective: each vertex on
St
M is associated with a single vertex inMt

S – its Voronoi
pole [ABK98].

Figure 4: For each vertex of SM we display: (a) the radius
function R, (b) the filtered radius function R̃, and (c) the
volumetric force which equalizes the volume as ˜̃R−R̃.
6.3. Volume smoothing

Having thus obtained an approximation of R on Mt
S , we

next compute two smoothed radius functions R̃ and ˜̃R as
scalar fields defined on the mesh surface. As shown in Fig-
ure 4(c), the difference ˜̃R−R̃ provides a force field on St

M
which will attempt to enforce smooth volume variation along
the medial axis of St

M.

As shown in Figure 4(a), the function R contains a signif-
icant amount of noise. To overcome this problem, we per-
form a first diffusion step, shown in Figure 4(b), where the
strength of the constraints is proportional to the spoke aper-
ture angle α. Small spoke aperture angles are associated with
small surface features which obscure the general volumetric
variation of the object. While the spoke angle of a node near
the surface may be large, nodes near the surface have already
been discarded thus the remaining nodes along a branch cor-
responding to a noisy feature will be small.

Now that our surface is equipped with a smooth function
R̃, which represents volumetric information, we can express
the volumetric force as Ft

vol =
˜̃R−R̃, where ˜̃R is obtained

simply by smoothing R̃. Here the equivalence to (9) can
be established by considering that given a scalar function
f one can produce a smoothed version f̃ by removing its
local detail, that is, by taking the Laplacian of the function:
f̃ = f−∆ f . This force, defined on the mesh surface, is incor-
porated with Ft

smooth as an offset to the signed Euclidean dis-
tance field computed in Section 6.1, constructing a new field
which incorporates the constraints applied in this section.
We generate a new force field f t

total(x) = Ft
vol(xS)+‖x− xS‖,

where ‖ · ‖ is a signed Euclidean distance and xS is the clos-
est point on ˜SM to x. We pass this composite distance field
to the solver from Section 5 to enable computation of St+1

φ
.

7. Results

In this section, we show results of surface reconstruction us-
ing VASE. The synthetic point datasets used in Figures 8 and
9 were taken from the work of Shalom et al. [SSZCO10].
The raw point scans in Figures 1, 5, 6, and 7 were obtained
using a Polhemus Cobra hand-held scanner. Each object was
scanned under typical acquisition settings, with algorithm
parameters being set according to scanner resolution. How-
ever, due to the presence of deep concavities in the three
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Figure 5: Results of VASE (yellow) and Poisson (orange) on a scan of a tapered vase. The prior used by Poisson leads to a
truncation of the concavity before reaching the vase’s taper, while VASE enables the recovery of the whole interior. Poisson also
erroneously preserves gaps in the scan as manifested by small holes in the reconstructed surface.

Figure 6: Reconstruction of a coffee cup with non-zero
genus. Our method successfully recovers the shape’s varia-
tions in interior volume while accurately reconstructing the
interior of the cup.

container-type objects, a large amount of data is missing in
the objects’ interiors. To obtain the view rays, we modified
the scanner interface software as instructed by the vendor.

In all the examples shown, we compare the results from
VASE to those from Poisson reconstruction. We note that
Poisson reconstruction requires normals at the point sam-
ples, estimated by applying PCA to a local neighbourhood,
but VASE does not. Over areas representing deep concavi-
ties of an object, our method outperforms Poisson due to the
effect of the volumetric priors. In addition, the volumetric
smoothness prior avoided the creation of small holes over
the tapered vase (Figure 5) and led to better reconstruction
near the knee of the jazzman model (Figure 7). As algorithm
behaviour varies roughly linearly between that shown in Fig-
ure 2(c) and (d) when parameters not directly related to scan-
ner resolution are varied, these parameters can be chosen in
a principled way.

Over other areas of the acquired objects, we do not observe
noticeable differences between results produced by the two
reconstruction methods; VASE performs as well as the state-

Figure 7: Reconstruction of a stylized figure. Our volumetric
priors allow us to reconstruct the knee and trumpet more
faithfully. Variations in the interior volume (R) are handled
without error, though sharp edges are not fully preserved.

of-the-art Poisson reconstruction, even on models with non-
zero genus as in Figures 6 and 9. Our ability to reconstruct
correct topology depends upon the view rays reported by the
scanner; note that in Figure 9 our volumetric prior is able to
preserve holes in the input, which are discarded by Poisson
reconstruction.

Figure 10 shows the evolution of S over time. Note the way
the samples in the central channel pull S towards them (and
contrast this with the result of Poisson reconstruction in Fig-
ure 8), and the regularized volume in the final cross-section.
Both of these features reflect our novel volumetric priors.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



A. Tagliasacchi, M. Olson, H. Zhang, G. Hamarneh, and D. Cohen-Or / VASE: Volume-Aware Surface Evolution

Figure 10: The evolution of S over time on the “shyel” dataset of Figure 8. Cross-sections of the right-hand segment are also
shown. The end result exhibits correct structure and volumetric smoothness.

Figure 8: The “shyel” mechanical piece is virtually scanned
(left). The result achieved by VASE (top right, in yellow) cor-
rectly reconstructs the central channel, while that from Pois-
son (bottom right, in orange) both ignores the small set of
samples within that channel and is unable to use volumetric
priors to compensate for the large amount of missing data.

Figure 9: Surface reconstruction on a machine part. Note
that our volumetric priors preserve small and large holes,
which are filled by Poisson reconstruction.

We have implemented VASE in a combination of MATLAB
and C++, yielding runtime performance of roughly five min-
utes to reconstruct the scans shown in this paper using a
maximum grid size of 2003 in the multiscale level-set solver.
One of the bottlenecks in our current implementation is zero
level-set extraction: the computation of the bi-Laplacian and
volumetric smoothness forces requires a conversion from the
implicit representation to an explicit mesh representation.
Subsequently, the medial axis needs to be re-computed. The
required conversion between implicit and explicit represen-
tations of S increases runtime to the point that comparing
efficiency to existing techniques is not informative; however,

we present a possible avenue for significant performance im-
provement in future work.

8. Conclusion and future work

We introduce VASE, a surface reconstruction method built
around novel volumetric priors for visibility and interior vol-
ume smoothness. These priors are specifically designed to
handle highly incomplete point scans, which are typically
the results of scanner capture of objects with deep concavi-
ties. VASE is generally applicable to a broader class of ob-
jects. However, for scans with only small amount of missing
data, other state-of-the-art methods such as Poisson recon-
struction already offer efficient and effective solutions. As a
diffusion-based surface evolution, VASE is designed to re-
construct smooth shapes and does not strive to preserve or
enhance sharp features, e.g., for certain CAD models.

One limitation of our current approach is its dependence
upon view-ray information when constructing the topology
of the medial axis; our reconstruction priors are designed for
geometry inference. When the problem is severely under-
constrained, correct topology inference may inevitably re-
quire user assistance [SLS∗07]. Consequently, it might be
helpful to allow the user to identify areas interactively from
which the surface evolution would grow into a concave re-
gion of the object.

Another limitation lies in our discretization of the volumetric
force. While our formulation of the surface evolution energy
implies a diffusion over the medial axis, we currently per-
form diffusion on the surface. This avoids explicit tracking
of the topology of the medial axis, which may become com-
plex. While this choice has not caused problems on the tested
models, it is a potential source of error as high-frequency
surface details are removed as noise. Hence, our method
performs best on shapes whose local thickness values vary
smoothly. We would like to investigate the magnitude of this
error and consider alternative solutions.

Finally, the major practical limitation is speed. We note in
Section 7 that level-set meshing and medial axis recomputa-
tion form a significant performance bottleneck. This bottle-
neck may be lifted if we resort to a fully explicit formula-
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tion, calculating all forces on the mesh rather than within an
implicit level-set solver. This would permit us to update the
Voronoi diagram and thus the medial axis during the inter-
face motion, pre-compute the Laplacian matrices for surface
smoothing at each iteration, and eliminate a number of pa-
rameters. Normal flows for explicit mesh representations can
be done by extending the work of [PB07] which creates an
adaptive discretization of the domain for surface evolution.
A 3D implementation of this method was recently proposed
in [DP10] for reconstruction from range scans. We wish to
investigate these improvements in future work.
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