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Fig. 1. Carvable volume decomposition computed by our algorithm for the high-genus Fertility model, with 6 carving directions (indicated by the yellow
arrows) and a total of 10 carvable volumes (one carving direction may yield multiple volumes, e.g., 3 volumes for the second direction). Three insets show
physical outputs produced by CNC rough machining. Each carvable volume is continuously carved following a connected Fermat spiral toolpath.

We introduce carvable volume decomposition for efficient 3-axis CNCmachin-

ing of 3D freeform objects, where our goal is to develop a fully automatic

method to jointly optimize setup and path planning. We formulate our joint

optimization as a volume decomposition problem which prioritizes minimiz-

ing the number of setup directions while striving for a minimum number of

continuously carvable volumes, where a 3D volume is continuously carvable,

or simply carvable, if it can be carved with the machine cutter traversing

a single continuous path. Geometrically, carvability combines visibility and

monotonicity and presents a new shape property which had not been studied

before. Given a target 3D shape and the initial material block, our algorithm

first finds the minimum number of carving directions by solving a set cover
problem. Specifically, we analyze cutter accessibility and select the carving

directions based on an assessment of how likely they would lead to a small

carvable volume decomposition. Next, to obtain a minimum decomposition

based on the selected carving directions efficiently, we narrow down the

solution search by focusing on a special kind of points in the residual volume,

single access or SA points, which are points that can be accessed from one
and only one of the selected carving directions. Candidate carvable volumes

are grown starting from the SA points. Finally, we devise an energy term

to evaluate the carvable volumes and their combinations, leading to the

final decomposition. We demonstrate the performance of our decomposition

algorithm on a variety of 2D and 3D examples and evaluate it against the

ground truth, where possible, and solutions provided by human experts.

Physically machined models are produced where each carvable volume is

continuously carved following a connected Fermat spiral toolpath.
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1 INTRODUCTION
As computer graphics research continues to push the envelope in ad-

ditive manufacturing, in particular, 3D printing, some recent works

have studied compelling geometry problems related to subtractive
manufacturing such as CNC machining [Hattab and Taubin 2019;

Muntoni et al. 2018; Rivers et al. 2012; Zhao et al. 2018]. Today,

CNC machining remains the dominant manufacturing process for

high-volume production of finished 3D products. Compared to 3D

printing, CNCmachining is typically faster and capable of producing

larger and stronger parts, with smoother surface finishes. However,

subtractive manufacturing has a complicated setup and planning

process, which is typically done manually by experts [Al-wswasi

et al. 2018]. Automation of this step is fundamental to inspire a new

age of batch-of-one production of customized designs.

In this paper, we study the problem of rough-stage1 3-axis CNC
machining of freeform 3D objects. As the most commonly applied

subtractive manufacturing technology today, a 3-axis CNC machine

moves with three degrees of freedom: two horizontal axes and the

depth axis aligned with the orientation of the machine’s cutter.

We address the geometry problem of controlling the movement of

the cutter around a block of material (typically a cuboid to start

with) to carve out the residual volume, defined as the difference

1
In this stage, a rough 3D object is produced by the CNC machine; this is followed by

fine-stage machining to finalize the subtractive manufacturing.

ACM Trans. Graph., Vol. 39, No. 6, Article 203. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417772
https://doi.org/10.1145/3414685.3417772


203:2 • Ali Mahdavi-Amiri, Fenggen Yu, Haisen Zhao, Adriana Schulz, and Hao Zhang

(a) (b) (c)

z
z z

Fig. 2. The same shape with different carving directions (dark arrowmarked
by 𝑧) and carving paths: (a) a continuous zigzag; (b) zigzag with many path
transitions (red dots); (c) a path with less number of transitions.

between the input material block and the target 3D shape. Due to

self-obstructions by the shape parts (e.g., see the high-genus Fertility

model in Figure 1) and physical limitations of the CNC machine,

e.g., cutter length, it is often not possible to complete the carving of

an arbitrary shape from a single direction. Setup planning is the task
where a set of orientations for setting up the block of material is

defined. This task is followed by toolpath planning, which optimizes

the cutter movement paths for efficient machining.

Finding the minimum number of setup directions is typically the

most important consideration, given the time and precision the man-

ual setup would require. However, there are often many solutions

with the same number of setups, with some solutions significantly

better than the rest, if we take into account how the residual volume

is carved. To illustrate, consider the example in Figure 2. All three

paths shown can carve the full residual volume with a single setup.

But solution (a), with its setup direction 𝑧, induces a continuous
motion which would minimize the overall carving time. On the

other hand, the other setup direction in (b) and (c) does not allow a

continuous path; the cutter must be repositioned multiple times (red

points) during machining. Among the two remaining solutions, a

straightforward zigzag path (b) would incur many cutter transitions

(i.e., stop-n-go’s) than a more sophisticated path (c).

Hence, there is an inherent interdependence between setup and

path planning, leading to a challenging computational problem

which is compounded by the geometric complexity of the target 3D

object.

The goal of our work is to jointly optimize setup and path plan-

ning by focusing on minimizing both the number of setup directions

and the number of carving path transitions/repositions, while giving

priority to the former. To formulate the problem, we make two key

observations both illustrated by Figure 2. First, the total number of

path transitions is precisely the number of regions of the residual

volume each of which can be carved with one continuous motion,

e.g., 1 in Figure 2(a) and 3 in 2(c). In other words, these paths induce

a decomposition of the residual volume. Second, continuity of the

carving depends on the choice of toolpaths; see Figure 2(b) vs. (c).

It is known that any connected 2D region can be traversed con-

tinuously using a connected Fermat spiral [Zhao et al. 2016], but

not zigzag. These observations allow us to formulate our joint opti-

mization as a single decomposition problem of the residual volume,

which prioritizes minimizing the number of setup directions while

striving for a minimum number of continuously carvable, or simply

z

(a) 3D carvable volume.

(c) Visible but not carvable. (d) Convex, pyramidal, 

monotone, but not carvable.

(b) Carvable but 

not convex or pyramidal.

z

z
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Fig. 3. Illustration of carvability, convexity, visibility, pyramidality, mono-
tonicity, and a comparison between them. (a) A 3D carvable volume with
two layers shown. (b-c) There is no causal relation between carvability and
convexity, or pyramidality. While visibility (c) and monotonicity (d) are both
necessary for carvability, neither is sufficient. We also show one single path
of top-down, layer-by-layer carving of the shapes (b-d).

carvable, volumes. We refer to this problem as carvable volume de-
composition. Clearly, all volumes that are carvable with respect of

a setup direction should be carved sequentially to avoid switching

setups. Optionally, we can also account for cutter length, i.e., the
length of the CNC cutter that carves the residual volume, where

shorter cutters are preferred to minimize vibration during carving

and layers with larger areas induce less bending along the cutter

paths, preventing slowdowns. Both of these considerations motivate

minimizing the depth of carvable volumes.

Motivated by the continuous carving capabilities of connected

Fermat spirals, we define a volume to be carvable, with respect to a

depth/vertical direction 𝑧, if it is entirely visible from the direction

𝑧, and every horizontal cross-section, called a layer , of the volume

is a connected region (possibly with holes); see Figures 3(a) and (b).

While carvability is related to convexity, visibility, pyramidality [Hu

et al. 2014] (i.e., the volume is a height field over a flat base), and

monotonicity
2
, it is a new and different geometric property from all

of them, as illustrated in Figures 3(b-d). Specifically, our carvability

definition is equivalent to requiring both visibility and monotonicity,

while allowing the cross-sections to have holes.

To the best of our knowledge, carvable volume decomposition

has never been studied before. Providing an NP-hardness proof for

the problem is beyond the scope of our work, but it is quite con-

ceivable that the problem is hard, given that related decomposition

problems including exact convex decomposition, monotone poly-

gon decomposition for polygons with holes [Keil 1985], as well as

exact 3D pyramidal decomposition [Fekete and Mitchell 2001] are

all provably NP-hard. Hence, as a first attempt, we present a novel,

heuristic solution, which is outlined in Figure 4.

2
A 2D polygon 𝑃 is monotone with respect to a straight line 𝐿, if every line orthogonal

to 𝐿 intersects 𝑃 at most twice. A 3D volume is weakly monotonic in direction 𝐿 if all

cross-sections orthogonal to 𝐿 are simple polygons [Toussaint 1985].
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(c) Selected carving directions. (e) Candidate carvable volumes.(a) Residual volume. (b) Sampling and candidate carving directions. (d) Single access sets. (f ) Final carvable segments.

Fig. 4. Overview of our carvable volume decomposition algorithm. Given a target object and the material block (a), our first task is to find a minimum
number of carving directions along which the entire residual volume can be accessed by the cutter. To this end, we sample the residual volume spatially and
direction-wise (b), perform visibility and accessibility analysis to find a set of candidate carving directions with minimum cardinality, which is three in this
example, and then select the best candidate (c) from the set. Next, we find a minimal carvable volume decomposition based on (c). Specifically, we identify SA
(single access) sets (d) with respect to the selected carving directions, where an SA set consists of all points that can be accessed by one and only one carving
direction. Candidate carvable volumes (e) are obtained by a growing process starting from the SA sets. Finally, we devise an energy term to evaluate the
carvable volumes and their combinations; results with the lowest energies constitute the final decomposition (f).

Our method works by first finding the minimum number of setup,

i.e., carving directions, by solving a set cover problem. Specifically,

we analyze visibility and accessibility, based on cutter length, and

select the carving directions based on an assessment of how likely

they would lead to a small carvable volume decomposition; see

Figure 4(b-c). In the next and core step of the algorithm, we obtain

a minimum decomposition of the residual volume, based on the

selected carving directions. Clearly, we prioritize the minimization

of the number of setup directions by solving that problem first,

while our selection of the best candidate does strive for finding a

minimum carvable volume decomposition.

Due to the immense solution space, our main strategy is to nar-

row down the search by first identifying points that can only be

carved from one of the selected directions. Clearly, to compute a

carvable volume for these points, we only need to consider that one

carving direction. Indeed, our second key observation is that while

most points in the residual volume can be accessed by the cutter

from multiple carving directions, there are “special points” that can

be accessed from one and only one of the directions, as shown in

Figure 4(d). We call such a set of points a single access set, or SA set,

and prove that SA sets must exist for each carving direction. Given

the unique association of an SA point with a carving direction, a sen-

sible heuristic for finding a minimum volume decomposition would

be to start from a maximal SA set, and grow an as-large-as-possible

carvable volume with respect to its associated carving direction.

However, due to the extra monotonicity requirement for carvability,

we often need to find multiple carvable volumes to cover all SA

points for a given direction. To this end, we develop a scheme to

find a minimum number of SA seeds for each SA set, from which we

grow a set of carvable volumes to constitute the final decomposition

of the entire residual volume; see Figure 4(e-f).

We demonstrate the performance of our carvable volume decom-

position algorithm on a variety of 2D and 3D examples and evaluate

it against ground truth results, where possible, and solutions pro-

vided by human experts. Our algorithm is quite fast, requiring few

minutes to run on moderately complex 3D models. This can signifi-

cantly reduce human workload during setup planning. Finally, real

CNC machining results based on our decomposition and Fermat

spiral toolpaths [Zhao et al. 2018] are obtained; see Figure 1.

2 RELATED WORK
In the computer-aided design (CAD), computer-aided manufactur-

ing (CAM), and mechanical engineering domains, there has been

extensive literature on CNC machining, but mainly toolpath plan-

ning [Choi and Jerrard 1998; Lasemi et al. 2010]. Computer-assisted

process (i.e., setup) planning (CAPP) has been a long-standing topic

in these areas. However, “due to the enormous complexity of the

nature, and the dynamic aspects of the process planning task”, it is

still predominantly a manual process, relying on expert knowledge

and experience of the machinists [Al-wswasi et al. 2018]. We are not

aware of any work from the CAD/CAM/manufacturing literature

which addressed the volume decomposition problem as posed in our

paper. On the other hand, surface and volume decomposition has

been a well-studied problem in computer graphics with numerous

applications. Our coverage will focus on those most closely related

to our work, e.g., height-field surface decomposition. But first, we

start with some necessary CNC machining basics.

Rough- vs. fine-stage machining. Our work belongs to rough-stage
machining where the carving starts from the initial material block

and stops “close to” the target object. This is followed by fine-stage

machining for final surface finish. Due to accessibility issues, both

stages would involve decomposition, with the rough stage operating

on the residual volume, leading to our volume decomposition prob-

lem. In contrast, the fine stage operates close to the target object’s

surfaces — the ensuing accessibility analysis poses a surface de-

composition problem, which has been studied by Zhao et al. [2018]

recently. There are other differences between the two stages, e.g., the

shape and size of the cutters and the fixtures employed for stabiliza-

tion. Our work does not fully account for all these issues and focuses

on the geometric problem of carvable volume decomposition. Rough

machining typically takes as input an allowed error threshold that

ACM Trans. Graph., Vol. 39, No. 6, Article 203. Publication date: December 2020.
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is determined by the machinists and depends on the properties of

the cutters chosen for both stages. Taking this into account when

computing the path for rough machining is important to optimize

the fabrication time. Not accounting for this allowance would make

the rough machining state slower simply to avoid impressions that

will be taken care of in a later stage regardless.

Height-field surface decomposition. Decomposing a surface into

height-field pieces has seen early applications such as printing cul-

tural art works [Alemanno et al. 2014]. For molding applications,

Herholz et al. [2015] studied the problem of decomposing the surface

of a 3D object into a set of non-overlappling height-fields. Clearly,

each height-field is visible from the outside of the object along

the height direction, allowing a mold to cover that surface area. In

DSCarver, the work by Zhao et al. [2018] for fine-stage CNC ma-

chining, the surface decomposition method of Herholz et al. [2015]

was employed as a sub-routine. In FlexMolds, Malomo et al. [2016]

develop a greedy heuristic to segment a surface where each segment

is almost a height-field so as to allow a flexible mold to be applied.

Similarly, Alderighi et al. [2018] use a relaxed visibility constraint

to define moldability for making silicone molds.

The key distinction between moldability/visibility and carvability,

assuming that the molds are rigid (i.e., not deformable [Malomo et al.

2016]), is that the latter also requires monotonicity; see Figure 3.

Figure 2 shows that different visibility-inducing directions, which

all represent acceptable solutions to height field surface decompo-

sition, could lead to significant discrepancies in carving efficiency.

Furthermore, the decomposition of Herholz et al. [2015] is limited

to genus-zero shapes; it cannot handle models such as the Fertility.

Volume decomposition. Volume decomposition has been studied

well for computational fabrication and 3D printing [Alderighi et al.

2019; Livesu et al. 2017; Sá et al. 2016; Stein et al. 2019]. Chopper [Luo

et al. 2012] decomposes a 3D shape into parts each of which can fit

into the printing volume of a 3D printer. Dapper [Chen et al. 2015]

goes one step further and optimizes packing of the parts in a compact

manner to best utilize the printing volume. Jacobson [2017] solves a

nested packing problem to replicate a Generalized Matryoshka. Hu

et al. [2014] decompose a 3D object into a few approximately pyra-

midal parts so that each part can be fabricated using an FDM printer

with minimal support waste. While pyramidality and carvability

both possess the height-field property, one over a flat base and the

other over an arbitrary base, not all pyramidal shapes are carvable;

see Figure 3. Monotonicity is a necessary condition for carvability.

We are only aware of works from computational geometry which

decompose a planar polygon into monotone pieces, e.g., [Keil 1985;

Wei et al. 2012]. In the 3D case, one could only find the work by

Bose and van Kreveld [2005] which studies the recognition of weak

monotonicity of polyhedra.

Muntoni et al. [2018] seek a volume decomposition of a 3D object

into height-field (i.e., pyramidal) blocks. Their method starts with a

height-field surface decomposition and “intrudes” from these surface

segments into the object, along the height direction, to obtain the

blocks. While pyramidality ensures that the block can be easily

manufactured via 3-axis CNC milling, the machining time is not

explicitly optimized for. In contrast, a part obtained by our method

is from the residual volume — it is carved off by a CNC machine;

(a) (b) (c)

Fig. 5. Extrusion from surface decomposition vs. volume decomposition,
illustrated in 2D. An optimal height-field surface decomposition has three
segments, which can be extruded to obtain three carvable volumes (a).
Surface2Volume decomposition by extruding the surface segments into
assemblable volumes generates three carvable volumes (b). The optimal
volume decomposition has only two carvable volumes (c).

and we do optimize for the carving time by insisting that the part is

carved via a single continuous path. Last but not least, the height

directions in their work are restricted to be aligned with one of the

canonical 𝑥 , 𝑦, and 𝑧 axes, while in our work, we sample over many

directions. Both methods are tied to height-field decomposition,

but the decomposition results and associated height directions are

completely different. For reference, on the high-genus Fertility and

Kitten models, their results contain 63 and 25 blocks, respectively,

while our method produces 10 and 5 parts, respectively.

In Surface2Volume, Araujo et. al. [2019] compute a volume de-

composition based on a given surface segmentation, which may

or may not be a height-field decomposition. Similar to [Muntoni

et al. 2018], their method works “inward” from the surface segments

to produce a set of assemblable parts. These parts conform to the

surface segments and can be moved apart with no collisions. In

general, assemblability has nothing to do with how a part may be

carved by a CNC machine, except that geometrically, carvability

implies visibility, which in turn, implies assemblability.

From surface to volume decomposition. One possible way to obtain
a carvable decomposition of the residual volume is to start with

a height-field surface decomposition of the target 3D object and

extrude outward from the surface segments, along their correspond-

ing height directions. Clearly, we cannot rely on the height-field

decompositions obtained by Muntoni et al. [2018], since, as we dis-

cussed above, their decompositions can be far from optimal (e.g.,

for high-genus models such as the Fertility). A better choice is to

use an optimal height-field decomposition, such as one obtained

by Herholz et al. [2015]. But the first problem is that not all height

directions would yield an efficient carvable volume decomposition,

as shown in Figures 2(b-c). In contrast, the example in Figures 5(a-b)

provides a best-case scenario, where each surface segment can be ex-

truded into a carvable volume. Yet, the final volume decomposition

is still sub-optimal, as illuminated by the optimal solution shown

in Figure 5(c). For the extrusion approach to work, each volume of

an optimal solution must completely cover a continuous area of the

target surface. Unfortunately, this is not necessarily the case for a

decomposition of the residual volume. Moreover, consideration of

the depth of the carvable volumes necessitates an analysis of the

residual volume, not just the surface of the target 3D object.

Toolpath planning. In 3-axis CNCmachining, a carvable volume is

typically sliced into a set of planar layers, each carved by the cutter

traveling a specific path. There are many possible toolpath patterns

including zig-zag [Ding et al. 2014], iso-contours [Yang et al. 2002],

and double spirals [Hauth and Linsen 2011]. In our work, we adopt

the connected Fermat spirals developed by Zhao et al. [2018] to
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execute a top-down, layer-by-layer carving of the carvable volumes

obtained by our decomposition method. When choosing a proper

toolpath pattern, there are several criteria to take into consideration

such as smoothness of the paths which would affect the speed of

machining, along with retraction, cutter lifting, and deacceleration

that should be avoided as much as possible. Fermat spirals appear to

offer various advantages on these accounts and most importantly, it

allows traversal of complicated, but connected areas using a single

continuous space-filling path.

3 OVERVIEW AND PROBLEM FORMULATION
In this section we will motivate our approach and describe the key

steps at a high level. Throughout the paper, we refer to regions

that we grow as volumes (Figure 4(e)) and non-overlapping regions

(Figure 4(f)) that cover the entire residual volume as segments.

3.1 Design Considerations
Our algorithm is based on the following considerations that machin-

ists take into account for CNC machining. This list was developed

based on interviews with four expert machinists with 10 to 27 years

of professional experience.

• Setup cost: Changing the carving direction involves reposi-

tioning the part, which is time-consuming and error-prone.

Therefore, we should minimize the number of setups.

• Carving time: Experts usually prefer long, continuous paths
to carve as much material as possible in one pass.

• Cutter length: Shorter cutters are preferred during rough

machining to minimize vibrations and increase cut accuracy.

Consider a residual volume 𝑉 that is the subtraction of a target

shape 𝐴 from the initial block 𝐵. Our method proposes a plan for

carving out 𝑉 driven by the criteria above. We will do this by de-

composing 𝑉 into a set of carvable segments, which, as previously
stated, are regions that can be continuously carved from a given

direction. We will use Fermat spirals [Zhao et al. 2016] to define cut

paths for each of the segments because they provide a continuous

path, which will help to minimize the total cut time.

Since setup cost is typically the most crucial, we must minimize

the total number of carving directions used to carve all the segments.

We ensure to minimize the number of setups by solving a set cover

on the number of machining directions.

In addition, we must ensure that all segments associated with a

given direction can be carved sequentially. Because each segment

can be cut continuously, we minimize the cut time by simply min-

imizing the number of times the cutter needs to travel between

segments (i.e., we minimize the number of carvable segments).

The cutter length that is necessary to carve out a segment depends

on a complete analysis of collisions, which depends on the shape of

the cutter head and the shape and order of segments being carved.

While this evaluation can be costly, we provide a simple solution

by analyzing accessible points through a given direction under a

certain cutter length. In addition, we efficiently prioritize segments

that can be carved under fewer number of vertical movements by

removing as much material as we can in one path as it creates less

blockage for the cutter. This can also have an added benefit for cut

time, as for some CNC machining processes, moving along vertical

directions is time consuming and inefficient.

3.2 Algorithm Overview
We wish to find a set of non-overlapping segments S = {𝑠1, ..., 𝑠𝑛}
that cover the residual volume 𝑉 and are carvable using a set of

carving directionsD. This is not an easy task because there can be in-

finitely many carving direction sets that have the same cardinality—

consider for example, the problem of carving out a perfect sphere.

Furthermore, under a given direction set, there are potentially in-

tractable configurations of carvable segments covering the residual

volume.

As previously discussed, our key observation is that if D is a

minimal set of carving directions, then it will define SA sets. These

SA sets can then be used to derive a decomposition algorithm for𝑉 .

This will be done by the following steps:

Accessibility Analysis: Our first step is to sample both the resid-

ual volume and the unit hyper-sphere to generate a discrete set of

carving directions. This sampling can be uniform or adaptive to

respect shapes’ features. Then, we find a set of directions with mini-

mum cardinality through which all points are accessible- i.e., visible

along the carving direction and reachable by the cutter considering

its length. The direction set should attain minimum cardinality to

ensure that we minimize the number of setups.

Carving Direction Selection: After finding a set of machining direc-

tionsD that can be used to fully carve the residual volume, we argue

why this solution is not unique. We therefore select one of such

direction sets by assessing the quality of segments it will produce

based on the criteria described above.

Generation of Candidate Carvable Volumes: The next step is to

find a set of volumes that can be carved using the selected directions.

These are created by analyzing the SA sets and defined such that

the union of all candidates span the entire residual volume with

potential overlaps.

Carvable VolumeDecomposition: To produce the final non-overlapping
carvable volume segments, we then find the order of combining the

candidate carvable volumes to optimize for the criteria discussed

above by minimizing an energy function.

Cutter Path Planning: Finally, we use Fermat spirals to trace a full

continuous path to carve each segment.

4 METHODOLOGY
We now describe each step of our algorithm in more detail. In this

section, our explanations are for 2D shapes and later in Section 5,

we discuss how we can extend it to 3D shapes.

4.1 Accessibility Analysis
First, all input shapes are normalized in scale by setting the longest

side of the tightest bounding box of the shape to unit length.We then

need to find a set of carvable directions with which all the points in

the residual volume are visible. To find these directions, we sample

the residual volume with a set of points 𝑝 𝑗 and then uniformly

discretize the hyper-sphere with a set of vectors 𝑑𝑖 (see Figure 4(a)).
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Each point 𝑝 𝑗 needs to be reached by the cutter through a direction

𝑑𝑖 . Assuming an infinitely long cutter with infinitely small width, a

volumetric segment, 𝑠𝑘 ∈ 𝑉 is carvable in direction 𝑑𝑖 if all points

𝑝 𝑗 ∈ 𝑠𝑘 are visible along 𝑑𝑖 and at each layer sampled along 𝑑𝑖 , the

volume is connected (possibly with holes for 3D shapes; see Figure

3(a)). A point 𝑝 𝑗 is visible through direction 𝑑𝑖 , if when we shoot a

ray from 𝑝 𝑗 along 𝑑𝑖 , it has no intersection with the shape. Users

can specify cutter length constraint to avoid using long cutters that

may produce shaking and artifacts. Here, we also discard points that

are not accessible by the cutter in a specific direction due to cutter

length constraint. A detailed discussion on how we incorporate this

constraint is provided in Section 6.

Since each direction is equivalent to an expensive setup, we wish

to carve all the points 𝑝 𝑗 withminimum number of directions. Identi-

fying the minimum number of directions 𝑑𝑖 that cover all the points

𝑝 𝑗 is equivalent to solving a set cover problem for directions 𝑑𝑖 . This

way, we define a set cover D𝑠 = {𝑑𝑖 , 𝑖 = 0, . . . , 𝑁 } as a collection
with the fewest number of directions through which all sampled

points are accessible. Since there can be multiple direction sets with

the same cardinality we index set covers by D𝑠 .

4.2 Carving Direction Assessment
While solving set cover gives us all the sets, D𝑠 , that result in the

minimal number of setups, the fabrication cost will still depend

on the number of carvable segments, which can be vastly differ-

ent even in direction sets with the same cardinality (see Figure 2).

The next step is then to choose the direction set that allows the

lowest fabrication cost (Figure 4(c)). However, this is an intractable

process since it would involve finding the optimal decomposition

for each direction set. We therefore propose a method to estimate

the fabrication cost allowing us to efficiently assess all directions

and choose the best one, D∗. Since our approximation discussion

is better understood after the presentation of our decomposition

algorithm, we leave its discussion for Section 4.5 and we close this

section with an important observation about direction sets.

Proposition 1. For each direction 𝑑𝑖 in D𝑠 , there is at least one
sample 𝑝 𝑗 that is only accessible by 𝑑𝑖 and no other direction.

Proof. We can prove this by contradiction. Let {𝑝𝑖
𝑗
, 𝑗 = 0, . . . , 𝑀}

be the𝑀 samples that are accessible through 𝑑𝑖 ∈ D𝑠 . Assume that

each point is accessible through another direction in D𝑠 − {𝑑𝑖 }. If
this is the case, then there exists a smaller set of directions that can

cover the full samples, namely D𝑠 − {𝑑𝑖 }, and therefore, D𝑠 is not

a set cover by definition. Sample points that are accessible through

only one vector are called Single Access points or SA points.

4.3 Generation of Candidate Carvable Volumes
Given point 𝑝 𝑗 and direction 𝑑𝑖 , we define the maximal carvable
volume 𝑀 (𝑝 𝑗 , 𝑑𝑖 ) as the largest volume that can be carved along

direction 𝑑𝑖 that will include 𝑝 𝑗 (see Figure 4(e)). As previously

discussed, our algorithm is based on generating a set of candidate

carvable volumes that will fully span the residual volume and we

will then use these candidates to partition the space into a set of

non-overlapping segments (Figure 4(f)). The motivation of using

maximal volumes for candidates is that carving more from residual

volume in one path creates less blockage for moving the cutter; plus

l0 l-1

(a) (b)
l

~ ~

(c)
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Fig. 6. Starting from a point 𝑝 𝑗 along line ℓ that is a line-segment parallel to
𝑑𝑖 , carvable regions are found by finding the closest intersection of ℓ̃𝑡 with
shape or block (a). Moving along ℓ in the opposite direction, we find a set of
line-segments by finding intersection of ℓ̃𝑡 with the shape and block and
pick the mergable line-segment highlighted in solid black (b). A maximal
carvable volume𝑀 (𝑝 𝑗 , 𝑑𝑖 ) is found using the end points of dashed lines (c).

candidates are independently carvable meaning that the carvability

of candidates does not depend on each other giving us the freedom

of choosing any order of volumes to carve. As it would be intractable

to consider all maximal carvable volumes, we propose a method for

selecting candidate volumes that will produce a final decomposition

matching our discussed criteria. In the following, we first discuss

how to generate a maximal carvable volume from a point—direction

pair and then elaborate how to generate a set of candidates.

Maximal Carvable Volumes. Amaximal carvable volume𝑀 (𝑝 𝑗 , 𝑑𝑖 )
is generated by growing amonotone region around 𝑝 𝑗 by simulating

the CNC machining process that removes layers perpendicular to

the machining direction 𝑑𝑖 . This is done by moving vertically along

machining direction 𝑑𝑖 traversing perpendicular to 𝑑𝑖 at sample

depths to carve out layers of the residual volume. Line ℓ that passes

through 𝑝 𝑗 along 𝑑𝑖 is parameterized by 𝑝𝑡 = 𝑝 𝑗 + 𝑡𝛿𝑑𝑖 (𝑡 can be

also negative) to sweep line ℓ̃𝑡 perpendicular to ℓ (See Figure 6).

Traversing ℓ resembles the vertical movement of the cutter while

ℓ̃𝑡 determines side-by-side movements of the cutter at 𝑝𝑡 . The line-

segments extracted from ℓ̃𝑡 determine movement range of the cutter

at different layers and also the boundaries of carvable volumes. Note

that the resulting volumes are always monotone.

To compute ℓ̃𝑡 , we first find the intersections of the line passing

through 𝑝𝑡 and perpendicular to 𝑑𝑖 with shape𝐴 and block 𝐵, which

will determine all the line-segments that are inside the residual

volume 𝑉 . If 𝑡 is positive we can simply select the line-segment

that contains 𝑝𝑡 , because there is no blockage to 𝑝𝑡 (Figure 6(a)).

For negative 𝑡 , we choose a line-segment that can be merged with

the region grown with positive 𝑡s (Figure 6(b)). Two consecutive

line-segments can be merged if the projection of one onto the other

has an overlap. We stop when there is no mergable line-segment

found or ℓ̃𝑡 has no intersection with the residual volume (i.e., it

is out of the block). Consecutive endpoints of these line-segments

form the boundary of a carvable volume (Figure 6(c)).

Selecting Candidate Seeds. Carefully choosing the point—direction
pairs to grow maximal carvable volumes𝑀 (𝑝 𝑗 , 𝑑𝑖 ) is important to

generate an appropriate decomposition. We will take advantage of

SA sets to create candidate seeds. Our method for selecting candi-

dates has two steps. First, we select seeds from the set of SA points,

as defined by Proposition 1. These are called SA seeds from which

we grow maximal carvable volumes to cover the residual volume.

Second, as it is possible that the regions grown from SA seeds do
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Fig. 7. SA points of the same directions are in the same solid color. Seeds
are the bottom points along each direction that are depicted by points filled
by red (e.g, ). Ray 𝑟𝑖 is shot from seed 𝑏𝑖 . An SA point ˜𝑏𝑖 ( ) is mergable
with seed 𝑏0

𝑖
, if the line-segment between 𝑞𝑖 ( ) and ˜𝑏𝑖 has no intersection

with the object. 𝑞𝑖 is the intersection of ray 𝑟𝑖 , shot perpendicular to 𝑟𝑖 ,
with 𝑟𝑖 (a). SA seeds and their directions (b). Candidate carvable volumes
grown from the SA seeds (c). Pink has been depicted over the blue volume.

(a) (b) (c)

Fig. 8. Complementary seeds are selected (a) to cover the entire residual
volume (b). To estimate the number of complementary volumes, the residual
volume is coarsely sampled and the points that are not accessible by SA
seeds are chosen to form complementary volumes in the same fashion (c).

not cover the entire residual volume (see Figure 7(c)), we select a

set of complementary seeds to cover the rest of the space.

For each direction 𝑑𝑖 , we define SA regions as a set of SA points

B𝑖 , which is always non-empty and typically includes many points

(see Figure 7(a)). Our goal is to select the smallest number of seeds

that when grown under direction 𝑑𝑖 will cover all of these points.

Multiple seeds will be necessary when not all points can be carved

by a single carvable volume. This happens when the SA region

associated with B𝑖 is not monotone. Therefore, we break it into

monotone regions. To do this, we start by selecting the first seed as

the bottom point 𝑏0
𝑖
∈ B𝑖 along direction 𝑑𝑖 . If we shoot a ray from

𝑏0
𝑖
along 𝑑𝑖 , all the points in B𝑖 that are accessible through this line

can be carved from the volume grown from 𝑏0
𝑖
and we therefore add

them to C along with 𝑏0
𝑖
; C is now a monotone region. We select the

next seed by repeating this process for B𝑖 −C until this set is empty,

defining the set of SA seeds for direction 𝑑𝑖 , I𝑖 = {𝑏0
𝑖
, 𝑏1

𝑖
, . . .}.

Next, we propose amethod for selecting complementary seeds that,
when combined with SA seeds, will cover the entire residual volume.

This is done by first identifying initial sample points (𝑝 𝑗 ) that have

not yet been covered by the grown regions and a similar process

that is used for finding SA seeds. Since complementary seeds are

from points that are reachable throughmultiple directions inD∗, we
choose a direction with lower energy (provides shallower carvable

volumes; see Section 4.4 for our energy function). We repeat this

process until the entire residual volume is covered by at least one

carvable volume.

(a) (b) (d)(c)

Fig. 9. Producing all possible sub-volumes results in many small volumes
that may not be necessarily carvable (a). Subtracting two carvable volumes
(b. top), is not carvable in a single path (b. bottom). Small details (high-
lighted in red box) produce an extra segment (c). In a post-processing phase,
two consecutive segments carvable along the same direction (d. top) are
combined in a single carvable volume by removing a small detail.

4.4 Carvable Volume Decomposition
The previous step generates a set of maximal carvable volumes

M = {𝑀1, 𝑀2, ..., 𝑀𝑛}, which can be carved using directions in

D∗ and span the entire residual volume 𝑉 . Our next step is to use

these candidate volumes to create a non overlapping decomposition

S = {𝑠1, 𝑠2, ..., 𝑠𝑛}, 𝑠𝑑 ∩ 𝑠𝑒 = ∅,∀𝑑 ≠ 𝑒 to stop the cutter from

going over an already carved region for multiple times. We will first

define an energy function that allowing us to assess decomposition

results and then describe a method for finding a decomposition that

minimizes this energy.

Energy Function. As discussed earlier, we are looking for a small

number of shallow segments. Therefore, if we have carvable seg-

ments S = {𝑠1, ..., 𝑠𝑛}, our energy function is composed of 𝐸𝑠ℎ (𝑠𝑘 )
that measures the shallowness of each segment 𝑠𝑘 , along with an

additional term 𝐸S = |S| that is the number of carvable segments.

𝐸𝑠ℎ (𝑠𝑘 ) is defined as follows:

𝐸𝑠ℎ =
ℎ(𝑠𝑘 )
𝐴(𝑠𝑘 )

(1)

where ℎ(𝑠𝑘 ) and 𝐴(𝑠𝑘 ) are respectively the height and area (volume

for 3D) of each segment. We normalize the heights to promote

wider segments under the same height as carving such segments

removes more blockage against the cutter. Plus, with the same depth,

more material is carved in wider segments. The total energy of a

decomposition, therefore, is defined as:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝛼
∑
𝑖

𝐸𝑠ℎ (𝑠𝑖 ) + 𝛽 |𝑆 | (2)

Smaller values for 𝛼 promote fewer number of carvable segments

while smaller 𝛽 promotes shallower segments. See Section 6 for

a more detailed discussion about the effects and settings of these

parameters.

Decomposition. Having candidate carvable volumesM, one may

attempt to find all possible combinations including intersection,

union, and subtraction to partition the residual volume into a set of

non-intersecting carvable regions. Then by combining these carv-

able regions, one may find a carvable decomposition that covers

the entire residual volume with no overlaps and minimizing the

energy function. We have tried this approach and several problems
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Fig. 10. Maximal carvable volumes of each direction are combined individu-
ally and the results are integrated to obtain the final decomposition.

may occur. First, even for relatively simple shapes, many small carv-

able regions might be produced (Figure 9(a)). Second, intersection,

subtraction, or union of these carvable regions is not necessarily

carvable in a single path (Figure 9(b)). As a result, further assess-

ment of regions after such tasks is necessary. Third, finding the

smallest set with no intersection covering the residual volume is

equivalent to exact cover problem [Garey and Johnson 1983]. Known

algorithms to solve this NP-complete problem such as Algorithm

X [Knuth 2000], which has been previously used for segmentation

[Hu et al. 2014], fails to deliver near optimal results for large sets in

a reasonable time.

We therefore propose an alternative technique that tries to utilize

the candidate carvable volumes as much as possible and find their

best combination. In this method, two candidate carvable volumes

𝑀𝑓 and 𝑀𝑒 are combined in a given order. If 𝑀𝑓 is supposed to

be carved first, 𝑀𝑓 is preserved in our decomposition and then

𝑀𝑒 − 𝑀𝑓 is carved. Note that 𝑀𝑒 − 𝑀𝑓 might not be carvable, in

this case, we split it into carvable volumes. As a result, finding a

decomposition amounts to selecting an order of candidate carvable
volumes. Having 𝑛 candidates carvable volumes, there exist 𝑛! possi-

ble decompositions, which would be intractable to search. However,

we have an additional constraint that results from our algorithm

design criteria: volumes that are carvable in the same direction must

be carved together to avoid unnecessary set-up changes. Therefore,

we combine all the volumes of each direction 𝑑𝑖 and then integrate

the results to find the final decomposition S attaining the lowest

cost with no overlap (see Figure 10). In addition, to shrink the search

space even more, if 𝑠𝑑 and 𝑠𝑒 have no overlaps, their order does not

matter, therefore, we remove such repetitions. When the number of

volumes that are going to be combined is less than or equal to four

which is the case for most of our results, finding all the possible com-

binations is fast. For combinations with larger number of volumes

(e.g., in Figure 20), we use beam search with beam width equal

to four [Lowerre 1976]. We prioritize the set of candidate volumes

based on the energy function in Equation 1 and assessment of the

final result is done according to Equation 2.

4.5 Estimation to Find 𝐷∗
Since growing candidate carvable volumes for all D𝑠 to find D∗
is inefficient, the number of SA and complementary seeds are con-

sidered as an estimation for the number of carvable segments. We

then estimate the cost of each direction set according to our energy

function in Equation 2 to find D∗. Therefore, the number of SA

seeds for each direction set D𝑠 is first counted. Then the residual

volume is evaluated to determine whether more seeds (i.e., carv-

able volumes) are needed to cover the residual volume. Here, to

quickly evaluate the residual volume, we coarsely sample it with a

few number of samples (e.g., a seven by seven grid) and estimate

the number of complementary seeds. Complementary seeds are the

points that do not belong to SA regions and from them all the other

complementary points are accessible (see Figure 8).

4.6 Post-processing
Small-scale details sometimes may result in additional segments

or directions (Figure 9(c)). In rough machining, however, it might

be more desired to avoid more carvable segments, sacrificing tiny

details. To avoid such issues, consider two neighbouring segments

𝑠𝑖 and 𝑠 𝑗 that are carvable in the same direction and 𝑠𝑖 is going to be

carved first. We generate a single carvable segment 𝑠𝑘 by removing

the edge connecting 𝑠𝑖 and 𝑠 𝑗 . If the remaining segment (𝑠𝑖 − 𝑠𝑘 ) is

too small, we remove it and keep 𝑠𝑘 .

4.7 Cutter Path Planning
For a 2D case, the most suitable paths to fill carvable volumes are

direction-parallel patterns in which the line-segments identified

from each layer can be connected in a zig-zag manner. However,

cutter paths for 3D are different as we employ Fermat spirals to

generate smooth and continuous paths for each carvable region.

In the next section, we discuss how to extend all the steps in our

algorithm to 3D including cutter path planning.

5 EXTENSION TO 3D
Extending our algorithm from 2D to 3D is very straightforward as

most of the steps in both cases are fairly similar. In the following,

we discuss the extension of each step in detail.

Accessibility Analysis and Carving Direction Selection. Finding and
assessing machining direction in 3D and 2D are similar with the

only difference that the sample points are in a 3D residual block and

vectors are sampled over a unit sphere. However, finding SA seeds

and complementary seeds are exactly the same.

Carvable Segments. Although the basic idea of growing carvable

segments in 2D and 3D is very similar. For 3D shapes, we use a

discrete approach with the main reason being to simplify finding

a continuous carvable segment. Similar to the 2D case, we first

find SA seeds and sample on line ℓ along direction 𝑑𝑖 and find the

intersection of plane 𝜌 with normal 𝑑𝑖 with the object and bound it

with the block. We uniformly sample 𝜌 with points 𝑞𝑤 , if 𝑞𝑤 is at

the boundary, in the object or in the residual volume it respectively

receives tags two, one, or zero.We use points along line ℓ as a seed for

the 2D region growing algorithm on samples on 𝜌 and find a carvable

connected 2D layer, possibly with holes, by merging all connected

points with zero tags. Figure 11 illustrates this process. The stacks

of these 2D layers form a 3D carvable segment. To generate the

surface for each volume, we calculate signed distances for points

near the shape and reconstruct a surface using marching cubes.
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Fig. 11. Sampling along line ℓ , we find the intersection of plane 𝜌 with the
object (a). Point 𝑞𝑤 at the boundary ( ), in the object ( ) or in the residual
volume ( ) respectively receives tag two, one, or zero (b). From a seed point
( ), a 2D region growing is performed to find a carvable connected layer (c).
Stacks of these layers form the candidate carvable volumes.

Fig. 12. Connected Fermat spirals for a single layer (a). Helix lines for
connecting two neighboring layers (b).

Carvable Volume Segmentation. We use the same energy functions

and optimization approach for finding the carvable volume segmen-

tation and use libigl [Jacobson et al. 2018] to perform boolean opera-

tions to find the intersection between volumes. As discussed above,

it is possible that the results of a subtraction operation,𝑀𝑒 −𝑀𝑑 , is

not carvable in one continuous path and must be further segmented.

To split a non-carvable segment into carvable segments, we first

group the sample points of 𝑀𝑒 − 𝑀𝑑 into different slicing layers

with respect to the cutting direction 𝑑𝑒 . A tree structure is built

whose nodes are the connecting layers and whose edges denote

the inclusion relationship between two layers. A decomposition

into carvable segments can be driven by decomposing such tree

structure into a minimal number of sub-trees.

Surface Dilation/Erosion due to Cutter Width. In practice, the CNC

cutter has a physical width 𝜔 , which implies that it is unable to

access regions of the target surface that are narrower than 𝜔 . In

addition, the cutter length is measured up to the center of the cutter
head, which is about 𝜔/2 away from the cutter tip. Due to these two

reasons, the actual residual volume that is accessible by the cutter

(up to the center of the cutter head) is not exactly the difference

between the initial block and the target shape — there is an offset.

We compute the accessible volume via mathematical morphology,

where we dilate the target surface by 𝜔/2, which is equivalent to an

erosion, with the same amount, of the difference volume between

the block and the target shape. Hence, the virtually carved volume

is a shrunk version of the actual residual volume. This explains why

the virtual Fertility models shown in Figure 1 appear to be inflated

compared to the target shapes. In contrast, the results from physical

CNC machining, shown in the insets in Figure 1, appear “thinner”,

as they are closer approximations to the target shapes.

Tool Path Planning. For each slicing layer of a carvable segment,

connected Fermat spirals (CFS) could be generated as a fully closed

tool path (Figure 12 (a)). While any CFS point can be selected as

the entry point at each layer, entry point selected with a random

process could lead to a long cutter transition between each layer

(Figure 12 (b)). In order to minimize the cutter transitions, we apply

an iterative optimization method that first generates random entry

points, and then updates their positions tominimize the length of the

transitions between layers. With the determined entry points, we

generate a set of helix connecting lines to connect two neighboring

layers in order to reduce the cutting force when the cutter touches

the material of the next layer (Figure 12 (b)).

6 RESULTS AND EVALUATION
In this section, we show a variety of results produced by our method,

starting with a gallery of 2D and 3D decompositions in Figures 13

and 15, respectively, and an attempt to carve out a text SIGGRAPH

logo, in Figure 14. We evaluate our method against baselines, the

ground truth (if we could find it), and results provided by machining

experts. But first, we describe several implementation details related

to sampling, cutter length, and parameters. We have implemented

all the steps of our algorithm in C#, where polyshape functionalities

of Matlab have been used for 2D segmentation and libigl [Jacobson

et al. 2018] is utilized for 3D segmentation.

For physical fabrication of the Kitten, Bunny, Fertility, Rocker-

arm, Horse, and Unicorn models (see Figure 27), we account for

the cutter width 𝜔 = 1.5875𝑚𝑚 to compute the dilation and our

algorithm operates on the resulting residual volumes. For 2D de-

composition and results on other 3D models, e.g., the Max-Plank

and Bimba in Figure 15, we do not apply dilation so that the final

carved volumes would be more faithful to the target shapes.

Sampling. For our 2D results depicted in Figures 13 and 14, the

samples 𝑝 𝑗 are taken from a uniform 20 × 20 grid on the bounding

box of the image. Vectors are also sampled on a unit sphere on

every 15 degrees. We have experimented on the number of samples

and their influence on the results. As shown in Figure 16, denser

samples on the grid produce smoother final results but possibly

more number of carvable segments. In addition, having a denser

sampling might result in D∗ with larger cardinality since detailed

points on the object may need extra directions to be carved.

While uniformly sampling the residual volume is easy, efficient,

and likely sufficient for rough machining, it may miss small details

on the target object. A possible remedy is to apply an adaptive

sampling that is shape-dependent. To obtain such a sampling, we

form a set of offsetting “buffers” around the target shape at multi-

ple distances, e.g., 0.1, 0.15, 0.3; see Figure 17(a) and recall that all

shapes have been scale-normalized. In addition, to make sure that

the residual volume is sufficiently covered, we also coarsely sample

the volume and then remove points that are either too close to each

other or fall inside the shape. Figure 17(b-d) show decomposition

results obtained from this sampling, which can be contrasted to

results in Figure 13. Clearly, this simple adaptive sampling allows

more surface details to be carved out. One should decide for rough

machining to have more segments but a finer result or less segments

and a rougher result. This sampling also gives us the possibility of
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Fig. 13. A gallery of 2D shapes and their carvable decomposition. Segments that are carved under the same direction attain the same color but different
shades. The direction numbers indicate carving order; segments with brighter colors are carved earlier.

Fig. 14. SIGGRAPH text is carved using our method. We have added a buffer
around letters to avoid collision with the text.

controlling the roughness of of the final outcome by having a buffer

with a certain distance to the actual object (see Figure 14).

For our 3D results in Figure 15, we have used adaptive sampling

with buffer size 0.1 and 0.2𝑚𝑚, with 8192 points sampled on each

buffered surface along with a 20× 20× 20 grid with sampled vectors

every 45 degrees. Note that although our direction sampling is rather

coarse, we guarantee accessibility of all sample points by adaptively

adding extra directions for inaccessible points. To do this, we double

the samples and only add vectors that make inaccessible points

accessible. We repeatedly increase sampling until no inaccessible

point is present.

Cutter length. Based on our formative study in Section 3, it is

desired to use shorter cutters to avoid vibration and cutter break-

age. Although we have designed the energy to promote shallower

segments, sometimes, simultaneously optimizing the number of

directions and carvable segments may result in deep segments. As

a result, considering cutter length as a hard constraint is desired.

l
~

|l|<� |l|>�

We have taken a simple approach to in-

corporate constraints on cutter length 𝜙 . In

the Accessibility Analysis stage, we only con-

sider points 𝑝 𝑗 as visible along direction 𝑑𝑖 , if

ℓ̃ passing through 𝑝 𝑗 +𝜙𝑑𝑖 and perpendicular
to 𝑑𝑖 has no intersection with the object. In

fact, we have simplified the shape of a cut-

ter as a line ℓ with length 𝜙 and an infinite

base ℓ̃ that cannot be obstructed by the shape.

Figure 18 shows the effect of decreasing the

cutter length on the final decomposition. Having a shorter cutter

may result in more number of directions since a point might be

visible through many directions but carvable only along a few di-

rections offering a shorter distance to the cutter base. As illustrated

in the in-line figure, a point is visible through the red direction

but it is not reachable. Therefore, the additional green direction is

needed offering shorter distance to the base within the cutter length

constraint.

Parameter setting. 𝛼 and 𝛽 in our energy function in Equation 2

are set to𝛼 = 1 and 𝛽 = 5, since a fewer number of carvable segments

is desired. Larger values for 𝛼 promotes shallower segments while

larger values for 𝛽 promotes a smaller number of carvable segments.

Figure 19 shows the example when 𝛼 = 0 and 𝛽 = 1, it is apparent

that in comparison with the result of Figure 4(f), deeper segments

have been produced. If we change the setting to 𝛼 = 1 and 𝛽 = 0,

we may get more number of segments in sacrifice of having shallow

segments. This setting is shown in Figure 19(d) that serves as a

ground truth since the decomposition is obvious. If we use our

default setting for the same shape, the result will be the optimal

segmentation with less number of carvable segments (Figure 19(c))

but they are deeper than Figure 19(d).

Timing. Table 1 provides the timing of the key steps in our al-

gorithm. As apparent in Table 1, the most time consuming steps

in our algorithm are direction assessment and generating carvable

volumes since solving set cover and growing carvable regions are

relatively more expensive. We have also provided the timing and

statistics for 3D objects in Table 2. Tests were run on an Intel i7-8700,

3192 Mhz, six core processor under Windows 10.

Table 1. Algorithm running times (in seconds) and other statistics about
some 2D shapes shown in the paper. |𝐷∗ | is the number of directions and
|𝑆 | is the number of segments needed to cover the residual volume. AA, DS,
CCV, and DEC are respectively running times for accessibility assessment,
carving direction selection, generating candidate carvable volumes, and
carvable volume decomposition.

Shapes |𝐷∗ | |𝑆 | AA DS CCV DEC Total

3 5 0.89 1.80 1.01 0.21 3.91

3 6 0.63 1.86 1.31 0.61 4.41

3 7 1.01 2.10 1.12 0.32 4.55

4 6 1.02 2.12 1.01 1.20 5.35

2 6 0.91 1.83 2.51 1.15 6.40

2 3 1.11 5.12 1.39 0.20 7.82

4 8 1.09 8.72 2.82 1.26 13.89

Comparison with ground truth. To evaluate the performance of

our algorithm, we have tested it on a few simple objects depicted

in Figure 20. Our algorithm seems to work efficiently for all the

cases providing the optimal number of carvable segments. Note that

there are some deep segments if we want to optimize the number of

carving directions. However, considering cutter length, these seg-

ments are avoided. We have provided the result of considering cutter

length for some of our shapes in Figure 21. As apparent, for some

objects, more directions are needed but segments are shallower.
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 Rocker-arm: two directions, �ve segments.

 Max-Planck: three directions, six segments.

 Bimba: two directions, �ve segments.

 Nut: two directions, four segments.

Pawn: two directions, two segments.

Hollow-cube: seven directions, 33 segments.

Horse: three directions eight segments. Bunny: three directions, �ve segments.

 Kitten: two directions, �ve segments.Unicorn: four directions, nine segments.

Fig. 15. A gallery of 3D shapes and their carvable volume decompositions visualized step-by-step. Carving directions are indicated by yellow arrows. The
square base is part of all the target 3D shapes, as input to the decomposition algorithm.

(a) (b) (c)

21 12 1

3

3

2

Fig. 16. Results of 30× 30 (a), 20× 20 (b) and 10× 10 (c) uniformly sampling.

Comparison with expert’s decomposition. To evaluate our results,

we have asked a machining expert to segment a sampler of our

objects (see Figure 22). It seems that the experts cannot simultane-

ously consider the number of directions and carvable segments or

they have some intuitions that lead them to specific decomposition

results. In all cases, the result of our algorithm provides a smaller

or equal number of directions and comparable number of carvable

segments. Note that not all the segments that the expert provides are

carvable in one pass, therefore more number of segments is needed

to fully respect the target shape or a coarser shape is produced. For

instance, if you carve the top left figure in Figure 22 (the Ginger-

man), the red bottom segment becomes the same as our result in

Figure 13. In addition, experts implicitly consider shorter cutter
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(a) (b) (c) (d)

Fig. 17. Adaptive and shape-dependent sampling of the residual volume
(a) using a few buffer of the shape along with a coarse uniform sampling
to cover the entire residual volume. The resulting decomposition leads to a
more faithful reproduction of the target objects, but at the expense of more
volumes. Please contrast results shown in (b-d) to those from Figure 13.

12

5

43

6

Cutter’s length.

12 12

Fig. 18. Cutter length is decreased from left to right. Having a longer cutter
results in fewer number of segments to cover the residual volume.

(a) (b) (c) (d)

Fig. 19. Changing the default setting to 𝛼 = 0 and 𝛽 = 1 produces deeper
segments (a) in comparison with Figure 4(f). Given a simple shape (b), the
decomposition of the residual volumemay promote fewer carvable segments
but deeper (c) or more carvable segments but shallower (d).

2

1

12

Two segments. Three segments.

Four segments. Six segments. Ten segments.Eight segments.

1

2

1 2

3

4

3

2

1

4

3

2

1

2

4

1

2

Four segments. Four segments.

1

Fig. 20. Results produced by our method on simple 2D shapes for which we
were able to determine the optimal number of carvable segments. In each
case, our method was able to match the optimal segment count, while not
necessarily able to find the most “natural” or obvious decompositions, e.g.,
in terms of symmetry for the last three examples.

Table 2. Algorithm running times (in seconds) and other statistics about
3D shapes shown in the paper. |𝐷∗ | is the number of directions and |𝑆 | is
the number of segments needed to cover the residual volume. AA, DS, CCV,
DEC, and PG are respectively running times for accessibility assessment,
carving direction selection, generating candidate carvable volumes, carvable
volume decomposition, and cutter path generation.

Shapes |𝐷∗ | |𝑆 | AA DS CCV DEC PG

Pawn 2 2 6.82 0.01 520 12.81 34.47

Nut 2 4 9.75 0.02 1,353 27.07 24.32

Bimba 2 5 9.40 0.02 1,157 48.55 38.62

Rocker-arm 2 5 10.10 0.01 1,410 28.65 50.29

Kitten 2 5 10.71 0.01 591 14.84 35.78

Bunny 3 5 10.20 0.02 1,070 30.78 41.61

Max-Planck 3 6 11.10 0.02 739 44.49 32.97

Horse 3 8 11.5 0.01 1,543 35.86 38.43

Unicorn 4 9 9.90 0.02 1,365 78.19 34.53

Fertility 6 10 24.01 3.91 2,432 133.54 48.49

Hollow-cube 7 33 30.04 16.65 4,556 302.90 74.35

Cutter’s length.

12

12

2

1

3

4

4
2

1

3

4

5

2
3

1

1

2

3

5

2

1

1

3

2

4

Fig. 21. Constraining cutter length (bottom) can lead to different decompo-
sition results. Top: no constraint on cutter length.

Table 3. Comparing decomposition results between expert solutions and
our results, with vs. without constraining cutter length (CL).

shapes

Alg Alg+CL Expert

|𝐷∗ | |𝑆 | |𝐷∗ | |𝑆 | |𝐷∗ | |𝑆 |

2 2 4 4 4 4

4 4 4 4 4 4

2 6 6 6 6 6

3 7 5 6 6 6

4 6 5 6 7 7

3 5 4 7 6 6

lengths for a decomposition. Therefore, for comparison, we also

consider cutter length as a constraint and include its relative statis-

tics in Table 3. The results show that, even with these constraints,

our solution outperforms the expert’s.
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Fig. 22. Results of expert decomposition on a few sample 2D shapes.

(a) (b) (c) (d)

Fig. 23. Experts provide a set of carving directions (a) along with bounding
boxes confining the movement of a cutter (b). Using these directions, many
points (shown in red) in the residual volume are inaccessible (c). We have
simulated the fabrication process using expert’s solution (d).

We have also asked an expert to provide the best setup directions

for 3D objects (see Figure 23 (a)), but not full volume decompositions,

as the latter task is too daunting. Experts also define bounding boxes

confining the cutter movement (see Figure 23 (b)). For freeform 3D

objects, even finding few setup directions is difficult for humans, as

experts’ directions often leave many points of the residual volume

inaccessible (see Fig 23 (c)). We simulated the machining process

based on the expert’s solutions and compared with ours (Figure

23 (d)). Respectively, for the Fertility, Bunny, and Kitten models,

the fabrication times of our decomposition were 663, 672, and 713

seconds while expert’s solutions required 989, 1392, and 1187 sec-

onds. This shows that our fabrication time is respectively about

49%, 107% and 66% shorter than the expert’s solutions for the afore-

mentioned models. We generated the tool paths and produced the

simulation using Siemens NX 12.0 [Siemens Industry Software Inc.

2020]. Contour-parallel toolpaths were used for our comparison

with the same parameters as our actual fabrication.

Comparison with height-field decomposition. Our method is not

meant to replace available surface or volume decompositions for

molding [Herholz et al. 2015] or CNC machining [Muntoni et al.

2018], since we are solving an entirely different and novel problem,

carvable volume decomposition. As already discussed before, an op-

timal height-field surface decomposition cannot be easily extended

to an optimal carvable volume decomposition without considering

carvability and other issues related to setup planning.

(b) (c) (d)

2
112

1

3

3

2

2

4

(a)

Fig. 24. Segmentation results produced by Muntoni et al. [2018] for 2D
MaxPlank (a). Extruding the segmentation of (a) to obtain a volume decom-
position (b) results in four directions and six segments. Our method with
uniform sampling (c) produces two directions and three segments, and with
adaptive sampling (d) produces two directions and six segments.

Segmentations produced byMuntoni et al. [2018] are composed of

surface pieces that if assembled, they reconstruct the given shape as

a hollow object whose segments can be carved vertically. Therefore,

they do not provide a recipe to decompose the residual volume of

a given shape. However, 2D segmentation results of Muntoni et

al. [2018] can be easily extruded to a valid volume decomposition

and our method outperforms their results. In their method, each

segment must be height-field individually and carved vertically.

Therefore, when segments are combined to form a shape, more

directions are needed in comparison to our method as illustrated in

Figure 24. In Figure 24 (c) and (d), we illustrate two versions of our

algorithm using uniform and adaptive sampling. Since the method

provided by Muntoni et al. [2018] is designed for fine machining,

we have also provided a finer decomposition using our adaptive

sampling. Please also note that, as opposed to our approach, the

volumes generated by the method of Muntoni et al. [2018] are not

necessarily continuously carvable.

For 3D objects, extruding segments is not trivial as it results in

self-intersections specially for high-genus objects. In addition, the

outputs of Muntoni et al. [2018] consist of several segments for

high-genus models, e.g., 63 for the Fertility model while our method

yields 10 segments (see Figure 25 (a)). For genus-zero objects such

as the Max Planck, the result generated by Muntoni et al. [2018]

attains more directions to cover the entire residual volume (see

Figure 25 (b)). Although all the detached segments are height-field

along the vertical direction, once they are assembled, they pose

arbitrary directions on the model. For instance, our method needs

three directions while the method of Muntoni et al. [2018] needs

five (removing the directions needed to access the base to match it

with our fabricated object). We have simulated and compared the

fabrication process for directions provided by Muntoni et al. [2018]

against ours (see Figure 25 (c,d)). For the Max Planck model, our

method needs 659 seconds while their method needs 893 seconds.

Therefore, our method performs 35% better. For Bimba, our method

needs two directions while their method requires five; our fabrica-

tion time is 690 seconds against 879 seconds (ours is 27% better).

However, we must point out that since our decomposition of the

residual volume is for rough CNC machining, the reproduced 3D

shapes do not approximate the intended target shapes as closely as

the method of Muntoni et al. [2018].

Fabrication. Our real machining has been conducted on a 5-axis

CNC machine of Pocket NC V2-50, which is operated as a 3-axis
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(b)(a) (c) (d)

Fig. 25. The results of Muntoni et al. [2018] for the Fertility (a) and Max
Planck (b). Carving directions produced by Muntoni et al. [2018] (c) is used
to simulate the fabrication process (d).

Fig. 26. Comparison on real machining times: continuous vs. non-
continuous carving for the same 3D objects.

machine by constraining the degrees of freedom of the cutter. The

testing material is machinable square wax (2.03 inch). CNC cutting

results and analysis are based on the default machine setting: cutter

diameter at 1/8 inch, cutter length at 1.5 inch, maximal velocity at

30 inch per minute, feed-rate at 5000𝑚𝑚 per minute, step over at

2𝑚𝑚, step down depth at 1𝑚𝑚, and spindle speed at 12,000r per

minute. G-code is used to transfer the tool paths. Some outputs of

our CNC rough machining are photographed in Figure 27.

Note that all the machined outputs contain a square base, which is

part of the target 3D shapes for our volume decomposition algorithm.

This base can be easily clamped for the CNC machine we use, while

designing fixtures over freeform surfaces is a delicate task which

would require human expertise. In our current work, we avoid

having to deal with the fixture design problem. Adding the square

base to the freeform 3D objects does not compromise the difficulty

of the decomposition problem; it may even make it harder, e.g., for

the Horse model in Figure 15, since it could increase the topological

complexity of a model.

Real machining time: continuous vs. non-continuous carving. To
validate the reduction in machining time using continuous carving,

we produced a comparison with non-continuous carving of the same

target 3D shapes. The tested 3D shapes contain multiple dents, as

shown in Figure 26; they are essentially 3D realizations of the 2D ex-

amples shown in Figure 2. Six models with different number of dents

(4, 8, and 16) have been fabricated from two carving directions. In all

cases, each continuous carving follows the connected Fermat spiral

Fig. 27. Rough CNC machining results of some of the models shown in the
paper. The CNC machine was set to carve the carvable volumes produced
by our decomposition algorithm, following the carving directions computed.
Each volume is carved using a connected Fermat spiral toolpath.

toolpath. With the same machining parameters listed above except

for the step down depth at 0.3𝑚𝑚, the machining time and fabri-

cated results are marked in Figure 26. We observe that carving the

same volume with continuous paths is faster than non-continuous

paths and machining time reduction with the continuous paths will

increase by adding more dents to the model: about 19% for 4 dents,

24% for 8 dents, and 27% for 16 dents.

7 CONCLUSION AND FUTURE WORK
We present a method to automate setup and path planning for rough-

stage CNC machining of free-form 3D objects, including those with

high genuses — such models are becoming prevalent as generative

design and topology optimization techniques are gaining traction.

Our goal is to simplify and accelerate the machining process accord-

ing to criteria learned from CNC experts. We show how this task can

be expressed as a volume decomposition, which jointly optimizes

for the number of setup directions and the number of carving path

transitions. However, it is important to note that our method is not

designed to find the minimum number of carvable volumes. Our

joint optimization of setup and path planning prioritizes minimizing

the number of setup directions. For example, between the choices of

2 setup directions yielding 8 carvable volumes and 3 setup directions

yielding 7 volumes, our algorithm would choose the former.

The decomposition problem is challenging and has not been stud-

ied before; it introduces (continuous) carvability, a new geometric

property which combines visibility and monotonicity. Our proposed

solution is based on the observation that minimal sets of carvable

directions will generate SA (single access) regions that can assist

to optimize the number of carvable volumes. We have applied this

insight to the design of an end-to-end pipeline and validated our

results through extensive tests, comparisons to ground truth, if

available, expert input, as well as physically machined models.

As the first fully automatic solution to carvable volume decom-

position, our method still has several limitations which point to

potential directions for future work. First, we employ a greedy beam

search, which is not guaranteed to find the optimal number of seg-

ments, especially when the number of segments or directions is

high (i.e., more than four); see Figure 28 for a failure case. Also due

to efficiency considerations, we do not account for tiny segments

on the surface during decomposition search. Hence, some small

artifacts may exist on the results, e.g., see the Fertility model in

Figure 1; these can be removed at the fine machining stage. Second,
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(a) (b) Nine segments. (c) Ten segments.
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Fig. 28. With a greedy search, our method failed at finding a 9-segment
decomposition (b); our solution is close but produces 10 segments (c).

we only have a rudimentary solution to incorporate cutter length

and width. The erosion and dilation discussed in Section 5, which

are based on cutter widths, may lead to loss of small features and

changing the hole sizes of high-genus models. Having a model of

the actual cutter shape and its base to determine the accessibility of

points can be an interesting path to follow. Third, we did not provide

any solution for designing fixtures to clamp the 3D objects during

machining. While re-configurable pin-type fixtures are adaptable to

any shape, it is an important and interesting research direction to

provide carving instructions that simplifies clamping. Fourth, our

algorithm does not take into account objects symmetry as shown in

Figure 20. Therefore, the artifacts produced by rough machining on

the fabricated objects including the Fertility in Figure 1 are different

from one side to another. An interesting path to follow could be

to evaluate shapes more thoroughly including their symmetry and

incorporate such properties in an algorithm designed for volume

decompositions.

In addition, our segmentation results are dependent on the direc-

tion sampling. Although, using adaptive sampling, we can guarantee

the accessibility of all points, we may not get the global optimal

segmentation under a specific direction set. It might be possible

to change the direction set during the segmentation optimization.

However, it is not readily obvious how to do this and it will remain

as a future work. Our method does not provide visually pleasing

segmentations considering symmetric properties of the model as it

is shown in Figure 20. In addition, for now the orientation of the

object in the block is given and it affects the final segmentation

results. It would be interesting to consider the initial orientation as

part of the search for optimal carvable segmentation.
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