
EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25(2006), Number 3

Silhouette Extraction in Hough Space

Matt Olson and Hao Zhang†

GrUVi lab, School of Computing Science, Simon Fraser University, Burnaby, Canada

Abstract
Object-space silhouette extraction is an important problem in fields ranging from non-photorealistic computer
graphics to medical robotics. We present an efficient silhouette extractor for triangle meshes under perspective
projection and make three contributions. First, we describe a novel application of 3D Hough transforms, which
allows us to organize mesh data more effectively for silhouette computations than the traditional dual transform.
Next, we introduce an incremental silhouette update algorithm which operates on an octree augmented with neigh-
bour information and optimized for efficient low-level traversal. Finally, wepresent a method for initial extraction
of silhouette, using the same data structure, whose performance is linear inthe size of the extracted silhouette. We
demonstrate significant performance improvements given by our approach over the current state of the art.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Visible line/surface algorithms

1. Introduction

Silhouette extraction is a fundamental problem in com-
puter graphics, computational geometry, and related fields.
Some of its applications include non-photorealistic render-
ing and animation [HZ00, IHS02, MKG∗97], volume visu-
alization [BKR∗05], occlusion volume generation [Cro77],
geometry reduction [SGG∗00], volumetric lighting and
shadowing, and object tracking in computer vision [PF02].
Many of these problems involve scene rendering or analy-
sis under perspective projection. Silhouette extraction in per-
spective is more challenging than the case of parallel projec-
tion, as the view vector is not constant over the scene.

Two main approaches for silhouette extraction have been
developed, which carry out similar tasks but in fundamen-
tally different ways. One approach works in theimage space
and detects discontinuities in a rendered image, e.g., a depth
buffer. The other works in theobject spacewhere edges sep-
arating front- and back-facing regions of a polygonal mesh
are explicitly identified. Image-space algorithms are gener-
ally quite fast and easily accelerated using graphics hard-
ware, but can only identify visible portions of a model’s
silhouette loops, rendering these algorithms less useful for
applications such as shadow volume extrusion [Cro77]. In

† mjolson@cs.sfu.ca, haoz@cs.sfu.ca

Figure 1: Extracted silhouette (red edges) on the dragon
mesh, with respect to a light source to the lower right, and a
visualization of the Hough transform of the mesh triangles,
showing bounding boxes for low-level octree nodes.

addition, image-space algorithms can only produce silhou-
ettes to image precision. By contrast, object-space algo-
rithms work in floating-point precision and can generate a
more broadly applicable set of edges which can be subse-
quently stylized [IHS02]. However, object-space algorithms
tend to be slower than their image-space counterparts and
are not as amenable for hardware implementations.

Object-space methods can be further divided intobrute-
force andoutput-basedalgorithms. Brute-force algorithms,
e.g., edge buffer [BS00], must check every face and edge in

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

the mesh at every frame; output-based algorithms [HZ00,
SGG∗00, PDB∗01] aim to minimize the number of non-
silhouette edges examined (we are not aware of any provably
output-sensitive object-space silhouette algorithm under per-
spective projection). We explore this distinction, along with
existing silhouette extraction algorithms, in Section2.

In this paper, we present an object-space, output-based sil-
houette extraction algorithm. We structure our data in the
3D Hough space, which is shown to possess more desir-
able properties than the often used dual space [PDB∗01].
Our spatial search data structure efficiently supports both
incremental silhouette update — calculating changes in the
silhouette set from frame to frame — and static silhouette
computation — applicable at the start of an animation or af-
ter a large camera movement. The main motivation for our
work is that in a typical polygonal environment, the size
of the silhouette set is much smaller than the size of the
scene [KW97] and silhouette change between consecutive
frames is even smaller. Our main contributions are:

• A novel application of the 3D Hough transform to object-
space silhouette extraction. The more favourable point
distributions obtained, compared to those resulting from
applying the dual-space transform, already give a signifi-
cant speed-up in silhouette updates, with no other changes
to the existing algorithm of Pop et al. [PDB∗01].

• A new silhouette update algorithm based on an incremen-
tal low-level traversal of a novel search graph, which aug-
ments our octree data structure, provides further perfor-
mance improvement.

• A simple characterization of mesh edges with respect to
the origin allows us to achieve efficient (experimentally
shown to be output-sensitive) initial extraction of silhou-
ettes using the same octree-based data structure.

The remainder of the paper is organized as follows. Sec-
tion 2 outlines previous work, focusing on object-space ap-
proaches. Next, we give a theoretical treatment of 3D Hough
transform and discuss its application to silhouette computa-
tion. We also give an overview of our data structure and algo-
rithms, with a more detailed coverage provided in Sections5
and6. In Section7, we demonstrate experimentally that our
approach outperforms the current state of the art. Finally, we
conclude in Section8 and suggest future work.

2. Previous work

Image-space silhouette algorithms exploit discontinuities in
the image buffers obtained from controlled scene render-
ing and detect the discontinuities via image processing, e.g.,
edge detection [IFH∗03]. They are fast, hardware-friendly,
requiring no expensive preprocessing, and even applicable
for dynamic scenes [RC99]. However, these algorithms do
not return an analytical representation of the silhouette set.
In this section, we overview object-space approaches and re-
fer those interested in image-space and hybrid algorithms to
the excellent survey of Isenberg et al. [IFH∗03].

The most obvious method for finding the silhouette edges
of a mesh is simply to consider every edge, testing its adja-
cent faces and adding it to the silhouette if one is front-facing
and the other is back-facing. Buchanan and Sousa [BS00]
avoid checking each face three times by using theedge
buffer, which stores front- and back-facing flags for each
edge; these are set as each face is rendered. Silhouette ex-
traction involves traversing the edge buffer and examining
the flags. However, the work done is proportional to the size
of the whole model and not to the size of the output.

Empirical studies by Kettner and Welzl [KW97] show
that for most commonly-used mesh models, about 10% of
the edges appear on the silhouette. Thus an output-sensitive
silhouette algorithm, despite of a higher cost per face/edge
tested, can be quite desirable. For orthographic projections,
Benichou and Elber [BE99] propose an elegant algorithm
utilizing a central projection of the Gaussian image onto a
tight bounding cube. Based on a regular subdivision of the
cube sides, they develop an approximately output-sensitive
silhouette extraction algorithm by enumerating all projected
arcs on the cube that intersect the view plane. This approach
depends on the view-vector/view-plane duality, which only
holds under orthographic projection. Gooch et al. [GSG∗99]
also rely on the Gaussian sphere, but use a hierarchy of
spherical triangles to facilitate their search.

Hertzmann and Zorin [HZ00] extend the above dual-space
approach into 4D homogeneous space to find silhouettes un-
der perspective projection. The problem is turned into one
of intersecting the triangles on a hypercube’s sides with the
view point’s dual plane, which is conceptually more difficult
than that of finding line-line intersections on the planar sides
of a 3D cube. However, an octree-based spatial subdivision
can speed up silhouette search. From sparse empirical data,
it is reported that the algorithm’s performance “is roughly
linear in the number of silhouette triangles.” Another hierar-
chical search structure adopted for silhouette computation is
the spatialized normal cone hierarchy [JC01].

Pop et al. [PDB∗01] also use a dual-space approach for
silhouette extraction in the perspective, but stay in 3D; we
describe this dual-space transform in Section4. They only
solve the incremental silhouette update problem, using an
octree of points that are dual to the mesh faces. They note
that the view point at two frames correspond to two in-
tersecting view planes in dual space and only points lying
in the two wedges formed by the planes can incur a sil-
houette change. The authors perform range-search queries
against the wedges at each frame by always traversing the
octree from its root. They also point out that standard octrees
tend to perform better than more theoretically optimal search
structures — such as bounded aspect ratio trees [DGK01] —
for meshes with less than a million triangles.

Instead of using a search tree based on spatial subdivi-
sions [BE99, HZ00, PDB∗01], Sander et al. [SGG∗00] con-
struct a hierarchical search forest based on a discrete cluster-

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

ing of mesh edges. Each node in an edge tree stores a set of
edges and two anchored cones as conservative estimates of
the front- and back-facing regions with respect to all faces
incident to edges stored at the node and to edges stored in
its subtrees. If the view point is inside either cone, the node
and its children are culled. Otherwise, each edge associated
directly with the node must be tested, and the node’s chil-
dren are processed recursively. A costly optimization is per-
formed in preprocessing to cluster the edges, forming the
search forest, so as to minimize an expected silhouette ex-
traction cost. Performance roughly linear in the size of the
extracted silhouette is reported. But since spatial coherence
is mostly lost in the edge trees, they cannot be utilized to
perform frame-to-frame silhouette updates.

In this paper, we advocate the use of the 3D Hough trans-
form of mesh faces, organized into an augmented octree,
for efficient update and initial extraction of silhouette. 2D
Hough transforms are well known constructs for line and
circle detections in an image [Jai89]. In a similar spirit, 3D
Hough transforms have been used for mesh retrieval [ZP01].
The dual-space transform has often been used for silhou-
ette [PDB∗01] and other visibility computations, e.g., back
face culling [KMGL96]. Although the 3D Hough transform
has a simple connection to the dual transform (See Sec-
tion 4.1), to the best of our knowledge, it has not been con-
sidered for the same type of problems before. The only other
application of 3D Hough transform to mesh processing we
are aware of is the work of Décoret et al. [DDSD03] and
Meseth and Klein [MK04], for billboard clouds rendering,
where the planes in a scene are mapped into Hough space in
which their density is estimated via binning.

3. Overview of data structure and algorithms

We begin with a set of triangle meshes in a scene and trans-
form each triangle into a point in 3D Hough space. The
backbone of our search data structure is an octree built upon
these Hough-space points. To facilitate fast silhouette extrac-
tion, each octree node, in addition to storing a set of Hough-
space points spatially contained within the octree node, is
augmented with two bounding volumes.

• The point bounding volume (PBV): The PBV is the
tightest bounding volume of the set of Hough-space points
belonging to the octree node. It can be utilized for more
effective culling due to its tighter bounding of the set of
Hough-space points in the octree node.

• The edge bounding volume (EBV): The EBV is the
tightest bounding volume of the set of Hough-space points
related to one or more Hough-space points in the octree
node. We shall make clear of this relation between the
mesh faces later on when we describe our algorithm. The
EBVs are present so that trivial accept or reject of mesh
edges against the silhouette set can be facilitated.

In 3D hough space, the view point is mapped to a sphere,
referred to as thev-sphere, passing through the origin and

the view point itself. The majority of silhouette edges, with
respect to the view point, correspond exactly to the set of
Hough-space point pairs, in which one point lies inside the
v-sphere and the other lies outside. Those that do not fall
into this category are edges that are on the silhouette with
respect to the origin. For initial silhouette extraction, we ap-
ply a standard top-down, hierarchical octree-based culling
scheme using the v-sphere. All octree nodes outside the v-
sphere can be immediately culled away. Any octree node
whose EBV is entirely contained in the v-sphere can also
be culled. Recursion stops when the size of the octree node
reached, measured by the number of Hough-space points it
contains, is sufficiently small. At this point, mesh edges rel-
evant to these points are tested to see whether they are sil-
houette edges. In addition, all edges that are on the silhouette
with respect to the origin are also tested explicitly.

In many interactive applications, e.g., virtual walk-
through or object tracking, the ability to quickly update the
silhouette is highly desirable. Pop et al. [PDB∗01] keep track
of the difference between the silhouette sets at consecutive
frames, in the dual space, and always start the search at the
root of the octree. We show that with the same algorithm,
but executed in Hough space, the performance gain is al-
ready substantial. We improve performance further by tak-
ing advantage of frame-to-frame coherence and conduct an
incremental neighbour search through the octree. A novel
neighbour graph augments our octree and an appropriate se-
lection of search nodes allows us to keep track of silhouette
changes efficiently. Specifically, we only need to examine
octree nodes that straddle or are contained in theactive re-
giondefined by the v-spheres at two consecutive frames.

4. 3D Hough transform for silhouette extraction

In this section, we provide the mathematical background on
3D Hough transforms and show how they can be applied
effectively for silhouette computation. We also relate the
Hough transform to the well-known dual-space transform
and demonstrate the advantages offered by the former.

4.1. 3D Hough transform and dual-space transform

Given a planeπ : ax+by+ cz+d = 0 with normal(a,b,c)
having unit length, ifπ does not pass through the origin,
i.e., d 6= 0, then itsdual, denoted byD(π), is the 3D point
(−a/d,−b/d,−c/d); otherwise,D(π) is thepoint at infin-
ity. Conversely, given any 3D point(a′,b′,c′), its dual plane
is given bya′x+ b′y+ c′z = 1. The 3D Hough transform
H (π) of the planeπ is the 3D point(−ad,−bd,−cd) and
there are no constraints placed on any of the coefficients.

Geometrically, the 3D Hough transform of a triangleT
can be constructed by drawing a line, from the origin, that is
perpendicular to the support plane of the triangle. The point
of intersectionH, between the line and the support plane,
is defined to be the 3D Hough transform of the triangle, as

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

shown in Figure2. All triangles sharing the same support
plane, even those with opposite orientations, are mapped to
the same point in Hough space.

H

MO

z x
v−sphere

V

Triangle with
upward normal

downward normal
Triangle with

Common support plane

y

T

Figure 2: 3D Hough transform H of a triangle T and the
sphere (v-sphere) corresponding to the view point V .

Relating Hough and dual spaces via inversion: An ele-
gant way to relate the Hough transform to the dual trans-
form is through the notion ofinversionwith respect to the
unit sphere centered at the origin. In general, pointsP and
P′ are said to be inverses of each other with respect to a
sphere of radiusr and centered atO, called the center of
inversion, ifP′ lies on the ray

−→
OP and|OP| · |OP′| = r2. By

definition, the point at infinity is inverted to the origin. Inver-
sion in a circle or sphere is a well-studied geometric trans-
formation [Bla00]. Among its many interesting properties,
e.g., conformality, we point out one that is relevant to our
discussion. Namely, the inverse of a line (plane) not passing
through the center of inversion is a circle (sphere) passing
through the center of inversion, and vice versa. It follows that
the dual of a view pointV, which is a plane not through the
origin, is mapped via inversion to a sphere passing through
the originO in Hough space, as shown in Figure2. It can be
shown that this sphere, which we call av-sphere, is centered
at the midpointM of the line segmentOV.

Advantages of Hough transforms: It is easy to show that
any bounding sphereS, centered at the origin, of a set of
triangles also bounds the Hough transforms of the trian-
gles. The tightest bounding sphere for the dual-space trans-
forms however can be much larger thanS. Inversion causes
dual-space points to exhibit a highly nonuniform distribu-
tion, typically with severe clustering about the origin as well
as points extremely far away from the origin; see Figure3
for an example. Besides the precision issues, which influ-
ence the numerical stability of the algorithms, octrees con-
structed in dual space tend to have high and unevenly dis-
tributed leaf depths. These lead to poor performance in both
initial and incremental silhouette extraction, compared to the
use of Hough transforms. Note that Hough-space transforms
of mesh models would also exhibit some level of cluster-
ing around the origin. But empirically, Hough-space silhou-
ette extraction shows far superior performance than its dual-
space counterpart, with the same data structure construction
and search algorithm, e.g., as given in Pop et al. [PDB∗01].

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Dual space: only the first 100 out of 10,000 bins are shown.

H
is

to
gr

am
 p

lo
t o

f p
oi

nt
 d

is
ta

nc
e

fr
om

 o
rig

in

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

Hough space: all 100 bins are shown.

H
is

to
gr

am
 p

lo
t o

f p
oi

nt
 d

is
ta

nc
es

 fr
om

 o
rig

in

Figure 3: Scattered point plots (top) and histogram plots of
distances from the origin (bottom) for the hand model shown
in Figure 8. Left: dual space. Right: Hough space. The ori-
gin is chosen as the centroid of the model. Point plot in dual
space shown is obtained after 10 levels of zooming in Mat-
lab, while the Hough-space plot is shown as is. Some dual-
space points are extremely far from the origin and not visible
in the figure. Evidently, point distribution in Hough space is
much more uniform (less clustering around the origin). This
example is representative of the general trend.

4.2. Silhouette computation in Hough space

Given two adjacent trianglesT1 andT2 sharing a common
edgee and with respective support planesπ1 andπ2, edgee
is a silhouette edge with respect to a view pointV if and only
if the planeπ1, as it rotates aboute until reachingπ2, would
hit V; refer to Figure4(a). Note that the angle of rotation here
needs to be less thanπ. In Hough space, the rotating plane
would trace out acircular arc, whose end points are the
Hough transformH1 = H (π1) andH2 = H (π2), as shown
in Figure4(b). The full circle, which we call theHough cir-
cle for e, is defined by a diameter whose end points areO,
the origin, andE, the intersection between the line extension
of e and a plane passing throughO and perpendicular toe.
We define the Hough transform of the mesh edgee to be this
circular arc traced out by the rotating plane. Clearly, the ori-
entation of the triangles incident toe determine whether the
arc contains the origin; this is precisely related to whethere
is a silhouette edge, when viewed from the originO.

Theorem 1 : The Hough transform of an edgeecontains the
origin O if and only if e is a silhouette edge, viewed fromO.

Theorem 2 : Assume that no edges or their line extensions
pass through the origin. Then an edgee is a silhouette edge
with respect to a view pointV if and only if the Hough trans-
form of e is tangent to the v-sphere defined byV or it inter-
sects the v-sphere through a point other than the origin.

Theorems1 and 2 are the Hough-space equivalents of
Theorems 1 and 2 from Pop et al. [PDB∗01]. Figure5 de-

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

π1 π2

T2

T1
π1

T2T1 π2 O

1

2
H

H VE

e

(b)(a)

V

Figure 4: The Hough transform of an edge. (a) Plane rota-
tion hits view point. (b) Plane rotation traces out a circular
arc (thickened arc between H1 and H2), defined as the Hough
transform of the edge e incident to triangles T1 and T2.

picts the different cases, in an orthographically projected
view with projectors parallel to the edge in question, as an il-
lustration for Theorem1. The assumption in Theorem2 can
be ensured through perturbation in preprocessing. An ele-
mentary proof of Theorem2, one without resorting to the
use of inversion, is given in the Appendix.

H1
H2 H1 H2 H1 H2

H2

H1 H1
H1

H2 H2

OP

(a)

OP

(b) (c)

P O

O

(f)

P

(d)

P O

(e)

P O

Figure 5: The Hough transform (thickened arc) of an edge,
projected to P, contains the origin O if and only if it is a sil-
houette edge, viewed from O; arrows depict plane normals.

Corollary 1: If e is not a silhouette edge, viewed from the
origin, then it is a silhouette edge with respect to a view point
V if and only if H1 andH2, the Hough transform of faces
incident toe, lie on opposite sides of the v-sphere associated
with V. If e is a silhouette edge, viewed from the origin, then
it is a silhouette edge with respect toV if and only if H1 and
H2 lie on the same side of the v-sphere.

This corollary allows us to speed up initial silhouette ex-
traction, since the majority of the edges are typically not on
the silhouette [KW97], when viewed from the origin. To ex-
tract silhouette from this set of edges, with respect to a v-
sphere, one only needs to examine octree nodes inside or
intersecting the v-sphere — details are given in Section6.1.

The situation for incremental silhouette updates is sim-
pler, as we are interested only in thechangein the silhou-
ette set. From framet to framet +1, the membership of an
edge with respect to the silhouette set changes if and only if
the front- or back-facing status of one of its incident faces
changes with respect to the moving view point. Thus it is

sufficient to examine octree nodes inside or intersecting the
active region between the v-sphere at the two frames.

5. Augmented octree in Hough space

We use a bounded augmented octree, built on top of the set
of Hough-space points corresponding to a set of triangles in
a scene, for silhouette extraction. The root of the octree rep-
resents the tightest, axis-aligned bounding box of the whole
point set. Each node in the octree stores the following.

• Eight pointers to its children. A node containing no
Hough-space points is assigned to beNULL.

• Six pointers, possiblyNULL, to its neighbour nodes; this
is explained in detail in Section5.1.

• Three axis-aligned bounding volumes, each requiring six
floats. In addition to theOBV, which bounds the full oc-
tant associated with the node, we also store

– PBV: the tightest bounding box of all the Hough-space
points enclosed by the node; let us denote this set by
W for now. Note that PBV is enclosed by OBV.

– EBV: the tightest bounding box of the set of Hough-
space pointsrelated to a point inW. Specifically, a
Hough-space pointH is related toH ′ ∈W if H = H ′ or
the triangles corresponding toH andH ′ share an edge
and this edge isnot on the silhouette when viewed
from the origin. The EBV is utilized for static silhou-
ette extraction, as explained in Section3 and6.1.

• Extra data to indicate whether the node makes a good
candidate for theactive set. The active-set candidates de-
termine where in the octree we perform neighbour traver-
sal; this is described in details in Section6.3.

In our current implementation, octree nodes are recur-
sively subdivided until each non-empty leaf node has pre-
cisely one Hough-space point. In general, one can stop the
subdivision when the number of Hough-space points in a
node falls below a user-defined threshold.

5.1. The neighbour graph

During incremental silhouette update, we walk from prop-
erly selected octree nodes to their neighbours rather than
always searching from the tree’s root, as in [PDB∗01]. We
build adirected neighbour graphwhose vertices are the oc-
tree nodes and whose edges connect a node to its neighbours.
A node may have up to six neighbours, one across each face
of its OBV. Nodes on the boundary of the octree do not have
neighbours along those boundary faces.

Since our octrees are not fully populated in general, it is
not always immediately obvious which nodes are neighbours
of a given octree node. To determine a node’s neighbour in
a given direction~u (there are six such directions as given
above), where~u is of unit length, we first find aneighbour
point. Consider an octree node whose OBV is centered at

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

pointC with extent or half-widthe along the direction of~u.
The node’s neighbour pointN with respect to~u is C+ 2e~u,
as shown in the upper-left diagram of Figure6(a).

We define theneighbour nodeof an octree nodeR, in a
given direction, as the deepest node in the tree, no deeper
thanR, that containsR’s neighbour point in that direction.
Typically, R’s neighbour would be at the same depth asR,
as shown in the lower-left diagram of Figure6(a). But this
is not guaranteed if the octree is not full. For example, a
node’s neighbour may be its parent, as shown on the right
side of Figure6(a). It is also worth noting that the neighbour
relation is not symmetric in general, as shown in Figure6(b).
Symmetry is ensured only between two neighbouring nodes
that are at the same depth in the octree.

(a) (b)

Figure 6: 2D illustrations of the neighbour relations. (a)
Upper-left: an octree node centered at C with its east neigh-
bour point N. Lower-left: two neighbouring nodes at the
same depth. Right: the east neighbour of a node is its parent.
(b) Asymmetry of the neighbour relation: the north neigh-
bour of the blue node is the red node, whose south neighbour
is the green node (parent of the blue node).

5.2. Edge list

In addition to the augmented octree, we maintain an edge
list to store relevant information for each edge: the position
of each vertex on the edge, and facing (front or back with
respect to the current view point) flags for each face adjacent
to the edge. We can therefore easily determine whether an
edge is on the silhouette or not by checking the facing flags
of its incident faces, as done for edge buffers [BS00].

6. Silhouette extraction algorithms

In Section6.1, we describe our initial silhouette extraction
scheme. Subsequently, we offer two options for identifying
changes to the silhouette on a frame-by-frame basis. One in-
volves a full traversal of the Hough-space octree from the
root at every frame; the other maintains a list of active oc-
tree nodes near the silhouette and proceeds incrementally.
Both algorithms work on the same principle. We are only
concerned with faces that have passed from front-facing to
back-facing, or vice versa. A face changes its facing status
when itcrossesthe v-sphere (defined in Section3). Thus any

Hough-space point that has changed its facing status must lie
within the symmetric difference between the v-spheres at the
current and the previous frames; we refer to this symmetric
set difference as theactive region.

We maintain two v-spheres, one for the current frame
and one for the previous frame, during view point changes.
At each frame, we consider octree nodes whose associated
PBVs intersect the active region. Once we have identified
all the faces whose facing status relative to the view point
has changed, we change the edge flags associated with these
faces, retest those edges affected for silhouette status, and
add or remove them from the silhouette set of the scene.

6.1. Initial silhouette extraction

In preprocessing, we determine the setS
+(O) of edges that

are on the silhouette with respect to the originO. Denote the
remaining set of edges byS −(O). Given a view pointV, all
edges inS +(O) will simply be tested explicitly againstV to
determine their silhouette status with respect toV. Note that
|S +(O)| is expected to be small and comparable to the size
of the silhouette set with respect to the view pointV. Thus
the cost of these explicit tests is expected to be roughly the
same as the size of the extracted silhouette.

To extract silhouette edges with respect toV from the set
S

−(O), we traverse the octree from its root. Pseudocode for
the recursive search algorithm is given below:

extract_initial_sil(node* n) {
if (n == NULL || outside_vsphere(n->PBV)

|| inside_vsphere(n->EBV))
return;

if (num_hough_pts_in_node(n) < threshold) {
test_all_faces_in(n);
return;

}

for (k = 0; k < 8; k++)
extract_initial_sil(n->kids[k]);

}

test_all_faces_in(node* n) {
for (f = 0; f < n->n_faces; f++) {

determine_facing_of(n->faces[f]);
check_edges_on(n->faces[f]);

}
}

To initiate incremental silhouette search, to be described
in Section6.3, we add appropriate octree nodes that intersect
the v-sphere at thefirst time frameto its active set. Details
on active sets are given in Sections6.3and6.4.

6.2. Full-traversal silhouette update

For full traversal, we start at the root of the Hough-space
octree at each frame, analogous to Pop et al. [PDB∗01], and
descend into nodes whose PBVs intersect the active region.
Recursion stops when the number of Hough-space points in
a node is sufficiently small; these points are tested for facing
to decide the silhouette status of their adjacent edges. If a
node’s PBV is contained by the active region, all the Hough-
space points therein also undergo the facing test.

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

6.3. Incremental silhouette update

Between consecutive time framest andt +1, our incremen-
tal silhouette search aims at quickly identifying all Hough-
space points lying within the active region; mesh faces cor-
responding to these Hough-space points are tested to update
the silhouette. Rather than searching from the root, as for
full traversal, we walk along nodes deep in the octree so as
to avoid computations on interior nodes close to the root.

Our search starts with a set of octree nodes in theactive
set for frame t. Each node in this active set must intersect
the v-sphere for framet and be anactive-set candidate. Note
that not all octree nodes are deemed to be active-set candi-
dates. A judicious choice of the set of active-set candidates
plays an important role in speeding up incremental silhouette
updates; this is described in details in the next section.

For silhouette update at framet +1, we perform a breadth-
first search through the neighbour graph (see Figure7),
starting with nodes in the active set for framet. During
the search, we recurse into octree nodes partially contained
in the active region, performing intersection tests between
bounding volumes and the active region. For a node com-
pletely contained in the active region, all the Hough-space
points therein undergo the simpler facing test against the
view point. A pseudocode is given below; it takes as input
the active set at framet and returns the active set at frame
t +1, which initiates incremental search in the next frame.

find_incr_sil(queue* active_set) {
queue* next_active = empty_queue();

while (node* n = dequeue(active_set)) {
if(checked_this_frame(n)) continue;

if (active_region_contains(n))
test_all_faces_in(n);

else
enqueue_kids(active_set, n);

enqueue_nbrs(active_set, n);

if (n->active_candidate &&
intersects_current_vsphere(n))

enqueue(next_active, n);

mark_as_checked(n);
}
return next_active;

}

Figure 7: A partial example of incremental search. The red
(respectively, blue) arc is part of the boundary of the v-
sphere at frame t (resp., frame t+ 1), and the red (resp.,
blue) nodes are from the active set for that frame. Breadth-
first search proceeds from the red nodes, through the gray
nodes (and their parents), and ends at the blue nodes.

6.4. Selection of active-set candidates (ASCs)

If we allow incremental search to proceed along leaf (i.e.,
lowest-level) nodes of the octree, we may end up processing
a large number of nodes during traversal of the active region.
Ideally, we wish to cross the active region in few steps to
avoid the overhead of many bounding box checks and queue
updates. To this end, nodes at higher levels in the tree are
preferred. On the other hand, if an octree node is completely
contained in the active region, we need not check any of its
children’s bounding boxes — we can simply report all of the
faces contained in its subtrees as changed. We are therefore
interested in identifying nodes which are above leaves in the
tree, but are still sufficiently low-level to avoid searching a
large number of interior nodes. We call these nodesactive-
set candidatesor ASCs, as we will add only these nodes to
the active set at any time. We must be careful to ensure that
every leaf node has an ASC above it in the octree.

A simple and reasonably effective way to choose ASCs
would be to select the so-calledtwig nodes— nodes that
contain a leaf child. However, twig nodes may vary in depth
considerably across an unbalanced octree and may still be
too small for a large mesh with a deep Hough-space octree.
We thus resort to a different heuristic to produce a more suit-
able set of ASCs. Intuitively, we select nodes whose sub-
trees are well balanced, so as to take maximal advantage of
hierarchical octree culling when the node intersects the ac-
tive region, and whose neighbours are at the same or similar
depths. We first define an ASC-cost for each node in the oc-
tree,

ASC-cost(node) {
subtree_cost = node->depth / node->num_kids

nbr_cost = 0.0
for (n in node->neighbours)

nbr_cost += abs(node->depth - n->depth)
nbr_cost /= node->num_nbrs

return w1 * subtree_cost + w2 * nbr_cost
}

wherew1 andw2 are set by experimentation to be 2.0 and
0.25, respectively.

We identify the set of ASCs in an octree in preprocessing
by first computing the ASC-cost of each node. To ensure that
the candidate set stays near the leaves, we will only make a
node an ASC if its children are either leaf nodes or ASCs
themselves. If the ASC-cost of a node is less than the average
ASC-cost of its ASC children, we remove the child nodes
from the set of ASCs and insert the current node. We iterate
this process until no changes to the set of ASCs are made.

7. Experimental results

We have tested our methods, as well as a simple dual-
space silhouette extraction algorithm similar to that of Pop
et al. [PDB∗01], on a PC running Linux 2.6.8 with an Intel
Xeon 2.80GHz processor, 2GB of memory, and an NVidia
GeForce 6800 GT. Six test models, shown in Figure8, are

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

Figure 8: Test models (from left to right and top-down):
Hand (face count: 12K); Horse (40K); Bone (65K); Bunny
(70K); Igea (268K); Dragon (300K).

used, with face counts ranging from 12K to 300K. The pri-
mary performance measure is the number of bounding box
checks (against v-spheres for intersection tests) executed, as
this is the most significant elementary operation used in the
silhouette extraction algorithms.

7.1. Static silhouette extraction

We have tested our static (initial) silhouette extraction algo-
rithm on the test models at varying levels of details, choos-
ing 10 random view point for each resolution and averaging
the results. As we can observe from Figure9, the number
of bounding box tests in silhouette extraction scales linearly
with the size of the silhouette, while the size of the model
scales faster; we typically expect the silhouette size to be
O(

√
n) relative to the model sizen [KW97]. While several

other papers, e.g., [HZ00,SGG∗00], have presented static sil-
houette extraction methods which experimentally scale lin-
early with the size of the silhouette, none of them supports
incremental silhouette extraction on the same data structure.

7.2. Incremental silhouette extraction

We have tested our incremental silhouette extraction algo-
rithms by moving a view point along a fixed circular path
on thexz plane around the test models. Figure10 shows
the number of bounding box checks for three methods: full-
traversal (always traversing from the root, as explained in
Section6.2) and incremental Hough-space methods and a
simple full-traversal dual-space algorithm [PDB∗01].

Silhouette extraction in Hough space significantly out-
performs its counterpart in dual space. Incremental search
through nodes near the leaves provides a noticeable and con-
sistent improvement over the full-traversal approach, though
not as great a gain as that achieved by moving from dual
space to Hough space. Dual-space search has to cull away far
more interior nodes than either Hough-space algorithm, and
in Hough space, full-traversal search must cull more nodes

200 400 600 800
0

2000

4000

6000

8000

10000

12000

14000
Hand

Mesh model size
No. of bounding box checks

500 1000 1500 2000 2500
0

1

2

3

4
x 10

4 Horse

Mesh model size
No. of bounding box checks

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7
x 10

4 Bone

Mesh model size
No. of bounding box checks

500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7
x 10

4 Bunny

Mesh model size
No. of bounding box checks

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3
x 10

5 Igea

Mesh model size
No. of bounding box checks

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

x 10
5 Dragon

Mesh model size
No. of bounding box checks

Figure 9: This plot experimentally shows output sensitivity
of our static silhouette extraction. Horizontal axis gives av-
erage silhouette size (computed for 10 random view points).
Plotted in red is the model size and in blue the number of
bounding-box checks (exhibiting a roughly linear behavior).

than incremental update. It is also worth noting that Hough-
space algorithms exhibit much more stable behavior from
frame to frame, compared to the dual-space algorithm, as
the octrees built around Hough-space points are more evenly
balanced than those in dual space.

The three algorithms are more evenly matched in terms of
the number of face checks (sidedness test against view point)
performed, as shown in Figure11 for two of the test mod-
els. Further, bounding-box checks are far more expensive
than face checks, with roughly twice the number of floating-
point operations and five times the number of conditional
branches. Therefore, while the number of face checks per-
formed by a silhouette extraction algorithm is important, the
improved performance of our algorithms is best seen by ex-
amining bounding-box tests, as in Figure10.

7.3. Histogram of leaf node depths

The performance of Hough-space algorithms relative to their
dual-space counterparts may be explained by certain charac-
teristics of the octrees generated for the respective point sets.
Figure12 shows histograms of leaf node depths for Hough-
space and dual-space octrees. Specifically, we plot the num-
ber of leaf nodes at various tree depth levels. Hough-space
octrees for all test models are consistently and considerably
shallower, which leads to fewer interior nodes, fewer bound-
ing box checks, and more efficient subtree culling.

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

0 1 2 3 4 5 6
0

2000

4000

6000

8000

Hand

Angles in a 360−degree rotating view
0 1 2 3 4 5 6

0

0.5

1

1.5

2

x 10
4 Horse

Angles in a 360−degree rotating view

0 1 2 3 4 5 6
0

1

2

3

4
x 10

4 Bone

Angles in a 360−degree rotating view
0 1 2 3 4 5 6

0

5000

10000

15000

Angles in a 360−degree rotating view

Bunny

0 1 2 3 4 5 6
0

1

2

3

4

5
x 10

4

Angles in a 360−degree rotating view

Igea

0 1 2 3 4 5 6
0

2

4

6

8

x 10
4 Dragon

Angles in a 360−degree rotating view

Figure 10: Number of bounding box checks under incremen-
tal silhouette extraction for our test models. Results for the
full-traversal Hough-space algorithm are given in green; re-
sults for incremental tree search in Hough space are given
in blue; results for full-traversal in dual space are given in
red. The vertical axes denote the number of checks; the hor-
izontal axes denote the position of the view point, given by
an angle in the xz plane measured from the+x direction.

0 1 2 3 4 5 6
0

2000

4000

6000

8000

10000

Igea

Angles in a 360−degree rotating view
0 1 2 3 4 5 6

0

0.5

1

1.5

2
x 10

4 Dragon

Angles in a 360−degree rotating view

Figure 11: Number of face checks under incremental silhou-
ette extraction for two test models. Colours and axes used
are the same as for Figure10.

8. Conclusion and future work

We present a complete framework for silhouette extraction
in 3D Hough space. Both initial extraction of silhouettes and
incremental frame-to-frame updates are efficiently imple-
mented on a common augmented octree data structure. Our
data structure is efficient to construct and enables both hier-
archical traversal and low-level neighbour search; the latter
is executed on a novel neighbour graph defined for octrees.
Our initial silhouette extraction scheme allows for effective
culling, relying on a simple characterization of mesh edges
in preprocessing, and its performance is empirically shown
to be linear to the size of the silhouette extracted. Switching

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

Hand

0 10 20 30
0

2000

4000

6000

8000

10000

12000
Horse

0 10 20 30 40
0

5000

10000

15000

Bone

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
x 10

4 Bunny

0 5 10 15 20 25 30 35
0

2

4

6

8
x 10

4 Igea

0 10 20 30 40
0

2

4

6

8

x 10
4 Dragon

Figure 12: Histogram plots for the depths of leaves in an
octree. Red: dual space. Blue: Hough-space.

from the dual space to Hough space alone results in a signif-
icant speed-up for silhouette updates. Further performance
gains are consistently obtained through neighbour traversal,
instead of always starting the search at the octree root. How-
ever, current improvements are seen to be marginal.

One way to improve our current approach is to optimize
the search data structure with judicious choice of the origin
or a set of origins; the latter appears to be a clustering prob-
lem. In the single-cluster case, an interesting problem would
be to find an origin for which the resulting Hough-space
points, for a given mesh, are most uniformly distributed. At
the same time, it is also desirable to reduce the size of the
EBVs to enable more effective culling. Both can be posed as
optimization problems. Also related to the phenomenon of
clustering around the origin, an alternative as our search data
structure may be a spherical octree, for which denser subdi-
vision occurs close to the origin; the resulting octree will be
more balanced than our current Cartesian, axis-aligned oc-
tree. Ultimately, we wish to find a provably output-sensitive
algorithm for incremental silhouette extraction under per-
spective projection; such an algorithm is still elusive.

Finally, none of the existing silhouette extraction algo-
rithms lends itself to use on large, multiresolution meshes,
despite of the fact that silhouette extraction on these meshes,
particularly large terrains, may lead to efficient occlusion
culling with much lower preprocessing cost than visibility
complexes. Efficient silhouette extraction on multiresolution
structures such as spline patches and subdivision surfaces

c© The Eurographics Association and Blackwell Publishing 2006.

Matt Olson & Hao Zhang / Silhouette Extraction in Hough Space

may also be of great benefit to non-photorealistic animation.
We would like to adapt our methods to these structures.

Acknowledgment: This research is supported in part by an
NSERC grant (Grant no.: 611370) from the second author.
Travel funding is partially provided by the Faculty of Ap-
plied Sciences, Simon Fraser University. For mesh decima-
tion and model display in Figure8, the Qslim and Qvis soft-
ware of M. Garland have been used.

References

[BE99] BENICHOU F., ELBER G.: Output sensitive ex-
traction of silhouettes from polygonal geometry. InProc.
of Pacific Graphics(1999), pp. 60–69.

[BKR∗05] BURNS M., KLAWE J., RUSINKIEWICZ S.,
FINKELSTEIN A., DECARLO D.: Line drawings from
volume data.ACM Trans. Graph. 24, 3 (2005), 512–518.

[Bla00] BLAIR D. E.: Inversion Theory and Conformal
Mapping. American Mathematical Society, 2000.

[BS00] BUCHANAN J. W., SOUSA M. C.: The edge
buffer: A data structure for easy silhouette rendering. In
Proc. of the 1st Int. Symp. on Non-Photorealistic Anima-
tion and Rendering (NPAR)(2000), pp. 39–42.

[Cro77] CROW F. C.: Shadow algorithms for computer
graphics. InACM SIGGRAPH(1977), pp. 242–248.

[DDSD03] DÉCORET X., DURAND F., SILLION F. X.,
DORSEY J.: Billboard clouds for extreme model simpli-
fication. ACM Trans. Graph. 22, 3 (2003), 689–696.

[DGK01] DUNCAN C. A., GOODRICH M. T.,
KOBOUROV S.: Balanced aspect ratio trees: Com-
bining the advantages ofk-d trees and octrees.Journal of
Algorithms 38(2001), 303–333.

[GSG∗99] GOOCH B., SLOAN P.-P., GOOCH A.,
SHIRLEY P., RIESENFELDR.: Interactive technical illus-
tration. InACM Symp. on Interactive 3D Graphics(1999),
pp. 31–38.

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth
surfaces. InIn ACM SIGGRAPH(2000), pp. 517–526.

[IFH∗03] ISENBERGT., FREUDENBERGB., HALPER N.,
SCHLECHTWEG S., STROTHOTTE T.: A developer’s
guide to silhouette algorithms for polygonal models.
IEEE Comput. Graph. Appl. 23, 4 (2003), 28–37.

[IHS02] ISENBERG T., HALPER N., STROTHOTTE T.:
Stylizing silhouettes at interactive rates: From silhouette
edges to silhouette strokes.Computer Graphics Forum
21, 3 (2002), 249–258.

[Jai89] JAIN A. K.: Fundamentals of Digital Image Pro-
cessing. Prentice Hall, 1989.

[JC01] JOHNSON D. E., COHEN E.: Spatialized normal
cone hierarchies. InProc. of the Symp. on Interactive 3D
Graphics(2001), pp. 129–134.

[KMGL96] K UMAR S., MANOCHA D., GARRETT W.,
L IN M.: Hierarchical back-face computation. InProc.
of the Eurographics Workshop on Rendering Techniques
(1996), pp. 235–253.

[KW97] K ETTNER L., WELZL E.: Contour edge analysis
for polygonal projections. InGeometric Modeling: The-
ory and Practice(1997), Strasser W., Klein R.„ Rau R.,
(Eds.), pp. 379–394.

[MK04] M ESETH J., KLEIN R.: Memory efficient bill-
board clouds for btf textured objects. InProc. of Vision,
Modeling, and Visualization(2004), pp. 167–174.

[MKG∗97] MARKOSIAN L., KOWALSKI M. A., GOLD-
STEIN D., TRYCHIN S. J., HUGHES J. F., BOURDEV

L. D.: Real-time nonphotorealistic rendering. InACM
SIGGRAPH(1997), pp. 415–420.

[PDB∗01] POP M., DUNCAN C., BAREQUET G.,
GOODRICH M., HUANG W., KUMAR S.: Efficient
perspective-accurate silhouette computation and applica-
tions. InProc. of Annual Symp. on Computational geom-
etry (2001), pp. 60–68.

[PF02] PLAENKERS R., FUA P.: Model-based silhouette
extraction for accurate people tracking. InEuropean Conf.
on Computer Vision(2002), pp. 325–339.

[RC99] RASKAR R., COHEN M.: Image precision silhou-
ette edges. InProc. of the Symp. on Interactive 3D Graph-
ics (1999), pp. 135–140.

[SGG∗00] SANDER P. V., GU X., GORTLER S. J.,
HOPPE H., SNYDER J.: Silhouette clipping. InACM
SIGGRAPH(2000), pp. 327–334.

[ZP01] ZAHARIA T., PRETEUX F.: Hough transform-
based 3d mesh retrieval. InProc. of the SPIE Conf. 4476
on Vision Geometry X(2001), pp. 175–185.

Appendix

π1

π2

1H

e

π

V

E

H

O
ρ

[Proof of Theorem 2:] Refer to fig-
ure to the right. First assume that
e is a silhouette edge with respect
to view pointV. Then as the sup-
port planeπ2 rotates about the edge
e towardsπ1,V will be hit. Letπ be
the “hit” plane. LetH be the Hough
transform ofπ, which lies along the
Hough transform ofe. Let O be the
origin. Then the Hough circle ofepasses throughO andH. It
follows thatOH ⊥ EH. As the support planeρ of the Hough
circle is penpendicular toπ, OH ⊥ π. ThusOH ⊥ HV and
H must lie on the v-sphere determined byV. Conversely, if
the v-sphere intersects the Hough transform ofe at H, then
OH ⊥ EH andOH ⊥ HV. It follows thatOH ⊥ π and thus
ρ ⊥ π. Hence the planeπ passes throughe. SinceH is on
the Hough transform ofe, π is an intermediate rotating plane
that hitsV, which implies thate is a silhouette edge with re-
spect toV. Finally, it is not hard to see that the tangency case
in the theorem occurs whenπ passes throughO.

c© The Eurographics Association and Blackwell Publishing 2006.

