
Feature-Aligned Shape Texturing

Kai Xu★§∗ Daniel Cohen-Or⋇ Tao Ju† Ligang Liu‡∗ Hao Zhang★ Shizhe Zhou‡ Yueshan Xiong§

★Simon Fraser University ⋇Tel-Aviv University †Washington University at St. Louis
‡Zhejiang University §National University of Defense Technology

Abstract
The essence of a 3D shape can often be well captured by its salient
feature curves. In this paper, we explore the use of salient curves
in synthesizing intuitive, shape-revealing textures on surfaces. Our
texture synthesis is guided by two principles: matching the direc-
tion of the texture patterns to those of the salient curves, and align-
ing the prominent feature lines in the texture to the salient curves
exactly. We have observed that textures synthesized by these princi-
ples not only fit naturally to the surface geometry, but also visually
reveal, even reinforce, the shape’s essential characteristics. We call
these feature-aligned shape texturing. Our technique is fully au-
tomatic, and introduces two novel technical components in vector-
field-guided texture synthesis: an algorithm that orients the salient
curves on a surface for constrained vector field generation, and a
feature-to-feature texture optimization.

Keywords: Texture synthesis, salient features, feature alignment

1 Introduction
Salient curves have been explored extensively in non-photorealistic
rendering of 2D images and 3D surface models. An underlying as-
sumption is that a small set of salient lines can capture well the ge-
ometric features of a complex shape. For example, a 2D image can
be abstracted by lines at strong local maxima of image gradients,
and a 3D surface can be intuitively visualized by lines highlight-
ing the protrusions and indentations. The expressiveness of these
salient curve features further suggests that they may play important
roles in the decoration of shapes, such as by colors or textures. That
is, the decorative features may better serve the purpose of enriching
the shape appearance when they are aligned with the salient curves.
Indeed, this is observed in the 2D case in the recent work of Orzan
et al. [2008], who showed that adding colors that are diffused from
a set of planar curves dramatically enhances the vividness of the
shape that is conveyed by those curves.

In much of the same spirit as [Orzan et al. 2008], we explore
ornamenting a 3D surface model with synthesized texture patterns
that are aligned with salient curves on the surface. Previously, tex-
ture synthesis was mostly guided by user inputs that indicate the
placement and orientation of textures. While user guidance is im-
portant when the surface geometry does not provide strong hint for
the layout of textures, a large class of models do possess perceptu-
ally prominent shape features that should be utilized. Salient curve
features, in particular, are well suited for guiding the synthesis, not

∗Corresponding authors: ligangliu@zju.edu.cn, kaixu@nudt.edu.cn

(a) (b) (c)

Figure 1: Decorating a shape with textures without user assistance
often conceals the shape’s rich geometric details (b). Our fully au-
tomatic algorithm synthesizes textures that better reveal, and even
enhance, the shape appearance (c) — here the fish has “awoken”.
This is done by orienting the texture patterns with the direction of
the salient curves on the shape (a) and enforcing exact feature-to-
feature alignment between the salient curves and texture features.

only because they capture the essence of the 3D shapes, but also
due to the availability of automatic algorithms, such as [Yoshizawa
et al. 2005], that can robustly detect curve features on surfaces.

Our synthesis is guided by two principles. First, we make
the synthesized texture patterns follow the direction of the salient
curves on the input surface. Second, when prominent line features
exist in the original texture pattern, we exactly line up these tex-
ture features with the salient surface features. We have observed,
on many models with prominent curve features (e.g., the one in
Figure 1), that syntheses guided by these two principles, which we
call feature-aligned shape texturing, not only fit the texture to the
surface more naturally than those without, but also tend to enrich
the overall perception of the shape itself. Such synthesis could be
offered as an automated option to a modeler to improve texture ap-
pearance on surfaces that are rich in curve features.

We implement feature-aligned texturing within the optimization-
based framework that has been successful in synthesis from texture
exemplars [Kwatra et al. 2005; Wexler et al. 2007]. In this frame-
work, texture is synthesized along a user-guided vector field on the
surface, maximizing the similarity between the texture pattern in
the oriented neighborhood of each vertex and the appearance of a
texture examplar. We introduce two novel algorithmic components
into this framework that are essential for feature-aligned texturing.
To orient the textures by the direction of salient curves, we pro-
pose an algorithm for determining the orientation of vectors along
the salient curves, which are used as constraints to obtain a smooth
curve-guided vector field with reduced singularities. To enforce
exact placement of texture features along the surface features, we
augment the texture optimization formulation by an exact feature-
to-feature alignment. The complete synthesis method is fully au-
tomatic, and works in conjunction with any existing methods that
extract feature curves on surfaces.

Figure 2: Our texture synthesis pipeline: starting from a surface with extracted salient curves (a), we first compute a smooth vector field that
follows the curve directions (b), and then synthesize the texture along the vector field from a given examplar (c). If prominent features exist
in the examplar, we enforce exact alignment of these features with the salient curves (d).

Contributions: The driving goal of feature-aligned shape textur-
ing is to reveal and enhance the intrinsic geometric features of the
3D shape using textures. In this respect, our work makes a first step
in a direction that complements existing efforts in texture synthesis
that are mostly concerned with the continuity, low distortion of the
textures or their conformation to user constraints. We make two
main contributions in this direction:

∙ While salient feature curves are known to play a critical role
in perceiving a shape, we harness these curves to decorate
the shape’s surface. In particular, we observe that synthesis
guided by two principles (directional agreement between tex-
ture and salient curves on a surface as well as exact feature
alignment) provides a natural fit of texture to an object while
revealing the shape’s essential characteristics.

∙ We develop a fully automatic texture synthesis method, and
introduce two novel algorithm components. We propose an
algorithm for computing a smooth vector field from a set of
un-oriented curve constraints, and a feature-to-feature texture
optimization technique for 3D surfaces.

2 Related work
Our work is concerned with texture synthesis guided by surface
features, and draws inspirations from three related areas: texture
synthesis, vector field design, and feature-based shape perception.

Texture synthesis: There is a rich body of work on synthesizing
textures directly on surfaces (see [Wei et al. 2009]). The pixel-
based approach was simultaneously generalized by [Wei and Levoy
2001] and [Turk 2001] to surfaces. The patch-based approach was
first introduced in lapped texture by Praun et. al. [2000], where
user-specified irregular texture patches are randomly pasted onto a
surface. Texture optimization [Kwatra et al. 2005] has recently
been extended to surfaces [Kwatra et al. 2007; Chen et al. 2009],
multiscale texture synthesis from multiple texture exemplars [Han
et al. 2008] and inverse texture synthesis [Wei et al. 2008]. Fu and
Lung [2005] have extended Wang tiles [Cohen et al. 2003] to sur-
faces. There have been recent works on synthesizing solid texture
from 2D texture exemplars [Kopf et al. 2007; Takayama et al. 2008;
Dong et al. 2008] as well.

Vector field design: Vector fields play an essential role in control-
ling the appearance of details and textures over surfaces. Methods
have been proposed for generating vector fields on planar and 2-
manifold domains. Praun et. al. [2000] use radial basis functions
to interpolate a sparse set of vector constraints at selected points,
while others use hierarchical low pass filtering [Turk 2001], inter-
polation in tangent spaces [Wei and Levoy 2001], or tools from Dis-
crete Exterior Calculus [Fisher et al. 2007]. Zhang et. al. [2006]
design smooth tangent vector fields by allowing precise placement
of different types of singularities. Recently, Chen et. al. [2008] de-
velop an interactive technique to design a tensor field which guides
the generation of street networks that conform to the tensor field.

Feature based shape perception: The use of feature lines on sur-
faces has become popular in conveying and depicting 3D shapes.
Examples include smooth silhouettes [Hertzmann and Zorin 2000],
suggestive contours [Decarlo et al. 2003], geometric ridges and
valleys [Ohtake et al. 2004], apparent ridges [Judd et al. 2007],
and demarcating curves [Kolomenkin et al. 2008]. Recently, [Cole
et al. 2008] provides a statistical analysis of the locations where
artists draw lines and the geometric, viewpoint, and lighting char-
acteristics of the underlying 3D scene. On the other hand, the per-
ception of a 3D shape can be significantly affected by texture infor-
mation. The work of Gorla et. al. [2003] studies the accuracy of
judging a shape by the orientation of the texture pattern anisotropy
with respect to the principal curvature directions over the shape’s
surface. The work of [Narain et al. 2007] generates texture along
features on continuous flows.

Other related works: The works of [Alliez et al. 2003; Kälberer
et al. 2007; Marinov and Kobbelt 2004] propose approaches to gen-
erate quad meshes whose quadrangles are aligned with two orthog-
onal direction fields. Dong et. al. [2006] propose a quad remesh-
ing method which connects extrema of Laplacian eigenfunctions
via gradient flow. In the realm of 2D images, the recent work of
diffusion curves [Orzan et al. 2008] uses a set of feature lines in an
image to represent the original image via Poisson equation, and our
study draws much inspiration from this work.

3 Overview
To compute feature-aligned shape textures, our synthesis is guided
by two principles. First, we would like the orientation of the syn-
thesized texture to match with the direction of the salient curves,
so that the texture “flows” with surface features. Second, to better
reveal the shape at the salient curves (e.g., sharp edges in Figure 1),
we would like any prominent line features in the texture examplar
to be placed exactly along those curves. Given a 3D surface with
extracted salient curves and a texture examplar, our synthesis pro-
ceeds in two fully automated steps, which are illustrated in Figure
2 and detailed in the next two sections:

Vector field generation: We first compute a tangent vector field on
the surface that specifies the orientation of the textures, as shown in
Figure 2(b). To align the vector field with the direction of salient
curves, we propose an incremental algorithm for determining the
orientation of the salient curves, and an efficient way to compute a
smooth, constrained vector field by energy minimization. The main
goal here is to obtain proper curve orientations which would lead to
a smooth curve-guided vector field with reduced singularities.

Texture optimization: Next, we compute the texture along the vec-
tor field following the patch-based texture optimization framework
of [Kwatra et al. 2005; Kwatra et al. 2007]. To align the texture
features exactly along the salient surface features, we augment the
optimization formulation with an exact feature-to-feature alignment
constraint. Figures 2(c) and 2(d) compare the synthesized textures
without and with such a constraint.

Figure 3: Vector field generated (via harmonic diffusion) from arbitrarily oriented salient curves exhibits undesirable bending and singularities
(a). Our orientation algorithm works iteratively where at each step, it computes the vector field from curves that have already been oriented
(b), measures the consistency of remaining curves with the field (c), and orients the curve which has the highest consistency score (d). The
resulting assignment of curve orientations results in a much smoother field (e) with reduced singularities.

4 Curve-guided vector field generation
Texture synthesis on surfaces typically requires a vector field that
determines the local orientation of textures. To obtain continuous,
feature-aligned textures, we desire a smooth vector field that fol-
lows the direction of the salient curves. Methods capable of com-
puting a smooth vector field that is constrained by user-provided
vectors exist [Praun et al. 2000; Fisher et al. 2007]. The main chal-
lenge of adopting salient curve constraints in these methods is that
these curves are un-oriented — a tangent vector on the curve can
assume either one of two possible orientations. Arbitrarily oriented
tangent vector constraints may produce excessive bending and sin-
gularities in the resulting vector field, e.g., see Figure 3(a).

We present, in Section 4.1, an algorithm for determining the ori-
entation of tangent vectors along a set of un-oriented curves on a
surface, so as to minimize the bending and singularities in a vec-
tor field constrained by these tangent vectors, as shown in Figure
3(e). Our algorithm can work in conjunction with any method that
computes a smooth vector field from oriented vector constraints,
and further empowers these algorithms to intake un-oriented con-
straints. In our implementation, we adopted a harmonic-guided dif-
fusion technique for vector field generation, which is simple to im-
plement, efficient to run, and producing the desired fields for sub-
sequent texture synthesis. This will be presented in Section 4.2.

4.1 Curve orientation

Given a set of curves on a 3D surface, each represented as a se-
quence of vertices connected by edges, we wish to assign an ori-
entation to the tangent vector at each vertex, so that a vector field
that interpolates these oriented tangents (using any particular algo-
rithm for vector field generation) is as smooth as possible. One
could formulate the problem as a combinatorial optimization task,
optimizing some smoothness measure of the vector field over all
possible choices of tangent orientations (two at each vertex). How-
ever, such a global smoothness measure for a vector field is difficult
to formulate. Instead, we found that a greedy algorithm guided by
a local, incremental measure works very well in practice, resulting
in smooth fields automatically and efficiently.

Our algorithm works incrementally and assigns one orientation
to all tangent vectors along a feature curve at a time. The reason
that we consider entire curves instead of individual tangent vectors
is to avoid undesirable flipping of the orientations along a feature
curve, which could happen if individual tangent vectors exhibit sig-
nificant variations due to, for example, noise or discretization. To
identify individual feature curves, we pre-process the salient curves
given on the input surface to group close-by, disconnected curve
segments along a smooth salient feature and break long curves at
high curvature points. Grouping and breaking are controlled by
user-specified distance and curvature thresholds, respectively.

We illustrate our algorithm in Figure 3. To start, one feature
curve is picked and assigned an arbitrary orientation. We choose the
longest feature curve, the black curve in (b), based on the premise
that this curve is expected to be the most visually dominant. A
smooth vector field, shown by blue vectors, is then computed that
interpolates this single curve constraint. At each subsequent step,
one un-oriented curve is picked and assigned an orientation, in a
way that the vector field interpolating this expanded set of oriented
curves introduces least ”distortion” to the vector field that interpo-
lates the current set of oriented curves. This is done by computing a
score for each un-oriented curve, as shown in color in (c). The curve
with the highest score is picked and oriented, and the vector field
is updated to interpolate the newly oriented curve, as in (d). The
algorithm repeats until all curves are oriented, as in (e). In hind-
sight, we can achieve smoothness of the final vector field, which
interpolates all the feature curves, if at each step of the algorithm,
the intermediate interpolating field is as smooth as possible.

The key to drive our incremental orientation algorithm is a mea-
sure of how much “distortion” will need to be introduced to a vector
field, which interpolates a set of oriented curves, in order to inter-
polate an additional oriented curve. Our measure is based on the
following intuition. Consider a vector field u interpolating some
oriented vectors, and the field u′ that interpolates an additional vec-
tor 𝑣𝑝 at vertex 𝑝. If 𝑣𝑝 coincides with u(𝑝), the vector at 𝑝 in the
original field u, then u′ would be identical with u. Otherwise, u′

would contain some bending around 𝑝 in order to accommodate the
new constraint 𝑣𝑝. Intuitively, the larger the angle between 𝑣𝑝 and
u(𝑝), the more severe the bending would be.

Thus we define the score of an un-oriented curve with respect to
a given vector field to reflect the accumulated consistency between
the curve and the vector field, where each term in the accumula-
tion is inversely related to an angular deviation measured at a point
along the curve. Specifically, given a curve 𝑐 and a vector field u,
the consistency score is expressed as

𝑔(𝑐,u) = max

⎧⎨
⎩

∑
𝑝∈𝑉 (𝑐)

𝜋 − 𝜃𝑝
𝜋 + 𝜃𝑝

,
∑

𝑝∈𝑉 (𝑐)

𝜃𝑝
2𝜋 − 𝜃𝑝

⎫⎬
⎭ . (1)

Here 𝜃𝑝 ∈ [0, 𝜋] is the angle between the tangent vector at vertex
𝑝 along the curve 𝑐 and the vector in the vector field u at 𝑝, and
the denominator normalizes each term of the sum to within [0, 1].
The curve 𝑐 is given an arbitrary orientation when defining 𝑔(𝑐,u);
in fact, 𝑔(𝑐,u) is invariant to the change of orientation of 𝑐. With
the max operation, we are ensured that the orientation of 𝑐 that is
more consistent with the existing field is chosen to define its score.
It is also worth noting that the motivation of using accumulated
consistency, instead of other alternatives such as the average, is to
favor long curves that are consistent with the vector field.

Limitation Our automatic curve orientation algorithm works well
for most 3D models tested, including all examples in this paper.
However, its greedy nature may not yield a satisfactory result in
some cases. For example, with a set of feature lines radiating out
symmetrically from a center (e.g., the spokes of a wheel), our algo-
rithm would attempt to assign the same orientation to two opposite
lines, while a more natural, symmetric field would have a singular-
ity at the center and interpolate opposite lines in opposite orienta-
tions. Such global information as symmetry has not been consid-
ered currently but will be interesting to explore in future work.

4.2 Constrained vector field diffusion

The above curve orientation algorithm works along with any
method that generates a smooth vector field from oriented vector
constraints, such as [Zhang et al. 2006; Fisher et al. 2007]. Due to
the iterative nature of our orientation algorithm, it is desirable to be
able to update the vector field at a fast speed. With these require-
ments in mind, we consider an alternative vector field generation
method that is both efficient to run and producing vector fields of
comparable quality to these other methods.

Our method is inspired by previous works that consider har-
monic functions, whose smoothness is inherited from their phys-
ical interpretation as heat diffusion, for data interpolation [Orzan
et al. 2008; DeRose and Meyer 2006]. We compute the vector field
as three independent scalar functions (one for each 𝑥, 𝑦, 𝑧 compo-
nent), each subject to constraints at a set of vertices. To efficiently
compute and update these functions, as needed by our curve orien-
tation algorithm, we consider the penalty method [Xu et al. 2009] to
enforce constraints since the implied linear system admits fast com-
putation as well as updating. The final vector field is projected onto
the surface tangent planes before texture optimization, as similarly
done in [Praun et al. 2000].

Let x be the 𝑥 component of the unknown vector field (other
components are treated similarly), and b the 𝑥 component of the
vector constraints. We compute x as the minimizer of the following
energy that combines harmonicity with a quadratic penalty term:

x = argminx̂{
1

2
x̂TLx̂+ ∣∣P1/2(x̂− b)∣∣2}. (2)

Here, L is the cotan Laplacian matrix defined as L = D − W,
where W𝑖𝑗 = 1

2
(cot𝛼𝑖𝑗 + cot𝛽𝑖𝑗) if vertex pair {𝑖, 𝑗} forms an

edge and 𝛼𝑖𝑗 , 𝛽𝑖𝑗 are opposite angles to the edge, and W𝑖𝑗 = 0
otherwise, and D is a diagonal matrix of the row sums of W.
The penalty matrix P is a diagonal matrix where P𝑖𝑖 = 𝛼 ∕= 0
if and only if there is a constraint vector at vertex 𝑖. For the penalty
weight, we choose 𝛼 = 1.0×108 for all the examples in this paper.

Implementation The minimization can be obtained by solving the
linear system (L + P)x = Pb using Cholesky factorization. To
avoid re-solving the system at each step of our orientation algo-
rithm, we only update the previously solved vector field. To do
so, we utilize the efficient super-nodal algorithm [Davis and Hager
2006; Davis 2006], as in [Xu et al. 2009], for updating a sparse
Cholesky factorization. The algorithm requires the modifications
to the coefficient matrix to be low-rank. This is ensured in our case
as the number of added vector constraints each time is much smaller
than the total number of vertices in the input mesh.

Comparison Our diffusion-based method generates vector fields
with comparable quality to existing methods under the same con-
straints, as shown in Figure 4 by a comparison to [Zhang et al. 2006]
and [Fisher et al. 2007]. When plugged into our curve orientation
algorithm for vector field generation, all three methods resulted in
the same curve orientations as shown in the figure. On the other
hand, our method achieves better efficiency. For this example, each
vector field generation step took 0.33 seconds, 0.67 seconds, and
over 11 minutes respectively using our method, [Fisher et al. 2007]

[Fisher et al. 2007]. [Zhang et al. 2006]. Ours.

Figure 4: Smooth vector fields generated by three methods from a
given set of oriented curves (orientation shown by blue arrows).

(using implementation provided by the authors), and [Zhang et al.
2006] (using our own implementation). Note that the latter two
methods work directly on tangent vectors on the surface while ours
projects non-tangent vectors onto the surface afterwards.

5 Feature-to-feature texture optimization
With a smooth vector field that naturally “flows” with the curve fea-
tures on the surface, we next synthesize texture patterns guided by
the field. Vector field guided synthesis has been previously achieved
in an optimization-based framework in both 2D [Kwatra et al. 2005]
and 3D [Kwatra et al. 2007; Chen et al. 2009]. We observe that
while the result of such un-constrained optimization conforms to
the overall surface shape, as in Figure 2(c), when the texture exem-
plar contains prominent feature lines, such as those in Figure 5(a),
being able to align these texture features exactly to surface features
would greatly enhance the shape appearance, as can be seen in Fig-
ure 2(d). After reviewing the optimization framework for texture
synthesis on surfaces, we will introduce our modification in the en-
ergy formulation to enforce exact feature-to-feature alignment.

5.1 Texture optimization on surfaces
Given a texture exemplar, the synthesis technique of [Kwatra et al.
2005; Kwatra et al. 2007] seeks colors at points on the output image
that minimize the matching error between each local patch on the
output image with the most similar patch in the exemplar.

Specifically, denote by 𝑍 the input exemplar, and by 𝑋 the syn-
thesized output on the surface. We minimize the global energy

𝐸𝑡(X; {z𝑝}) =
∑
𝑝∈𝑋†

𝜆𝑝𝜔𝑝 ∣x𝑝 − z𝑝∣2, (3)

where 𝑋† is a subset of points in 𝑋 , x𝑝 refers to the vectorized
colors of the points in a local grid-patch around the surface point
𝑝 ∈ 𝑋†, z𝑝 refers to the vectorized neighborhood in 𝑍 whose ap-
pearance is most similar to x𝑝, and 𝜔𝑝 is set as in Section 3.1 of
[Kwatra et al. 2005]. In the un-constrained scenario, weights 𝜆𝑝

are set to be 1. These notations are illustrated in Figure 5(b,c). The
minimization is solved by iterating between searching for the best
matching exemplar neighborhoods z𝑝 for each x𝑝 and minimizing
𝐸𝑡 with respect to 𝑋 using a linear system.

The energy is minimized over a subset 𝑋† of mesh vertices.
Given the size 𝑤 of the local grid-patch, the vertices x𝑝 in 𝑋†

should be carefully selected so that all the local grid-patches of
x𝑝 should together cover the whole surface. Therefore, we have
to ensure that the distance between neighboring sample vertices in
𝑋† is less than 𝑤. We follow the sampling method in [Chen et al.
2009] to obtain 𝑋†. Specifically, we start by uniformly sampling
the vertices using distance 𝑟𝑤 along the salient curves, where 𝑟 is a
user-chosen parameter in [0, 1] to control the sample spacing. Then
we select the vertices near the salient curves and finally randomly
select the other vertices in-between the curves so that the distance
between two neighboring vertices is less than 𝑟𝑤. The parameter 𝑟
is chosen empirically as 𝑟 = 0.25.

Figure 5: (a) Texture patterns containing prominent feature lines
(green). (b-c) Notations for describing patch-based optimization.

5.2 Feature-to-feature constrained optimization
We next constrain the texture optimization above to enforce exact
alignment between texture features and surface features. Given a
texture exemplar, we extract the prominent features in the exemplar
as piecewise linear segments using a heuristic approach [Wu and
Yu 2004], optionally allowing user sketching. When more than one
feature lines are detected, we select one as the principal feature line.
Example feature lines are shown in Figure 5(a).

To achieve feature alignment in the above patch-matching
paradigm, we enforce those patches on the surface that are cen-
tered at points near salient curves to match with only those patches
in the texture exemplar that are centered at pixels near feature lines.
That is, we constrain the texture matching for those points 𝑝 ∈ 𝑋†

which are close to the salient curves. Specifically, consider the set
of all salient curves 𝒞 on the surface, and denote 𝑑(𝑝, 𝒞) the closest
geodesic distance from a point 𝑝 ∈ 𝑋† to the salient curves. If
𝑑(𝑝, 𝒞) < 𝑤/2, which means that the local patch x𝑝 at point 𝑝 cov-
ers some feature line, then we consider only those z𝑝 whose center
pixel’s distance to the nearest texture feature differs from 𝑑(𝑝, 𝒞)
by less than a user-specified threshold when searching for the most
similar patch z𝑝 in the texture exemplar to the surface patch x𝑝. As
an example, the patch with a blue outline in the exemplar in Fig-
ure 5(c) will be considered when matching with the surface patch
in (b), while the patch with a red outline in the exemplar will not.
To ensure small matching error near salient curves, we re-define the
weights in Equation (3) as

𝜆𝑝 = 1/(𝑑(𝑝, 𝒞) + 𝜖0), (4)

where 𝜖0 = 1.0×10−6 is a small number to avoid division by zero.

6 Results
We show examples demonstrating our feature-aligned texturing
technique on a range of models. In all examples, we adopt the
algorithm and available implementation of Yoshizawa et al. [2005]
for fast and robust detection of crest lines on meshes. Given an
input model, its crest lines, and a user-selected texture exemplar,
texturing is then performed fully automatically.

Figure 6 compares textures synthesized on the same model
guided by vector fields constrained by feature curves with arbitrary
orientations (a) and orientations computed using our incremental al-
gorithm (b). Observe that the distortions and singularities are much
less severe in (b) than in (a). Similar observations can be made in
Figure 3. Note that even with proper curve orientation, singulari-
ties are not entirely avoidable. However, our orientation algorithm
tends to push the remaining singularities to “corners” where two or

Figure 6: Texturing of a surface with arbitrary (a) vs. incrementally
computed (b) orientation of feature curves. Curve orientations are
shown by green arrows (top). Note the singularities indicated in (a).

more feature curves meet, as shown in Figure 3(e). These corner
singularities appear to have less visual impact compared to those
occurring over a flat region, e.g., compare with Figure 3(a).

To further demonstrate the effectiveness of our texturing tech-
nique in decorating and enhancing shape appearance, we show a
gallery of examples in Figure 7. For each model, we compare be-
tween texturing results synthesized without and with feature align-
ment. Observe that the latter present a more natural fit to the surface
and better reveal the geometry or structure of the shapes by enhanc-
ing the appearance of their salient feature curves. In Figure 8, we
show texturing aligned with multiple levels of feature curves on
the Bimba model. One easily observes the clearer depiction of the
mouth at a low feature resolution and further around the eyes at a
high feature resolution, due to alignment of texture patterns with
features identified over those regions.

Performance Our tests are performed on a 2.5GHz Intel Core 2
Duo PC with 2GB of RAM. Using fast harmonic field update, as
discussed in Section 4.2, vector field generation is performed under
one minute for a model with 400K triangles, where updating of the
vector field at each step of curve orientation takes about 1 second.
The optimization-based texture synthesis step currently takes about
20 minutes for a model at a similar size. We anticipate that this per-
formance can be substantially improved by performing synthesis at
multiple mesh resolutions, as successfully demonstrated in [Kwatra
et al. 2007].

7 Conclusion and future work
The essence of a 3D shape is well reflected by its salient feature
curves and the essence of a textured shape is precisely revealed
only when its feature lines exactly align with those in the associated
texture. We achieve the latter with a novel and fully automatic tech-
nique combining orientation computation of salient feature curves,
curve-guided harmonic vector diffusion, and example-based texture
synthesis with exact feature-to-feature alignment.

There are a number of venues of future work. On the technical
side, our curve orientation algorithm can be further improved by
considering global structure of the surface features, such as sym-
metry. Our un-optimized texture synthesis implementation could
also benefit from hierarchical techniques [Kwatra et al. 2007] and
GPU implementations [Huang et al. 2007]. On the perceptual end,
it would be most interesting and informative to conduct user studies
on the effectiveness of texturing that exploits shape features.

Acknowledgments
We would first like to thank the anonymous reviewers for their
helpful comments. We are also grateful to Matthew Fisher for
sharing his code on vector field generation, to Renjie Chen for
providing his codes on texture synthesis, and to Xiaokun Wu for
his help with making the video. All the 3D models used in this
paper are from the AIM@SHAPE shape repository. This work

Figure 7: A gallery of feature-aligned texturing results. In each triplet, from left to right: our texturing result, textures synthesized by a
smooth vector field but without feature alignment, and model showing the extracted feature curves (blue: valley lines; red: ridge lines).

is supported in part by grants from NSERC (No. 611370), NSF
(No. CCF-0702662), the Israeli Ministry of Science, the Israel Sci-
ence Foundation, the 973 National Key Basic Research Foundation
of China (No. 2009CB320801), the 863 Program of China (No.
2007AA01Z313), NSFC (No. 60773022), the China Scholarship
Council and the joint grant of the NSFC and Microsoft Research
Asia (No. 60776799).

References
ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LEVY, B.,

AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Trans. on Graphics 22, 3, 485–493.

CHEN, G., ESCH, G., WONKA, P., MÜLLER, P., AND ZHANG,
E. 2008. Interactive procedural street modeling. ACM Trans. on
Graphics 27, 3, 1–10.

CHEN, R., LIU, L., AND DONG, G. 2009. Local resampling
for patch-based texture synthesis in vector fields. International
Journal of Computer Applications in Technology, to appear.

COHEN, M., SHADE, J., HILLER, S., , AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. ACM Trans. on
Graphics 22, 3, 287–294.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S.,
FINKELSTEIN, A., FUNKHOUSER, T., AND RUSINKIEWICZ,
S. 2008. Where do people draw lines. ACM Trans. on Graphics
27, 3, 88:1–11.

DAVIS, T. A., AND HAGER, W. W. 2006. Modifying a sparse
Cholesky factorization. SIAM Journal on Matrix Analysis and
Applications 20, 3, 606–627.

DAVIS, T. A. 2006. User guide for CHOLMOD. Tech. rep., Uni-
versity of Florida.

DECARLO, D., FINKLSTEIN, A., RUSINKIEWICZ, S., AND SAN-
TELLA, A. 2003. Suggestive contours for conveying shape.
ACM Trans. on Graphics 22, 3, 848–855.

DEROSE, T., AND MEYER, M. 2006. Harmonic coordinates. Tech.
rep., Pixar Technical Memo #06-02.

DONG, S., BREMER, P.-T., GARLAND, M., PASCUCCI, V., AND
HART, J. 2006. Spectral surface quadrangulation. ACM Trans.
on Graphics 24, 3, 1057–1066.

DONG, Y., LEFEBVRE, S., TONG, X., AND DRETTAKIS, G. 2008.
Lazy solid texture synthesis. In Computer Graphics Forum

(a) (b) (c) (d) (e)
Figure 8: Influence of feature set on feature-aligned texturing. (a) No feature-alignment. (b)-(c) Lower feature resolution aligns the texture
to larger features such as the mouth, but leads to a glaring singularity in the forehead. (d)-(e) Higher feature resolution (additional feature
curves detected) leads to a more satisfying result and the aligned texture reveals finer features such as the eyes.

(Proc. of the Eurographics Symposium on Rendering), vol. 27,
1165–1174.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. ACM Trans. on Graphics
26, 3, 56:1–9.

FU, C.-W., AND LEUNG, M.-K. 2005. Texture tiling on arbitrary
topological surfaces. In Proc. of Eurographics Symposium on
Rendering, 99–104.

GORLA, G., INTERRANTE, V., AND SAPIRO, G. 2003. Texture
synthesis for 3D shape representation. IEEE Trans. Vis. & Comp.
Graphics 9, 4, 512–524.

HAN, C., RISSER, E., RAMAMOORTHI, R., AND GRINSPUN, E.
2008. Multiscale texture synthesis. ACM Trans. on Graphics 27,
3, 51:1–8.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. ACM Trans. on Graphics 19, 3, 517–526.

HUANG, H., TONG, X., AND WANG, W. 2007. Hardware acceler-
ated parallel texture optimization. Journal of Computer Science
and Technology 22, 5, 761–769.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges
for line drawing. ACM Trans. on Graphics 26, 3, 19:1–7.

KÄLBERER, F., NIESER, M., AND POLTHIER, K. 2007. Quad-
cover - surface parameterization using branched coverings. Com-
puter Graphics Forum 26, 3, 375–384.

KOLOMENKIN, M., SHIMSHONI, I., AND TAL, A. 2008. Demar-
cating curves for shape illustration. ACM Trans. on Graphics 27,
5, 157:1–9.

KOPF, J., FU, C., COHEN-OR, D., DEUSSEN, O., LISCHINSKI,
D., AND WONG, T. 2007. Solid texture synthesis from 2D
exemplars. ACM Trans. on Graphics 26, 3, 2:1–9.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, A. 2005.
Texture optimization for example-based synthesis. ACM Trans.
on Graphics 24, 4, 795–802.

KWATRA, V., ADALSTEINSSON, D., KIM, T., KWATRA, N.,
CARLSON, M., AND LIN, M. 2007. Texture fluids. IEEE Trans.
Vis. & Comp. Graphics 13, 5, 939–952.

MARINOV, M., AND KOBBELT, L. 2004. Direct anisotropic quad-
dominant remeshing. In Proc. of Pacific Graphics, 207–216.

NARAIN, R., KWATRA, V., LEE, H.-P., KIM, T., CARLSON, M.,
AND LIN, M. 2007. Feature-guided dynamic texture synthesis
on continuous flows. In Proc. of Eurographics Symposium on
Rendering, 361–370.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-
valley lines on meshes via implicit surface fitting. ACM Trans.
on Graphics 23, 3, 609–612.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: A
vector representation for smooth-shaded images. ACM Trans.
on Graphics 27, 3, 92:1–8.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. ACM Trans. on Graphics 19, 3, 465–470.

TAKAYAMA, K., OKABE, M., IJIRI, T., AND IGARASHI, T. 2008.
Lapped solid textures: filling a model with anisotropic textures.
ACM Trans. on Graphics 27, 3, 53:1–8.

TURK, G. 2001. Texture synthesis on surfaces. ACM Trans. on
Graphics 20, 3, 347–354.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. ACM Trans. on Graphics 20, 3, 355–
360.

WEI, L., HAN, J., ZHOU, K., BAO, H., GUO, B., AND SHUM, H.
2008. Inverse texture synthesis. ACM Trans. on Graphics 27, 5,
52:1–9.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. Eurographics
2009 State-of-the-art Report.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE Trans. Pat. Ana. & Mach. Int.
29, 3, 463–476.

WU, Q., AND YU, Y. 2004. Feature matching and deformation for
texture synthesis. ACM Trans. on Graphics 23, 3, 364–367.

XU, K., ZHANG, H., COHEN-OR, D., AND XIONG, Y. 2009.
Dynamic harmonic fields for surface processing. Computers and
Graphics (Special Issue of SMI 2009) 33, 3, 391–398.

YOSHIZAWA, S., BELYAEV, A., AND SEIDEL, H.-P. 2005. Fast
and robust detection of crest lines on meshes. In Proc. of ACM
Symposium on Solid and Physical Modeling, 227–232.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field
design on surfaces. ACM Trans. on Graphics 25, 4, 1294–1326.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

